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ABSTRACT

BRYAN C. WARD: Sharing Non-Processor Resources in Multiprocessor Real-Time Systems
(Under the direction of James H. Anderson)

Computing devices are increasingly being leveraged in cyber-physical systems, in which computing

devices sense, control, and interact with the physical world. Associated with many such real-world interactions

are strict timing constraints, which if unsatisfied, can lead to catastrophic consequences. Modern examples

of such timing constraints are prevalent in automotive systems, such as airbag controllers, anti-lock brakes,

and new autonomous features. In all of these examples, a failure to correctly respond to an event in a timely

fashion could lead to a crash, damage, injury and even loss of life. Systems with imperative timing constraints

are called real-time systems, and are broadly the subject of this dissertation.

Much previous work on real-time systems and scheduling theory assumes that computing tasks are

independent, i.e., the only resource they share is the platform upon which they are executed. In practice,

however, tasks share many resources, ranging from more overt resources such as shared memory objects, to

less overt ones, including data buses and other hardware and I/O devices. Accesses to some such resources

must be synchronized to ensure safety, i.e., logical correctness, while other resources may exhibit better

run-time performance if accesses are explicitly synchronized. The goal of this dissertation was to develop

new synchronization algorithms and associated analysis techniques that can be used to synchronize access

to many classes of resources, while improving the overall resource utilization, specifically as measured by

real-time schedulability.

Towards that goal, the Real-Time Nested Locking Protocol (RNLP), the first multiprocessor real-time

locking protocol that supports lock nesting or fine-grained locking is proposed and analyzed. Furthermore,

the RNLP is extended to support reader/writer locking, as well as k-exclusion locking. All presented RNLP

variants are proven optimal. Furthermore, experimental results demonstrate the schedulability-related benefits

of the RNLP.

Additionally, three new synchronization algorithms are presented, which are specifically motivated by

the need to manage shared hardware resources to improve real-time predictability. Furthermore, two new
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classes of shared resources are defined, and the first synchronization algorithms for them are proposed. To

analyze these new algorithms, a novel analysis technique called idleness analysis is presented, which can be

used to incorporate the effects of blocking into schedulability analysis.
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CHAPTER 1: INTRODUCTION

Increasingly, computing systems are being used to sense and interact with the physical world. Examples

of such systems include automotive and avionic systems, among many others. In many such systems,

computations must be performed within precise time constraints, otherwise there may be catastrophic

consequences. These systems are called real-time systems. Designers of real-time systems must leverage

highly predictable algorithms that can be rigorously shown to realize such timing constraints.

To support the ever-increasingly complex real-time applications that our society demands (e.g., au-

tonomous vehicles), more computational power is needed. Multiprocessor and multicore technologies offer

the promise of such computational power. Indeed, multiprocessor technologies have enabled huge advances

in general-purpose and throughput-oriented application domains where strict timing constraints are absent.

In contrast, in real-time systems where tight timing constraints exist and must be rigorously shown to be

satisfied, there are a number of challenges associated with leveraging multiprocessor platforms. Many of

these challenges chiefly relate to the sharing of resources. While there exists a number of ways to safely share

such resources, this dissertation provides many new methods to support such sharing in ways that allow for

improved platform utilization.

We begin this chapter with a brief introduction to real-time systems and synchronization. We then

describe common multiprocessor architectures and highlight the challenges they impose in the context of

real-time applications. We then present the thesis of this dissertation as well as its contributions. Finally, we

outline the remainder of the dissertation.

1.1 Real-Time Systems

The term “real-time” takes on different meanings in different application domains. It is therefore

necessary to clarify the definition of “real-time” used in this dissertation. We assume a real-time system to

be one in which associated with each job (i.e., program invocation) is a deadline, or time by which that job

should complete. Deadlines can be either hard, in which case the job must complete before its deadline, or

soft, in which case some deadline misses are acceptable. In a hard real-time system, in which all deadlines
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are hard, if a job may miss a deadline, the system must be characterized as incorrect. There are numerous

soft-real-time correctness conditions. Erickson (2014) gave a complete review of soft-real-time correctness

conditions in his dissertation.

These types of real-time requirements are common in safety-critical applications, in which the violation

of timing constraints may have catastrophic consequences. For example, the airbag controller in a car must

detect a crash and deploy the airbag within a predefined time interval so as to ensure the airbag protects the

passenger. Missing the deadline in this application can have catastrophic consequences including loss of life,

and therefore assurances must be built into the design process to ensure such deadlines will never be missed.

In contrast, in many alternative application domains, a system may be considered “real-time” if it permits

a seamless user experience. For example, in computer graphics, an application may be considered “real-time”

if frames are rendered at approximately 30 frames per second (FPS), resulting in a smooth, realistic user

experience. In such applications, there are often no performance assurances (e.g., 30FPS), but in extensive

testing, the applications perform well enough to be useful in practice. McKenney (2009) coined the term

“real fast” to distinguish such applications from real-time applications with strict timing requirements. The

phrase “real time” is also sometimes casually used to refer to information or behaviors that are “live” or very

recent. For example, the website http://trendsmap.com provides “real-time local Twitter trends” showing

the most common twitter words or hashtags used in different regions of the world recently.

In the remainder of this dissertation, we exclusively use the term real-time to denote systems in which

there exist strict timing requirements. In particular, as will be formalized later in Chapter 2, we consider a

real-time workload or task set consisting of a set of computational tasks. Each task is composed of a sequence

of jobs, each of which is a piece of work or computation, associated with which is a deadline by which the job

must complete. Jobs are released or made available to execute at a predictable rate or time interval. The jobs

are scheduled upon a processor according to a real-time scheduling algorithm. For example, earliest deadline

first (EDF) is a well studied real-time scheduling algorithm in which the job with the earliest deadline is

always scheduled. A task set, or collection of tasks is deemed schedulable when it can be rigorously and

mathematically proven that all timing constraints will be satisfied, and unschedulable otherwise.

In order to provide such mathematical proof that all timing requirements will be satisfied, there must be

schedulability analysis corresponding to the real-time scheduling algorithm. Schedulability analysis takes as

input a mathematical model of the task system and determines for a given scheduling algorithm whether all

jobs will complete by their deadlines. Non-optimal scheduling algorithms, or conservative or pessimistic

2
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schedulability analysis can lead to utilization loss, in which some task systems that do not fully utilize the

system resources may be deemed unschedulable. Advances in real-time systems seek to minimize utilization

loss, so as to better utilize system resources. In turn, this allows for real-time systems to be designed and

developed within tighter size, weight, and power (SWaP) constraints.

1.2 Multicore Architectures

Another means of reducing the SWAP of a system is through advances in computer architectures.

One of the most important and influential recent advances in computer architecture is the advent of the

multicore platform. In a multicore platform, two or more processors are contained within a single integrated

circuit. Processor architectures have shifted away from single-core to multicore designs as a result of

diminishing returns in instruction-level parallelism, as well as the increasing power demands of higher

clock frequencies (Hennessy and Patterson, 2007). Multicore architectures have trickled down from high-

performance systems all the way to embedded and real-time systems. For example, many modern commodity

phones include as many as eight cores, and the European Space Agency has developed the Next-Generation

Multiprocessor (NGMP), a quad-core processor designed for real-time computations, specifically in space-

based applications (Fernàndez et al., 2012).

While multicore processors offer great performance potential, they raise a number of significant chal-

lenges for the design of real-time systems. Multicore architectures are often designed with a number of

architectural features shared among cores. As seen in Figure 1.1, a multicore platform may consist of multiple

processing cores, each with core-local instruction and data caches, L1-I and L1-D, respectively. In this

example, all cores share the L2 cache, which is also the last-level cache (LLC) in this example. These caches

store data that resides in dynamic random-access memory (DRAM) banks, which may also be accessed from

any core. There exist other hardware features not depicted in Figure 1.1 that are also shared among multiple

cores. Examples of such features include buses, the memory controller, and registers used within the LLC

itself (Valsan et al., 2016), among others. Interactions among cores through these shared hardware features

can significantly affect the timing behavior of computations on multicore platforms. For example, if a core

were to execute a memory-intensive code segment in isolation, i.e., while all other cores are idle, it will

enjoy the full bandwidth of the memory bus and memory controller. If instead all cores were executing

memory-intensive code segments causing contention on the memory controller and bus, each core would
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Figure 1.1: Common architecture for multicore processors. Note that the LLC and memory banks are shared
among all cores.

receive only a fraction of the available memory bandwidth. Such contention may seriously affect the timing

behavior of real-time tasks by introducing significant analysis pessimism. This analysis pessimism results in

reduced platform utilization as a result of the inability to tightly characterize and analyze the behavior of the

system.

This issue of cross-core interference has resulted in what we have coined the “one-out-of-m” problem:

when validating real-time constraints on an m-core platform, excessive analysis pessimism can effectively

negate the processing capacity of the additional m−1 cores so that only “one core’s worth” of capacity is

available (Erickson et al., 2015; Kim et al., 2016). In fact, due precisely to such effects, the current best

practice in safety-critical domains such as avionics is to turn off all but one core in a multicore processor.

To address this issue, the U.S. Federal Aviation Administration (FAA) Certification Authorities Software

Team (CAST) (2014) recently released a position paper (known in the community as CAST-32) on multicore

processors that identifies sources of shared-hardware interference, and suggests that the effects of such

interference be identified, analyzed, and certifiably mitigated. Several of the core objectives in my dissertation

address these concerns through new models for mitigating such shared-hardware interference.

1.3 Synchronization

In much work on real-time schedulability analysis, task systems are assumed to be simple independent

systems, i.e., systems in which there do not exist any dependencies among tasks. This assumption significantly

eases work on schedulability analysis. However, in practice dependencies among real-time tasks are common.
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Indeed, with the advent of the multicore era, in order to leverage the computing capacity of additional cores,

workloads must be parallelized to execute on multiple cores concurrently. All but the simplest parallel

algorithms require shared state or communication among concurrently executing threads. In order to realize

the benefits of the increased computational capacity of modern multicore platforms in the context of real-time

systems, synchronization algorithms are required that allow for run-time parallelism that can be reflected in

improved analytical worst-case behaviors. In turn, bounds on the worst-case behavior are then incorporated

into schedulability analysis. Therefore, improving the worst-case synchronization behavior affords better

overall platform utilization.

Many synchronization algorithms have been developed for multiprocessor real-time systems, e.g., (Block

et al., 2007; Brandenburg, 2014; Brandenburg and Anderson, 2014; Gai et al., 2001; Rajkumar, 1991).

However, one serious limitation of most previous multiprocessor synchronization algorithms is their lack of

support for fine-grained locking, or lock nesting, for resources shared among multiple processors. Nested

requests, which are commonly employed in practice to improve run-time parallelism, are only indirectly

supported through the use of coarse-grained locking techniques such as group locks. A group lock treats a set

of shared resources as a single resource, and arbitrates access to the group using a single-resource locking

protocol (Block et al., 2007; Rajkumar, 1990). In contrast, under fine-grained locking, different resources are

locked individually, which enables concurrent accesses of separate resources. Clearly, fine-grained locking is

desirable in practice, and should result in improved worst-case performance.

In addition to shared memory objects, there are also less overt resources within the hardware platform as

discussed above, that if explicitly managed, can result in better platform utilization, thereby improving SWAP.

Shared hardware resources, such as I/O devices (e.g., graphics processing units or digital signal processors),

buses, or caches, are all resources that may be shared among tasks either explicitly or implicitly. If left

unmanaged, tasks can interfere with one another through these resources, which can negatively affect the

worst-case timing behavior of the tasks, due to the often unpredictable nature of such interactions. If instead

access to such resources are expressly managed, then synchronization costs can be traded for improved

predictability.
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1.4 Thesis Statement

The thesis supported by this dissertation is broadly motivated by the need to solve the “one-out-of-m”

problem. While there are many avenues to address this important problem, in this dissertation we focus on the

issues that arise due to resource sharing among cores. We thus consider resources that are shared explicitly

via semaphores, as well as shared hardware resources that are often shared implicitly, i.e., contention for the

resource may be managed (suboptimally) in hardware. Towards this end, we present the following thesis

statement:

“Dependencies among tasks in real-time systems through shared resources, both memory objects,

as well as shared hardware resources, can be managed through synchronization protocols. Such

protocols can be designed to exploit the inherent sharing constraints of the managed resources

in order to achieve improved resource utilization.”

To support this thesis, we have designed and developed new synchronization algorithms, formalized new

sharing constraints, and evaluated the proposed algorithms with respect to real-time schedulability.

1.5 Contributions

In the remainder of this chapter, we overview the contributions that support this thesis, and overview the

organization of the remainder of the dissertation.

1.5.1 RNLP Family of Asymptotically Optimal Fine-Grained Multiprocessor Locking Protocols

In Chapter 3, we present the first fine-grained multiprocessor real-time locking protocol, the Real-Time

Nested Locking Protocol (R/W RNLP). This solves a glaring open problem raised by previous work on

multiprocessor real-time synchronization, that one job could not hold two locks simultaneously. As a result,

only coarse-grained locking was allowed, in which resources that may need to be accessed concurrently

were grouped, and the group was treated as a single lockable entity. In contrast, with fine-grained locking as

provided by the RNLP, resources may be individually locked, reducing blocking and improving platform

utilization.

The RNLP has a configurable, “plug-and-play” architecture that allows it to be configured in different

ways depending upon the platform and analysis assumptions being used. For each such platform and analysis-
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assumption combination, the RNLP can be configured to achieve asymptotically optimal worst-case blocking.

All of the different RNLP configurations give rise to a family of mutual exclusion (mutex) locking protocols.

In Chapter 4, we present extensions of the RNLP that support alternative sharing constraints including

reader/writer and k exclusion. These alternative sharing constraints allow for improved blocking in many

cases, and can be used to improve overall platform utilization.

1.5.2 Synchronization Algorithms for Shared Hardware Resources

While the RNLP family of protocols and extensions thereof were primarily designed to be used to

arbitrate access to shared memory objects, it has been used to in the context of shared hardware resources

as well (Ward et al., 2013b). Through the application of the RNLP in this domain, we learned that shared

hardware resources have inherently different synchronization requirements than shared memory objects.

In Chapter 5, we present two new resource-sharing constraints (e.g., mutex, k-exclusion, reader/writer),

designed expressly for arbitrating access to shared hardware resources in an effort to improve the temporal

predictability of tasks using those resources. The first such sharing constraint is call premptive mutual

exclusion, and it is motivated the need to manage resources such as data buses. The second sharing constraint

is called half protected exclusion, and it is motivated by the need to manage access to caches.

Additionally, we present the R2DGLP, an optimal k-exclusion locking protocol that has been applied

and proven highly useful in the context of predictably controlling access to multiple graphics processing

units (GPUs) (Elliott, 2015; Elliott et al., 2013). Furthermore, the R2DGLP can be used as a “plug-and-play”

component in the RNLP to achieve improved blocking bounds in some cases.

1.5.3 Idleness Analysis

Traditionally, to incorporate the effects of synchronization algorithms into schedulability analysis,

blocking analysis is conducted to determine the worst-case blocking behavior, and the results of blocking

analysis are incorporated into schedulability analysis. In Chapter 5, we present an alternative analysis

framework for incorporating the effects of synchronization into schedulability analysis. We call this analysis

technique, idleness analysis. By directly analyzing idleness, we “flip the analysis.” Instead of asking “how

long can this request be blocked?” we instead ask “how much idleness can this request cause?”

Idleness analysis is particularly useful in the context of the aforementioned synchronization models

developed for shared hardware resources. However, as we describe in Chapter 5, it can also be applied to
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other synchronization algorithms. We explore empirically how idleness analysis compares with traditional

blocking analysis, and show cases in which each approach is superior to the other.

1.5.4 Evaluation

In Chapters 4, and 5 we present results from schedulability studies were conducted to evaluate the

improved platform utilization made possible through the aforementioned synchronization algorithms and

associated analysis techniques. In this schedulability study, task systems are randomly generated based on a

number of task-system parameters, and then evaluated for schedulability assuming a number of combinations

of synchronization and scheduling algorithms. This is the de facto standard means of evaluating the proposed

synchronization algorithms and analysis techniques.

The results of these schedulability studies reinforce that analytical conclusions drawn in previous chapters,

and demonstrate the extent to which platform utilization can be improved through the techniques presented in

this dissertation.

1.6 Organization

The rest of this dissertation is organized as follows. In Chapter 2, we discuss several background

topics relevant to the contents and contributions of this dissertation, including real-time scheduling and

synchronization and multicore architectures. In Chapter 3, we present the Real-Time Nested Locking Protocol

(RNLP), and in Chapter 4, we present extensions to the RNLP that support reader/writer and k-exclusion

locking. In Chapter 5, we present synchronization models and associated algorithms that are designed to

be used to more effectively arbitrate access to different classes of shared hardware resources. Finally, we

conclude in Chapter 6.
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CHAPTER 2: BACKGROUND AND PRIOR WORK

In this chapter, we present the requisite background material for understanding the contributions of this

dissertation. We begin with real-time task models and schedulability. We then define models for shared

resources, and cover related work on real-time synchronization. Finally, we present relevant features and

functionality of shared caches, memory buses, and GPUs, which motivate the synchronization problems and

solutions presented in Chapter 5.

2.1 Real-Time Scheduling

Before we can describe synchronization-related resource models, we must first formally define models

for tasks. To begin, we present these task models assuming that all tasks are independent. Later, we extend

such models to consider shared resources. Formally specifying the task and resource models is a necessary

first step towards towards formal schedulability analysis.

2.1.1 Task Model

In this dissertation, we consider the well-studied sporadic task model (Mok, 1983). In this model, a task

system Γ is composed of n sporadic tasks Γ = {τ1, . . . ,τn} that are scheduled on m processors.1 Each task

τi is composed of a (potentially infinite) sequence of jobs Ji,1,Ji,2, . . ., which are released sequentially. For

convenience of notation, we let Ji denote a job of τi, when the job index is inconsequential. Each task τi is

characterized by a tuple τi = (ei,di, pi). The worst-case execution time (WCET) of any job of τi is denoted ei.

A job Ji, j is released (arrives) at time ai, j, and successive jobs of τi are released with a minimum separation2

of pi, i.e.,

ai, j−ai, j−1 ≥ pi. (2.1)

1We use the terms “processor,” ”core,” and “CPU.” interchangeably.
2The sporadic task model is an extension of the periodic task model (Liu and Layland, 1973), which specifies an exact release
separation.
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Job Ji, j completes (finishes) at time fi, j. The relative deadline di of τi specifies the time after the job release

ai, j by which Ji, j must complete, called the absolute deadline of Ji, j denoted Di, j.

Di, j , ai, j +di (2.2)

Task systems with pi = di for all tasks are called implicit deadline, and are sometimes denoted using a

two-tuple τi = (ei, pi) notation for simplicity. Task systems with di ≤ pi are called constrained deadline, and

task systems containing tasks with di > pi are called arbitrary deadline.

There exists a precedence constraint between successive jobs in that Ji, j cannot be scheduled before

Ji, j−1 completes. The response time ri, j of a job Ji, j is the time between its release and its completion.

ri, j , fi, j−ai, j (2.3)

The utilization of τi is ui = ei/pi, and the total processor utilization is U = ∑
n
i=1 ui.

For hard real-time (HRT) schedulability, the response time of each job Ji, j must satisfy ri, j ≤ di. However,

for soft real-time (SRT) scheduling, some deadline misses are acceptable. In this dissertation, we adopt the

notation for lateness and tardiness as defined by (Devi, 2006; Erickson, 2014). Lateness is defined by

li, j , fi, j−Di, j. (2.4)

Lateness is negative for a job completing before its deadline. Tardiness is defined to be non-negative lateness.

xi, j ,max(0, li, j) (2.5)

A number of more expressive task models have been proposed and analyzed. Stigge and Yi (2015)

presented a survey of many graph-based task models, and Burns and Davis (2016) maintain an excellent

survey of mixed-criticality task models, scheduling, and analysis. However, these models are outside the

scope of this work, and are orthogonal to the issues that arise due to synchronization. In this dissertation, we

exclusively consider the sporadic task model, and extensions thereof that support shared resources.
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2.1.2 Scheduling

There exist a number of different policies for scheduling the aforementioned tasks on m processors. We

begin our review of such schemes by considering the single-processor case, in which m = 1. A scheduling

policy can be viewed as a prioritization scheme, and the highest-priority job is scheduled at any given point

in time. One such well-studied prioritization scheme is fixed priority (FP), in which each task is assigned a

static priority. RM scheduling is a FP scheduling policy in which tasks are prioritized in decreasing order

by period, i.e., the shortest-period job is assigned the highest priority. Another well-studied prioritization

scheme is earliest deadline first (EDF), in which each job is prioritized by its deadline, with the job with the

earliest deadline having the highest priority. EDF is an example of a dynamic-priority scheduling algorithm,

as different jobs of the same task may have different priorities. In this dissertation, we consider job-level

fixed-priority (JLFP) schedulers, in which the priority of each job is fixed. Both EDF and FP scheduling are

examples of JLFP schedulers.

Example 2.1. Consider the example task system depicted in Figure 2.1. In this task system, τ1 = (1,3),

τ2 = (2,6), and τ3 = (4,12). Under FP scheduling, assuming lower-indexed tasks are higher priority, τ1 is

scheduled at time 0. When it completes at time t = 1, τ2 executes until it completes at time t = 3. Also at

t = 3, the next job of τ1 is released, which has the highest priority and therefore begins running. At time

t = 4, τ1 completes its second job. Because τ2 has no ready job, τ3 begins running. At time t = 6, another job

of τ1 is released, and it begins running. This is an example of a preemption, in which τ3 was “paused” to

allow the higher-priority task to execute. The schedule continues in a similar fashion until time t = 10, when

τ3 resumes execution, and runs until its completion at time t = 12.

Note that if jobs were instead prioritized by deadlines with ties broken in favor of the lower-indexed

task, the same schedule would result in this particular example task system. In general, EDF and FP do not

produce the same schedule. ♦

Preemptivity. Non-preemptive schedulers disallow preemptions such as that at time t = 6 in Example 2.1.

For example, non-preemptive FP scheduling disallows all preemptions. Non-preemptive scheduling eases

timing analysis, or the derivation of the ei terms (for reasons that will be made more clear in Section 2.3),

but can lead to non-preemptive blocking, in which a high-priority job is blocked while a low-priority job

executes instead. In Example 2.1, under non-preemptive FP, τ3 would run until completion at time t = 8

before J1,3 would be allowed to execute. During t ∈ [6,8), J1,3 would be non-preemptively blocked. Non-
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Figure 2.1: This schedule is possible for the example task system described in Example 2.1. In this particular
example, EDF and FP produce the same scheduling decisions, assuming tasks are indexed in decreasing
priority order.

preemptive blocking can lead to poor resource utilization, and therefore, unless otherwise specified, we focus

on preemptive schedulers in this dissertation.

2.1.3 Schedulability

To use a given scheduling algorithm in a real-time system, a schedulability test must be applied to

evaluate whether all jobs will provably satisfy their timing constraints. If a schedulability test returns true

(false), we say the task system is schedulable (unschedulable). In our discussion of schedulability, we begin

by describing the uniprocessor case before addressing the complexities that arise when adding additional

processors.

Clearly, a task system that overutilizes the processor, i.e., has a utilization exceeding one, cannot meet its

timing constraints as jobs will complete progressively later and later. This is an example of a task system that

is infeasible, or impossible to schedule such that all timing constraints are satisfied. If a scheduling algorithm

exists that can schedule a task system while satisfying all timing constraints, then that task system is feasible.

In the seminal work of Liu and Layland (1973), it was shown that under EDF scheduling an implicit-deadline

task system is HRT schedulable if and only if

U ≤ 1. (2.6)

EDF has been shown to be be optimal on a uniprocessor platform, as it correctly schedules any feasible task

system.
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A schedulability test may be either exact, or sufficient. A sufficient schedulability test is one in which

the task system may be correctly scheduled, but due to pessimistic or imprecise analysis, the schedulability

test cannot show the task system to be schedulable. If a task system can be correctly scheduled, then an

exact schedulability test must return that the task system is schedulable. Therefore, the aforementioned EDF

schedulability test in (2.6) is an exact schedulability test. Liu and Layland (1973) presented a sufficient

schedulability condition for RM scheduling of implicit-deadline task systems:

U ≤ n(2
1
n −1). (2.7)

A task system with utilization n(2
1
n −1)<U ≤ 1 is feasible to schedule, and indeed schedulable with EDF,

but is not deemed schedulable by this schedulability condition. We call this utilization loss, as it represents

processor utilization that cannot be used, at least analytically, either due to pessimistic schedulability analysis,

or a suboptimal scheduling algorithm. Work on scheduling and schedulability tests, a central theme of

work in real-time system research, strives to minimize utilization loss. This is a particularly active area of

research for multiprocessor systems, where additional processors add significant complexity to scheduling

and schedulability analysis.

Response-time analysis. The schedulability conditions in (2.6) and (2.7) are both utilization-based schedu-

lability tests, in that they only consider the total task-system utilization in determining schedulability.

Utilization-based schedulability tests are very easy to check, usually in polynomial time, but are often subject

to greater utilization loss than other schedulability tests. Schedulability conditions based on response-time

analysis (RTA) often reduce utilization loss at the expense of more complex analysis. RTA is used to

determine an upper bound on the response time of any job of each task. Such bounds are compared to the

relative deadline of the corresponding task to determine if the task system is schedulable. Joseph and Pandya

(1986) presented the first RTA for FP scheduling.

Theorem 2.1. (Joseph and Pandya, 1986). Let Γ = {τ1, . . . ,τn} denote a set of constrained-deadline sporadic

tasks indexed in order of decreasing priority. On a uniprocessor, under FP scheduling, the response time ri of

task τi is bounded by the smallest Ri ≥ ei, that satisfies the following equation:

Ri = ei +
i−1

∑
j=1

⌈
Ri

p j

⌉
e j. (2.8)
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Figure 2.2: Visual depictions of partitioned, clustered, and global scheduling.

This recurrence can be iteratively computed starting with Ri = ei and re-evaluating until both the left and

right sides of the equation converge. This convergence is guaranteed if U ≤ 1 (Joseph and Pandya, 1986).

Furthermore, this convergence will occur in a pseudo-polynomial number of operations. RTA forms the basis

of many schedulability tests for a number of different schedulers and extended task models.

Multiprocessor schedulability. In the multiprocessor case, in which m > 1, there are additional factors to

consider in the development of scheduling algorithms. Under global scheduling, the m highest-priority jobs

are scheduled at any given time. Alternatively, under partitioned scheduling, tasks are statically assigned to

processors, and each processor is scheduled according to a uniprocessor scheduling algorithm. Clustered

scheduling is a hybrid of these two approaches in which tasks are assigned to a specific group or cluster

of processors, and global scheduling is applied within each cluster. These three scheduling approaches are

visually depicted in Figure 2.2. Notationally, we let c be the size of each cluster, and therefore there are m
c

clusters. With this notation, global and partitioned scheduling are special cases of clustered scheduling in

which c = m and c = 1, respectively. These different scheduling alternatives give rise to different challenges

with respect to synchronization, as we will discuss in more detail later.

Under partitioned scheduling, the aforementioned uniprocessor scheduling and schedulability conditions

can be applied on each processor. While optimal uniprocessor scheduling algorithms exist, this does not imply

that partitioned scheduling is optimal on a multiprocessor. When tasks are partitioned onto the processors

there is the possibility of bin-packing-related utilization loss.
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Figure 2.3: Example schedule demonstrating that the example task system in Example 2.2 is feasible to
schedule on two processors. Note that J1 migrates from CPU 1 to CPU 2 in this schedule.

Example 2.2. Consider a task system with three tasks, Γ = {(2,3),(2,3),(2,3)}. The total utilization of this

task system is two, but there is no partitioning of tasks to two processors that does not overutilize at least one

processor—every partitioning has one processor with at least two tasks; that processor is thus overutilized

with a utilization of 4
3 . This task system is therefore infeasible under partitioned scheduling. However, as

depicted in Figure 2.3, the task system is feasible to schedule on two processors. ♦

Global scheduling. An alternative to partitioned scheduling and the aforementioned bin-packing-related

utilization loss is global scheduling. However, global scheduling requires new schedulers and schedulability

analysis that considers the task system being scheduled on multiple processors. (Global schedulability

analysis is also applied to each cluster with c > 1, similarly to how uniprocessor schedulability analysis

is applied to each partition with c = 1.) Given the observation of bin-packing-related utilization loss in

Example 2.2, is there a global scheduling algorithm that is optimal, similar to EDF on a uniprocessor?

As it turns out, the answer to this question is quite nuanced. Hong and Leung (1988) and Dertouzos and

Mok (1989) independently showed that the optimal online scheduling of independent jobs (i.e., a system

with no task abstraction) is impossible. Later, Fisher et al. (2010) showed that the optimal online scheduling

of sporadic task systems is impossible by showing a feasible system that no online scheduler can correctly

schedule without clairvoyance, or knowledge of future events. However, with minor restrictions on the task

systems, optimal algorithms have been developed. These include Proportionate fair (Pfair) (Baruah et al.,
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1996) algorithms such as PD2 (Srinivasan and Anderson, 2002), and RUN (Regnier et al., 2011), which

are optimal for implicit-deadline task systems. One common trait of all optimal multiprocessor schedulers

is that they are job-level dynamic priority (JLDP) schedulers, and therefore the priority of individual jobs

may change during execution. JLDP algorithms often incur more preemptions than JLFP algorithms, and

incur higher runtime overheads due to the need to change job priorities (Brandenburg, 2011). More efficient

optimal scheduling algorithms are an active area of research, and we refer the reader to Nellisen (2012)

for an excellent presentation of several such algorithms, as well as a discussion of optimal multiprocessor

scheduling.

In addition to the increased overheads associated with JLDP scheduling, priority changes also add

complexity to the design of synchronization algorithms. While there do exist techniques for synchronization

in some optimal schedulers (Holman and Anderson, 2006), the vast majority of work on real-time synchro-

nization focuses on JLFP schedulers, which are more efficient in practice. For these reasons, we also focus

exclusively on JLFP schedulers in the remainder of this dissertation.

Global JLFP schedulers. Suboptimal schedulers inherently suffer from utilization loss. However, the

runtime efficiency of the scheduling algorithm itself, as well as the accuracy of the associated schedulability

analysis can make suboptimal schedulers preferable to optimal schedulers in practice. This is indeed the case

for two well-studied global scheduling algorithms, global fixed priority (G-FP) and global earliest-deadline

first (G-EDF). Both G-FP and G-EDF generalize their uniprocessor counterparts by scheduling the m

highest-priority jobs at any given point in time.

Example 2.3. Consider again the example task system described in Example 2.1. If instead that task system

were scheduled on two processors, the resulting schedule would be that depicted in Figure 2.4. At time t = 0,

both J1,1 and J2,1 are scheduled. At time t = 1, J1,1 completes, allowing J3,1 to begin. At time t = 3 when

J1,2 is released, it need not preempt another job, as in Example 2.1, but instead may be scheduled on the idle

processor. The schedule proceeds similarly. ♦

As compared to uniprocessor schedulability tests, it is much more difficult to derive multiprocessor

schedulability conditions. Intuitively, the key reason for the additional complexity for multiprocessor analysis

is idleness. On a uniprocessor platform, the entire platform (one processor) is either busy running a single

job, or idle. On a multiprocessor platform, one processor may be busy while another is idle, as seen at time

t ∈ [2,3) in Figure 2.4. This issue, among others, has given rise to a number of different approaches to
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Figure 2.4: Example G-EDF schedule. This schedule depicts the example task system described in Exam-
ple 2.3. In this particular example, G-EDF and G-FP produce the same scheduling decisions, assuming tasks
are indexed in decreasing priority order.

multiprocessor schedulability conditions. Bertogna and Baruah (2011) provide a summary of seven different

incomparable G-EDF schedulability conditions. Many of these conditions are implemented in the publicly

available library SchedCAT (SchedCAT, 2016), which is used in the evaluation in subsequent chapters.

Specifics concerning the derivation of these schedulability conditions are not essential background to the

contributions of this dissertation, so we refer the interested reader to (Baruah et al., 2015; Bertogna and

Baruah, 2011; Brandenburg, 2011) for further discussion.

Soft real-time schedulability. There exist many applications in which some deadline misses are acceptable,

particularly if allowing for such deadline misses reduces utilization loss. Many multimedia applications fall

into this domain—some deadline misses may degrade the user experience and should be avoided, but do not

have catastrophic consequences.

Devi and Anderson (2005) showed that under the bounded-deadlines-tardiness definition of SRT schedul-

ing, G-EDF has no utilization loss and is therefore optimal. Therefore, under SRT timing constraints, the

G-EDF schedulability condition is

U ≤ m. (2.9)

Furthermore, Devi and Anderson (2005) showed that, assuming 2.9 holds, the deadlines tardiness xi of any

job is upper bounded by

xi = ei +
Em−1− emin

m−Um−1
, (2.10)
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where Em−1 and Um−1 denote the sum of the largest m−1 execution times and per-task utilizations, respec-

tively, and emin denotes the smallest ei. In subsequent work, tardiness bounds were improved (Erickson,

2014), and computed on a per-task basis. Furthermore, it has been shown that if tasks are prioritized by

a priority point or “pseudo deadline” in a fashion similar to G-EDF, then tardiness bounds can be further

reduced. Erickson et al. (2014) showed how these priority points can be set via a linear program (LP). This

LP framework allows the LP solver to optimize the priority-point settings subject to different optimization

objectives (e.g., maximum per-task tardiness), and/or tardiness-bound constraints (e.g., xi ≤ 10ms). In the

context of this dissertation, however, we consider only SRT schedulability, and assume that the tardiness

bounds derived via the above methods are sufficient.

2.2 Real-Time Synchronization

In the previous discussion, and indeed much of the published scheduling-theory literature, tasks are

assumed to be independent, in that they do not share resources or otherwise have any dependencies among

them. However, in practice many dependencies exist, and the aforementioned models and analysis techniques

must be extended to support such dependencies. In this dissertation, we exclusively consider dependencies

that arise due to resource sharing.

2.2.1 Resource Model

We assume that the n tasks share nr non-processor shared resources, `1, . . . , `nr . A job Ji that requires

access to `q must issue a resource request, denotedRi, to a locking protocol before it is granted access to `q

to execute its critical section. Each resource is subject to a resource-sharing constraint, which defines the

semantics of how the resource can be safely shared. For example, most locking protocols implement mutual

exclusion (mutex), in which at most one critical section is allowed to run at a time, and must complete before

the next critical section is allowed to execute. To satisfy the resource-sharing constraints, requests may be

blocked, or forced to wait, by the locking protocol. A requestRi is said to be satisfied when Ji acquires the

requested resource. A job that has issued a resource request that has not yet been satisfied is said to have an

outstanding resource request. A job that has issued a resource request that is not complete is said to have an

incomplete resource request. A job can either spin (i.e., busy-wait) or suspend while waiting for one of its
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requests to be satisfied. A job that has been released but has not yet completed is pending. A job that can be

scheduled is ready; thus, a job that is suspended and waiting for a shared resource is pending but not ready.

Granularity of locking. A resource is a logical abstraction of a single lockable entity. This entity may

itself be composed of a number of other elements or abstractions. For example, a list data structure

may be a resource that is treated as a single lockable entity, even though it consists of a number of list

elements. If resources are logical abstractions of large or complex objects or data structures, we say that the

synchronization is coarse-grained. In contrast, fine-grained locking allows for individual elements within a

larger data structure to be accessed individually. Perhaps the best example of coarse-grained locking is older

versions of the Linux kernel (e.g., versions 2.0–2.2), which employed a big kernel lock, with the functions

lock kernel() and unlock kernel(), which guard access to most of the linux-kernel data structures as a

single resource. The granularity of locking in this example is very coarse. Over time the kernel was modified

to use fine-granularity locking (notably in versions between 2.4 and 2.5), and eventually the big kernel lock

was completely removed (version 2.6.37).

Coarse-grained locking is much easier to use as a developer, as developers need not concern themselves

with possible states that may arise when different tasks access different resources concurrently. However,

coarse-grained locking serializes potentially non-conflicting requests, or requests that do not operate on

the same resources. Therefore, fine-grained locking can reduce the blocking that tasks experience while

waiting for shared resources. To support fine-grained locking, it is necessary to nest lock requests, or allow

a resource-holding job to issue a request for another resource within its critical section. While in practice

the granularity of locking is application specific, for the purpose of this dissertation, we say that a locking

protocol that supports a single job holding multiple resources concurrently supports fine-grained locking.

Protocols that do not support fine-grained locking are coarse-grained locking protocols.

To formalize the nested-locking terminology, if Ji holds no resources when it makes a request, then the

request is said to be an outermost request. If Ji acquires a resource at time t via an outermost request, and t ′ is

the earliest subsequent time when Ji holds no resources, then (t, t ′] is called an outermost critical section.

The maximum number of outermost requests Ji makes is given by Ni. The maximum duration of Ji’s kth

outermost critical section is Li,k. A job Ji makes progress if a job that holds a resource for which Ji is waiting

is scheduled and executing its critical section.
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Locking protocols can cause tasks to wait or block while others execute critical sections. A priority

inversion occurs if a high-priority job is blocked waiting for a low-priority job to complete its critical section.

Such blocking is an example of priority-inversion blocking (pi-blocking). This can affect the scheduling

decisions that are made, and therefore must be incorporated into schedulability analysis. The first step in this

process, is to formally analyze priority-inversion blocking.

2.2.2 Blocking Analysis

Brandenburg and Anderson (Brandenburg and Anderson, 2014) formalized two classes of techniques

to incorporate the effects of priority-inversion blocking into schedulability analysis for suspension-based

locking protocols: suspension-oblivious (s-oblivious) analysis, in which suspensions due to pi-blocking are

modeled as computation, and suspension-aware (s-aware) analysis, in which suspensions due to pi-blocking

are incorporated directly into schedulability analysis. These techniques rely upon different definitions of

pi-blocking given next, which are visually compared in Figure 2.5.

Definition 2.1. Under s-aware schedulability analysis, a job Ji incurs s-aware pi-blocking at time t if Ji is

pending but not scheduled and fewer than m higher-priority jobs are ready.

Definition 2.2. Under s-oblivious schedulability analysis, a job Ji incurs s-oblivious pi-blocking at time t if

Ji is pending but not scheduled and fewer than m higher-priority jobs are pending.

For spin-based locking protocols, there is a third type of pi-blocking.

Definition 2.3. A job Ji incurs spin-based blocking (s-blocking) at time t if Ji is spinning (and thus scheduled)

waiting for a resource.

Note that spin-based blocking is computation, as the task actually occupies a processor while spinning.

In comparison, both s-oblivious and s-aware pi-blocking bound times in which the task is suspended and

therefore not executing.

Example 2.4. Consider the example EDF schedule depicted in Figure 2.5. At time t = 1, three tasks are

released and task τ1 and τ2 begin executing. At time t = 2, τ2 issues a request that is satisfied, and task τ1

also issues a request that is blocked by τ2. τ1 suspends to wait until the resource is available, and relinquishes

its processor to τ3. At t = 3, τ3 also issues a request, which is blocked by τ2. When τ2 completes its critical

section at time t = 5, τ1 acquires the resource and executes its critical section until t = 7 when it completes

and τ3 executes its critical section.
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Figure 2.5: Illustration adapted from (Brandenburg and Anderson, 2010a) of the difference between s-
oblivious and s-aware analysis. G-EDF scheduling is assumed.

Now let us consider the blocking that occurs in this schedule. First, consider the blocking by τ1 during

t ∈ [2,5). τ1 is the highest priority job and therefore there are no higher-priority pending or ready jobs, so by

Definitions 2.1 and 2.2, τ1 is both s-aware and s-oblivious pi-blocked during this interval.

Next consider the blocking by τ3 during t ∈ [3,5). τ1 is pending but not ready, as it is suspended, and

therefore only one higher-priority task, τ2 is ready. By Definition 2.1, τ3 is s-aware pi-blocked during this

interval. However, both τ1 and τ2 are pending during t ∈ [3,5), and therefore by Definition 2.2, τ3 is not

s-oblivious pi-blocked. After τ2 completes at time t = 5, τ3 becomes both s-aware and s-oblivious pi-blocked.

♦

An intuitive way to think about s-oblivious vs. s-aware pi-blocking is to consider the suspensions of

higher-priority jobs as if they occupied a processor. If a task τi is blocked but all m processors are busy, either

with actual computation, or the suspensions of higher-priority jobs, which we are thinking of as occupying a

processor, then τi is not s-oblivious pi-blocked. This observation is reflected in the following corollary to

Definition 2.2

Corollary 2.1. A job Ji may only be s-oblivious pi-blocked if it is among the top m highest-priority pending

jobs.

This corollary in particular informs the design of many locking protocols, which we will discuss later in

this section.

Causes of pi-blocking. Pi-blocking can occur in one of two scenarios. First, a job that has issued a request

and is blocked waiting to acquire a resource is said to experience request blocking. Second, many locking
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protocols employ a progress mechanism such as priority inheritance or priority boosting (described in

more detail later) to ensure that a resource-holding job is scheduled. These progress mechanisms work

by increasing the priority of a task from its original or base priority, to a higher effective priority. For

example, if a low-priority resource-holding job is priority boosted (or scheduled at the highest priority) to

ensure progress, then a high-priority non-resource-accessing job may be pi-blocked, as it is pending but

not scheduled. This gives rise to progress-mechanism-related (PMR) pi-blocking,3 as a lower-priority job

can execute while a higher-priority job is forced to wait, even if it has not issued a resource request. This

second source of blocking can introduce a great deal of analysis pessimism, as it affects all tasks, regardless

of whether they access shared resources or not. Brandenburg (2013a) defined a locking protocol with no

progress-mechanism-related pi-blocking to be independence preserving, because independent tasks are not

affected by the progress mechanism of the dependent, resource-using tasks.

Incorporating blocking into schedulability analysis. S-oblivious and s-aware pi-blocking bounds are used

in different schedulability tests. S-oblivious pi-blocking bounds can be incorporated into schedulability

tests that do not explicitly model suspensions by inflating the execution time of each task by its s-oblivious

pi-blocking bound. Analytically treating suspensions as computation is safe as the corresponding schedule

without suspensions will have response-time bounds at least that of the schedule with suspensions. This

s-oblivious approach allows for blocking bounds to be easily applied in the context of many schedulability

tests developed for independent systems, discussed in the previous section.

Alternatively, schedulability analysis may be suspension-aware. In such s-aware schedulability tests, the

maximum suspension length is incorporated into the task model, and the effects of those suspensions are

dealt with explicitly in the schedulability test. Such tests can be used to account for the effects of blocking

by treating s-aware blocking bounds as the suspension lengths. For example, Liu and Anderson (2013)

extended the schedulability test of Baruah (2007) to consider tasks that suspend. Suspensions are notoriously

difficult to tightly analyze, and indeed such analysis is NP-complete in the strong sense (Ridouard et al.,

2004). Consequently, there exist fewer s-aware schedulability tests, especially for multiprocessor systems.

Furthermore, many studies have shown s-oblivious blocking analysis to be competitive, if not preferable to,

s-aware analysis in many cases (Brandenburg, 2011, 2014; Ward, 2015). For a more complete discussion

3Under some locking protocols and analysis assumptions, PMR pi-blocking can only occur at job release, and in such cases is
sometimes referred to as release blocking.
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Figure 2.6: Example of an unbounded priority inversion, described in Example 2.5.

of suspensions and suspension-aware schedulability analysis, we refer the interested reader to (Chen et al.,

2016) and (Liu, 2013).

2.2.3 Prior Real-Time Synchronization Algorithms

Next we review prior real-time synchronization algorithms. As in previous discussions, we start again

with results for uniprocessor platforms, before we review multiprocessor algorithms.

2.2.3.1 Priority Inheritance Protocol (PIP) (Sha et al., 1990)

To illustrate the key properties of the PIP, we first illustrate the challenges that were faced in the design

of the first real-time locking protocols, which motivate the design of the PIP.

Example 2.5. Consider the example uniprocessor EDF schedule depicted in Figure 2.6. The lowest-priority

job J3 locks a resource at time t = 1, and is then preempted at time t = 2 by J1. At time t = 3, J1 issues a

request for the locked resource, and is blocked. J2 as the highest-priority ready job is then scheduled until its

completion at time t = 7. Only then can J3 resume its critical section. J1 can only resume after J3 completes

its critical section at time t = 8.

Note that J1 is blocked for the entire duration of J2. This is an example of unbounded priority inversion,

as any medium-priority job, even ones that do not access shared resources, can delay the resource acquisition

of the higher-priority job arbitrarily. ♦

The PIP addresses this issue through a progress mechanism called priority inheritance. Under priority

inheritance, a resource-holding job is scheduled with an effective priority equal to the highest-priority job it
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blocks. Therefore, if priority inheritance were applied to the previous example, J3 would resume execution at

time t = 3 and execute at the priority of J1 until it completed its critical section at time t = 4. This prevents

unbounded priority inversion for the higher-priority job J1. Notably, however, J2 experiences an s-aware

priority inversion in this case as the lower-priority job J3 executes even though J2 is ready.

The priority-inheritance progress mechanism is used in many real-time locking protocols, both unipro-

cessor and multiprocessor.

2.2.3.2 Priority Ceiling Protocol (PCP) (Sha et al., 1990)

While the PIP solves the problem of unbounded priority inversion, it is still subject to the possibility

of deadlock. Deadlock occurs when resource-holding jobs cannot make progress. Consider the following

classic example of deadlock.

Example 2.6. Consider a situation in which J1 holds `a and J2 holds `b. If J1 issues a nested request for

`b and J2 issues a nested request for `a, then the system is deadlocked. `a will not be unlocked until `b is

acquired, but `b is waiting for `a to be unlocked. Therefore, neither J1 nor J2 can make progress and the

system is deadlocked. ♦

The PCP extends the PIP in such a way so as to prevent the possibility of deadlock. To do so, the PCP

requires that the set of resources that are accessed by each task are known a priori. This information is used

to set the priority ceiling of each resource `q as the priority of the highest-priority task that accesses `q. When

a task locks a resource, the system priority ceiling is defined to be the highest priority ceiling of any locked

resource.

The goal of the system priority ceiling is to prevent a situation in which deadlock can occur. To do so, a

task τi’s request for an unlocked resource is denied or delayed if its priority is lower than the system priority

ceiling (unless τi was the task that set the system priority ceiling). Referring back to the previous example,

the priority-ceiling rules would prevent the scenario in which J1 held `a and J2 held `b. Instead, one of these

two jobs’s request would be denied thereby preventing the deadlock.

Not only is this deadlock-avoidance result significant, but the PCP also has worst-case s-aware pi-

blocking of at most one outermost critical section. Intuitively, this is because a blocked job is only blocked

by one resource-holding job, and the deadlock-avoidance rules prevent any transitive blocking. These two
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key properties combine to limit the maximum duration of s-aware pi-blocking to at most the duration of one

outermost critical section.

2.2.3.3 Stack Resource Policy (SRP) (Baker, 1991)

The SRP is a clever extension of the PCP that allows a single runtime stack to be used for all tasks.

To show how multiple tasks can share the same stack, we first consider stack sharing in the absence of any

synchronization.

If independent tasks are scheduled with a preemptive FP scheduling algorithm, they can share the same

runtime stack. Consider a lower-priority task being preempted by a higher-priority task. The higher-priority

task adds its own frame(s) to the runtime stack above the stack frame(s) of the lower-priority job. However,

when the lower-priority job resumes, the higher-priority job will have completed, and popped its stack frames

off the stack, leaving the stack in the same state as when the preemption occurred. Note, however, that if

the higher-priority job ever suspended, for example, to block on a shared resource, then a lower-priority job

would resume, but the high-priority job’s stack frames would still be present on the stack. This behavior

is seen in Example 2.5 and Figure 2.6. τ1 suspends at time t = 3, and the preempted lower-priority job τ3

resumes at time t = 7 while τ1 is still on the stack. For this reason, if using the PIP or the PCP, each task

must maintain its own runtime stack.

The SRP allows all tasks to share the same runtime stack, just as in the case of preemptively scheduled

independent task systems. To highlight the difference between the PCP and the SRP, let us focus on the

scheduling of independent tasks, in a system employing the PCP. The rules of the PCP do not apply to

independent tasks; only tasks that access resources are affected by the rules of the PCP. In the SRP, both

independent and resource-using tasks are prevented from executing if their priority does not exceed the

system priority ceiling. The system priority ceiling is set just the same as in the PCP.

By incorporating the system priority ceiling into the scheduling of all tasks, it can be shown that all

resources are available to be locked without any blocking whenever a running task issues a request. All of

the blocking that tasks experience due to synchronization is shifted from the time of issuing a request to

before commencing execution. Subsequently, the SRP also limits the number of context switches that occur
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in practice, thereby reducing overheads, in addition to better utilizing memory by sharing a common runtime

stack.4

2.2.3.4 Multiprocessor and Distributed Priority Ceiling Protocol (MPCP) (Rajkumar et al., 1988;

Rajkumar, 1990; Sha et al., 1990; Rajkumar, 1991)

The first multiprocessor real-time locking protocols, the multiprocessor priority ceiling protocol (MPCP)

and the distributed priority ceiling protocol (DPCP), are both extensions of the uniprocessor PCP for

multiprocessor systems (Rajkumar et al., 1988; Rajkumar, 1990; Sha et al., 1990; Rajkumar, 1991).5 The

DPCP is designed for distributed-memory multiprocessors, while the MPCP is designed for shared-memory

multiprocessors. Despite the different design objectives, the DPCP is also compatible with shared-memory

platforms and so we consider it in our discussion here.

Both the MPCP and the DPCP assume P-FP scheduling. Resources are classified as either local if they

are shared only by tasks within one partition, and global if they are shared among tasks in different partitions.

Given the strong synchronization results for uniprocessors discussed previously in the PCP and the SRP,

both the MPCP and the DPCP leverage the uniprocessor PCP for local resources. Global resources, however,

are more difficult, as will be described next, and therefore must be handled differently. Specifically, nesting

resource requests of global resources is prohibited.

One of the key challenges in the design of multiprocessor synchronization algorithms is the design of the

progress mechanism. For partitioned or clustered scheduling, priority inheritance is ineffective in ensuring

progress and therefore bounded priority inversions. Intuitively, this is because a task τl may have a relatively

low priority with respect to its processor, but have sufficient priority to be scheduled, while a relatively

high-priority task τh may not have sufficient priority to execute on another processor due to the presence of

other even-higher-priority tasks. If τh holds a resource thereby blocking τl , inheriting τl’s priority will not

ensure progress. This example demonstrates how priority inheritance is insufficient to ensure resource-holder

progress across partitions.

4Sharing a common runtime stack is not a fundamental requirement of the SRP, and indeed it can be implemented with each task
having its own stack.

5The DPCP was originally referred to as the “multiprocessor PCP” in (Rajkumar et al., 1988) and the MPCP was called the “shared
memory synchronization protocol” in (Rajkumar, 1990). The names DPCP and MPCP as they are known today were introduced in
(Rajkumar, 1991).
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To address this issue, both the MPCP and the DPCP employ a different progress mechanism called

priority boosting. To ensure resource-holder progress, priority boosting unconditionally raises the priority

of a resource-holding job to the maximum priority, such that it cannot be preempted by non-resource-using

tasks.

In both the MPCP and the DPCP, requests for global resources are satisfied in order of their base priority.

The major difference between the two protocols lies in where and how the critical sections are actually

executed. In the DPCP, which was designed for distributed memory platforms, each resource is pinned to a

single processor. A remote procedure call is used to request the agent of the resource to actually execute the

critical section on the resource. The agent executes these requests with a boosted priority on the processor on

which the resource resides, and in the order of the priority of the requesting tasks.

In comparison, the MPCP assumes a shared-memory model, which allows critical sections to be executed

directly by the requesting task from any processor. Throughout the duration of any of its critical sections, a

global-resource-holding task is priority-boosted. Similar to the DPCP, requests are satisfied in priority order

using the priority of the requesting tasks.

For brevity, we omit detailed discussion concerning the blocking analysis of both the MPCP and the

DPCP. However, we note that the original blocking analysis (Rajkumar, 1991)6 has since been significantly

improved (Lakshmanan et al., 2009).

2.2.3.5 Multiprocessor Stack Resource Policy (MSRP) (Gai et al., 2001)

Just as the MPCP extends the PCP to partitioned multiprocessor platforms, the MSRP also extends the

SRP to partitioned multiprocessor platforms. As such, there are many commonalities between the MSRP and

the MPCP. Resources are classified as either local or global resources, and there can be no nested requests

for global resources. The SRP is used to arbitrate access to all local resources, and non-preemptive first-in

first-out (FIFO) spinlocks are used to arbitrate access to all global resources. These last two properties are the

most significant difference between the MSRP and the MPCP—FIFO queuing is used for global resources

instead of priority queueing, and waiting is realized via non-preemptive spinning, instead of suspensions.

While non-preemptive spinning does “waste” processor cycles, it is amenable to simple analysis. There

can be at most m concurrent requests for all global resources, one per processor. With FIFO queueing, no

6Recently, it has been shown that the original MPCP and DPCP blocking analysis is slightly flawed (Yang et al., 2016).
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request can “cut ahead” and block an earlier-issued request. Therefore, under the MSRP, each global request

can be blocked by at most one request per processor.

2.2.3.6 Flexible Multiprocessor Locking Protocol (FMLP) (Block et al., 2007)

Block et al. (2007) developed the flexible multiprocessor locking protocol (FMLP), which supports both

partitioned and global scheduling, and spin- and suspension-based waiting. Like the MSRP, the FMLP

leverages FIFO-ordered waiting.

In the FMLP, resources are classified as either short or long, depending upon the length of the cor-

responding critical sections for that resource. Waiting for short resources is realized via spinning, while

waiting for long resources is realized via suspending. The motivation behind this decision is that for short

critical sections, the overhead of context switching to another job outweighs the benefits of relinquishing the

processor while waiting. For long critical sections, the converse may be true.

Block et al. (2007) also formalized the concept of group locking to complement the FMLP. Under

group locking, resources are aggregated into groups that are treated as a single lockable entity, a form of

coarse-grained locking (recall terminology from discussion in Section 2.2.1). Under group locking, all long

(respectively short) resources are aggregated into groups such that if a job holding a resource `a may issue a

nested request for another resource `b then `a and `b are contained in the same resource group. The FMLP

does allow a job holding a long-resource group to issue a nested request for a short resource group. While

this represents finer-granularity locking than previous protocols, we still consider it coarse-grained locking. It

does, however, provide slightly more flexibility than earlier protocols such as the MSRP, as it allows nested

resources to be accessed from different processors.7

The worst-case blocking of the FMLP is also fairly simple to reason about generally (though fine-grained

blocking analysis is much more nuanced (Brandenburg, 2011, 2013b; Wieder and Brandenburg, 2013; Yang

et al., 2015)). For spin-based waiting, the FMLP is very similar to the MSRP in that a request may only be

blocked by m−1 earlier-issued requests. For suspension-based waiting, the length of the wait queues can

extend to O(n) requests. Further discussion of the blocking-bound results of the FMLP will be given in the

discussion in Section 2.2.4.

7Because nested locking of global resources is disallowed in earlier protocols, any nesting must be handled within one processor via
a uniprocessor locking protocol.
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Figure 2.7: Queue structure of the k-FMLP with k = 4. Notably, the k-FMLP generalizes the FMLP by
allowing k > 1. Each queue is FIFO ordered. Priority inheritance is used to ensure progress within each wait
queue.

Elliott (2015) extended the FMLP to support the more general k-exclusion sharing constraint, in which

at most k critical sections may be satisfied concurrently. k-exclusion is often used to arbitrate access to

replicated resources, where a task may issue a request for an arbitrary resource replica. The resulting protocol,

called the k-FMLP, is very similar to the FMLP in that it uses a FIFO wait queue for each of the k resource

replicas, as depicted in Figure 2.7. When a request is issued, it is enqueued in the shortest replica wait queue,

thereby limiting the length of each wait queue to at most O(n/k).

2.2.3.7 FIFO Multiprocessor Locking Protocol (FMLP+) (Brandenburg, 2014)

In his dissertation, Brandenburg (2011) presented an extension of the FMLP for partitioned-scheduled

systems, which was originally termed the FMLP+. However, in later work (Brandenburg, 2014), that protocol

was generalized to support clustered scheduling as well. We therefore restrict our attention to the later variant.

The original FMLP was thought to have an s-aware pi-blocking bound of O(n) under any JLFP global

scheduler. Brandenburg (2011, 2014) showed this not to be true by constructing a task system with worst-case

pi-blocking lower-bounded by Ω(Φ) where Φ is the ratio of the maximum to minimum task periods. In

this example task system, a high-priority task may be repeatedly pi-blocked due to the progress mechanism

of either priority inheritance or (unrestricted) priority boosting. To address this issue, Brandenburg (2014)

presented a new progress mechanism called restricted segment boosting (RSB). Under RSB, jobs are
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decomposed into segments of execution, depicted in Figure 2.8: independent segments, in which the job has

not requested a resource; and request segments, in which the job is waiting on or using a shared resource.

In order to balance s-aware pi-blocking among independent and request segments, RSB boosts the priority

of at most one request segment at a time, and may co-boost some other segments to ensure that boosted

low-priority jobs do not cause undue pi-blocking for independent segments.

More specifically, let Jb be the lock-holding job with the earliest segment start time in its cluster, which

we denote tb. Jb is boosted, and is therefore scheduled. Let C(Jb) be the (at most) c−1 highest-priority ready

jobs with priority higher than Jb and segment start times before tb. (By construction, all jobs in C(Jb) are in

independent segments.) All jobs in C(Jb) are co-boosted, and therefore scheduled. The remaining cores (if

any) schedule the highest-priority jobs that are neither boosted nor co-boosted.

Example 2.7. Consider the clustered EDF system with c = 2 depicted in Figure 2.9. We focus our attention

on one cluster in a larger system. At time t = 0, J2 begins an independent segment, and at time t = 2, J3 is

released and begins an independent segment on another processor. At time t = 3, J3 issues a request, and

therefore enters a request segment. J3 is blocked waiting for other critical section(s) to complete on other

cluster(s) (not shown). At t = 4, J1 is released and begins execution. At time t = 5, J3 acquires a lock,

and is boosted and therefore scheduled. J2 has both a higher priority than J3 and an earlier segment start

time of t = 0, and therefore is co-boosted. Therefore J1 is pi-blocked at time t = 5 due to the boosting and

co-boosting of J3 and J2, respectively. Under unrestricted priority boosting, J1 would be scheduled at time

t = 5 instead of J2, leaving J2 pi-blocked. By co-boosting jobs using this technique, jobs cannot be repeatedly

pi-blocked leading to undue pi-blocking. ♦

The FMLP+ uses RSB in conjunction with simple FIFO queuing, similar to the FMLP, for each resource.

However, at most one job may be boosted at any given time, even if multiple resource-holding jobs (holding

different resources) are ready. Note that multiple resource-holding jobs may execute concurrently if they
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Figure 2.9: Example schedule depicting boosting and co-boosting in RSB. This schedule depicts only one
cluster, of size c = 2, in a larger system. Within the cluster G-EDF is assumed with RSB.

have sufficient priority, but only one resource-holding job may be boosted. Using these techniques, it can be

shown that the FMLP+ has O(n) s-aware pi-blocking under both clustered and global JLFP scheduling.

2.2.3.8 O(m) Multiprocessor Locking Protocol (Brandenburg and Anderson, 2010a, 2011)

After formally defining s-aware and s-oblivious pi-blocking analysis (recall Definitions 2.1 and 2.2),

Brandenburg and Anderson (2010a) presented the O(m) multiprocessor locking protocol (OMLP). In later

work (Brandenburg and Anderson, 2011, 2014), the OMLP was actually extended to a family of locking

protocols that can be used under many different platform configurations. We begin our discussion with the

global OMLP (G-OMLP), which is only designed for global scheduling.

Prior to the G-OMLP, all multiprocessor locking protocols used either FIFO or priority-ordered queueing.

The G-OMLP uses a combination of FIFO and priority-ordered queueing, depicted in Figure 2.10. Requests

are initially queued into a priority-ordered wait queue, which feeds a FIFO wait queue of length m. Priority

inheritance is used to ensure resource-holder progress. Brandenburg and Anderson (2010a) showed that a

request can experience at most O(m) s-oblivious pi-blocking while it is queued in the priority-ordered queue,

and O(m) s-oblivious pi-blocking in the FIFO wait queue. In the aggregate, the G-OMLP therefore has a

worst-case s-oblivious pi-blocking bound that is O(m).
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Figure 2.10: Figure depicting the queue structure of the G-OMLP. The triangular queue structure represents a
priority queue, while the rectangular queue represents a FIFO queue.

Brandenburg (2013a) also presented the O(m) independence preserving (OMIP) locking protocol, a close

cousin of the G-OMLP, which can be applied to clustered systems by using migratory priority inheritance.

Migratory priority inheritance allows critical sections to migrate to another cluster to be executed using a

priority inherited from that cluster. For example, let Jr be a resource-holding job in Cluster 1 and Jh be a job

with sufficient priority to be scheduled in Cluster 2. If Jh is blocked waiting for Jr to complete its critical

section, under migratory priority inheritance Jr would migrate to Cluster 2 and continue executing its critical

section with the inherited priority of Jh. Like the G-OMLP, the OMIP is independence preserving in that

non-resource-using tasks do not experience s-oblivious pi-blocking.

If migrating critical sections among clusters is disallowed, priority inheritance alone is insufficient

to ensure resource-holder progress in partitioned and clustered systems. Likewise, in clustered systems,

where 1 < c < m, priority boosting is also problematic as one job may be repeatedly pi-blocked as a result

of priority boosting. To address this issue, Brandenburg and Anderson (2011) developed a new progress

mechanism called priority donation, which limits the maximum duration of pi-blocking attributable to

the progress mechanism itself to O(m). To do so, priority donation is shown to satisfy the following two

properties (Brandenburg and Anderson, 2011):

PD1 A resource-holding job is always scheduled.

PD2 The duration of s-oblivious pi-blocking caused by the progress mechanism (i.e., the rules that maintain

Property PD1) is bounded by the maximum request span of any job, where the request span is defined

to be the time between the issuance and completion of a request.

The rules of priority donation ensure that there are at most c outstanding requests per processor, and

therefore at most m total. When a job is released, if it has a higher effective priority than a job with an
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Figure 2.11: Example schedule depicting priority donation on two processors scheduled according to G-EDF.

outstanding request in that cluster, it is forced to donate its priority to that job. Note that this may relinquish a

previous donor from its donation obligation. These rules ensure that a job with an incomplete resource request

always has sufficient effective priority to be scheduled in its cluster, which means that when it acquires its

needed resource, Property PD1 is satisfied. Furthermore, a job may only donate its priority to one other

job, and therefore after that job completes its critical section, the job’s donation obligation is complete.

Therefore, the duration of donation is bounded by the maximum request span, or the time between request

and critical-section completion.

Example 2.8. To demonstrate some of the principles of priority donation, consider the example depicted

in Figure 2.11 . In this example, J4 holds a resource from time t = 1 to time t = 4. When J2 is released

at time t = 2, it has sufficient priority to preempt the resource-holding job J4. Under priority donation, J2

donates its priority to J4 so as to ensure progress. At time t = 3, J1 is released, and donates its priority to J4,

relinquishing J3 from its donation obligation, allowing J2 to preempt J3. At time t = 4 when J4 completes

its critical section, the donation obligation of J1 is relinquished, and it preempts J4. The remainder of the

example schedule proceeds according to G-EDF. ♦
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Priority donation is a very powerful progress mechanism that can be used to construct locking protocols

for many use cases. Brandenburg and Anderson (2011) showed how priority donation can be used to construct

mutex, k-exclusion, and reader/writer locks, all coexisting on the same platform. A reader/writer lock

distinguishes between two types of requests: reads, which can be satisfied concurrently, and writes, that

require mutual exclusion. The mutex variant, which we denote the C-OMLP, uses a single FIFO wait queue

for each resource, and therefore the maximum request span is O(m). The k-exclusion variant, which we

denote the CK-OMLP, also uses a single FIFO wait queue in contrast to the k-FMLP, which uses a FIFO wait

queue per replica. The maximum request span for k exclusion is therefore O(m/k). Finally, the R/W variant

is designed using phase-fair logic (Brandenburg and Anderson, 2009), which is described in more detail later.

2.2.3.9 Multiprocessor Resource-Sharing Protocol (MrsP) (Burns and Wellings, 2013)

The MrsP is another multiprocessor locking protocol for P-FP scheduling, with similarities to many

previously discussed locking protocols, but with some novel improvements. The MrsP is a spin-based

protocol, similar to the MSRP. A major difference between these two protocols is the priority at which

waiting tasks spin. In the MSRP, tasks employ non-preemptive spinning, or priority boosting through the

duration of the request span. Burns and Wellings (2013) identified that this can cause significant blocking,

especially for high-priority, short-deadline jobs, which can cause significant schedulability loss.

The MrsP combats this issue by letting tasks spin while waiting for requested global resources at their

base priority. This shields high-priority jobs from excessive blocking, but raises a new issue: resource-holding

jobs may be preempted, which can cause undue blocking for requests on other processors. Burns and Wellings

(2013) addressed this issue in the MrsP with a “helping mechanism,” which allows waiting jobs to “help”

preempted jobs by completing the execution of an in-progress critical section. This helping mechanism has

many parallels to migratory priority inheritance (Brandenburg, 2013a) as used in the OMIP, multiprocessor

bandwidth inheritance (Faggioli et al., 2010), and a technique called “local helping” (Hohmuth and Peter,

2001).

Unlike all of the previously discussed multiprocessor locking protocols, the MrsP includes support for

nested locking of global resources. However, the blocking bound associated with nested locking is greater

than that with non-nested locking, negating the benefit of fine-grained locking.
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2.2.3.10 Multiprocessor Bandwidth Inheritance (M-BWI) (Faggioli et al., 2010, 2012)

Resource reservations, or budgets are used to ensure temporal isolation, in which one task overrunning

its provisioned or budgeted execution time cannot cause a deadline violation for another task. Such budgeting

is useful in open systems, in which tasks may dynamically enter and leave the system. Bandwidth inheritance

(BWI) extends similar concepts from priority inheritance discussed earlier to such budgeted systems, allowing

processing bandwidth to be inherited to ensure a resource-holding task has sufficient priority as well as

bandwidth to make progress.

M-BWI (Faggioli et al., 2010, 2012), is an extension of BWI for multiprocessor systems. M-BWI can be

applied under partitioned, clustered, and globally scheduled systems. M-BWI employs FIFO wait queues per

resource, and waiting tasks busy wait. If the resource-holding task is preempted or its budget is exhausted,

the bandwidth-inheritance mechanism allows the critical section to be migrated to another task and executed.

Lock nesting is supported in M-BWI, and deadlock can be prevented using a lock ordering. Faggioli

et al. (2012) present a brute-force analysis of the blocking bounds under M-BWI. In that analysis, all possible

request-order permutations or blocking chains are considered. This results in blocking analysis that is

super-exponential in the number of requesting tasks. Furthermore, the authors acknowledge the bound is

pessimistic as it does not incorporate some more detailed information, such as task periods.

2.2.3.11 Phase-Fair Reader-Writer Locking (PF) (Brandenburg and Anderson, 2009, 2010b, 2011)

Until this point, our discussion of previous locking protocols has predominantly focused on mutex

locking. Next, we turn our attention to reader/writer locking. Brandenburg and Anderson (2009) presented

phase-fair (PF) reader/writer locking, the first multiprocessor real-time reader/writer locking protocol.8 They

also presented the first blocking analysis, needed for real-time schedulability, of many previously studied

throughput-oriented multiprocessor reader/writer algorithms. We focus our attention here on PF locking,

as it is the best known reader/writer lock both theoretically, and in practice for the majority of cases in

which reader/writer locking is preferable to mutex locking. For brevity, we refer the interested reader to

(Brandenburg and Anderson, 2009; Brandenburg, 2011) for complete analysis of other throughput-oriented

reader/writer locks.

8The uniprocessor PCP and SRP can be extended to support reader/writer locking (Baker, 1991; Rajkumar, 1991).
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PF locking is based on the idea that read requests and write requests should “take turns.” Each of these

“turns” is called a phase. During a write phase, one write request is satisfied. During a read phase, many read

requests are satisfied concurrently. Formally, phase-fair locking is defined as follows.

Definition 2.4. (Brandenburg and Anderson, 2009). A RW lock is phase-fair if and only if it has the

following properties:

PF1 reader phases and writer phases alternate;

PF2 writers are subject to FIFO ordering, but only with regard to other writers;

PF3 at the start of each reader phase, all currently unsatisfied read requests are satisfied (exactly one writer

request is satisfied at the start of a write phase); and

PF4 during a reader phase, newly issued read requests are satisfied only if there are no unsatisfied write

requests pending.

Example 2.9. To illustrate PF locking, consider the example depicted in Figure 2.12. So as not to confuse

the effects of scheduling and synchronization, in this example, we assume one task per processor. To begin,

J4 issues a read request which is immediately satisfied. At time t = 1, J3 issues a read request, which by

Property PF4, is also satisfied, concurrently with J4. At time t = 2, J2 issues a write request, which blocks

to wait for the read phase to complete. At time t = 3, J4 completes, but J2 continues to block as J3 is still

reading. Also at time t = 3, J1 issues a read request, but by Property PF4, it must block until the next read

phase. At time t = 4, J3 completes, ending the current read phase, allowing J2 to begin its write critical

section. At time t = 6 when J2 completes its write critical section, the write phase completes, and alternates

to a read phase, allowing J1 to begin its read critical section. ♦

From these rules, it can be shown that a read request may be blocked for at most the duration of one

read request and one write request, totaling O(1) blocking. Similarly, each write phase may be preceded

by one read phase, and therefore the worst-case blocking for a write request is also O(m). The original PF

lock was a spin lock (Brandenburg and Anderson, 2009), but later phase-fair logic was used to construct a

suspension-based lock using priority donation (Brandenburg and Anderson, 2011).
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Figure 2.12: Example schedule depicting PF locking. In this example, four tasks are scheduled on four
processors, and therefore the scheduler is inconsequential, allowing us to focus on the effects of the PF
locking.
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Analysis Scheduler Locking Protocol PMR Pi-blocking Per-Request Pi-blocking
spin Any FMLP O(m) O(m)

s-aware
Partitioned FMLP+ O(n) O(n)
Clustered FMLP+ O(n) O(n)

Global FMLP+ O(n) O(n)

s-oblivious

Partitioned C-OMLP O(m) O(m)

Clustered
C-OMLP O(m) O(m)
OMIP 0 O(m)

Global G-OMLP 0 O(m)

Table 2.1: Summary of existing single-resource locking protocols and their blocking complexity. The column
“PMR Pi-Blocking” indicates how long any job in the system (whether it accesses shared resources or not)
can be progress-mechanism-related pi-blocked. The column “Per-Request Pi-Blocking” indicates how long a
job can be pi-blocked per request. All listed protocols are asymptotically optimal.

2.2.4 Summary of Prior Multiprocessor Locking Protocols

After describing many of the most prominent results in uniprocessor and multiprocessor real-time

synchronization, we briefly summarize the results, and highlight other contributions concerning real-time

synchronization.

Real-time locking optimality. Brandenburg and Anderson (2010a) presented two task systems that, re-

gardless of the lock-request ordering, have Ω(n) and Ω(m) worst-case s-aware and s-oblivious pi-blocking,

respectively. Based on these results, several of the previously discussed locking protocols are optimal,

assuming that both the number of requests, and the length of each request, is bounded by a constant. A

summary of the optimality results for multiprocessor real-time synchronization is given in Table 2.1.

The protocols given in Table 2.1 are all optimal. Many other non-optimal protocols have been developed,

including some of which that have been discussed herein. It is indeed possible that suboptimal locking

protocols may exhibit better performance in practice than optimal protocols. This could be attributable to

higher runtime overheads (similarly to our discussion in Section 2.1) for the optimal locking protocols, or

smaller constant factors in the blocking analysis of the suboptimal protocols. These issues have been studied

in detail in followup studies (Brandenburg, 2011). In practice none of the previously presented multiprocessor

locking protocols dominates any other.

In addition to work on developing locking protocols themselves, there has also been significant research

effort on developing improved analysis for existing locking protocols. Recently, Brandenburg (2013b),

Wieder and Brandenburg (2013), and Yang et al. (2015) have presented a more flexible and modular form
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Figure 2.13: Depiction of the architecture of a common multicore platform.

of blocking analysis based on linear programming (LP), which can be applied to many different locking

protocols. Using this LP-based blocking analysis results in more exact blocking bounds than previous

analysis. Additionally, the LP-based analysis has a modular nature to it, in that constraints for one locking

protocol may be easily applied to the blocking-analysis LP for another similar locking protocol (provided

the constraints are proven safe for both protocols). The LP-based analysis also allows for the formulation

of application-specific blocking constraints. For example, it is possible to add constraints that model a task

system in which only every other job issues a request for a given resource.

Of the multiprocessor real-time locking protocols discussed in this section, the only ones to support

fine-grained nested locking are the MrsP and M-BWI. Those protocols are not optimal under any definition

of pi-blocking.

2.3 Multiprocessor Hardware Platforms

The aforementioned synchronization algorithms can be applied to arbitrate access to many different

classes of resources, ranging from shared data objects to physical hardware components. In this section, we

review key components of multicore architectures and describe how applying synchronization algorithms to

hardware components can provide isolation to the accesses to such components that can improve runtime

performance and timing predictability.

2.3.1 Multicore-Architecture Considerations

While a brief overview of the architecture of multicore platforms was presented in Chapter 1, here we

describe in greater detail multicore architectures and their implications in the design of real-time systems.

Figure 2.13 depicts a common multicore architecture, which is the subject of discussion in this section.
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2.3.1.1 Processing Cores

Multicore platforms include two or more processing cores. The processing cores themselves contain all

of the hardware to execute arithmetic and logic operations (e.g., addition, disjunction, shift, etc.), control-flow

operations (e.g., jump, branch, etc.), as well as potentially many other more complex operations (e.g., test-

and-set, single-instruction-multiple-data (SIMD) instructions, etc.). Each core also contains registers to store

data, and any internal state necessary to carry out such operations. We assume that each core has exactly one

program counter, and can therefore execute at most one program or thread of computation at a time.9 All of

this functionality is logically encapsulated into one processing core (Hennessy and Patterson, 2007).

2.3.1.2 Memory

Programs executing on each of the processing cores may access instructions and data, which must be

accessed and stored in main memory. Computers have long been designed with hierarchical memory, dating at

least as far back as the seminal work in which the von Neumann computer architecture was proposed (Burks

et al., 1946). Hierarchical memory is necessitated by the tradeoff between size and speed—smaller memories

can be made much faster, but larger memories are desirable due to their capacity to store data. Modern

processors use relatively small, fast caches built into the silicon of the processor to store a subset of data from

the larger, slower main memory. This hierarchy can be seen in Figure 2.13.

Memory is managed by the operating system to allocate different regions of memory to different processes

or real-time tasks. To do so, memory is subdivided into contiguous, fixed-length blocks called pages. All

memory management is conducted at the page granularity. To simplify the task of memory management and

application programming, an additional level of indirection is added in the memory system, called virtual

memory. With virtual memory, the operating system maps virtual-memory addresses used by the application,

to physical-memory pages, corresponding to the addresses of physical memory in hardware, as depicted in

Figure 2.14. The translation of virtual-memory addresses to physical memory addresses is conducted in

hardware in the memory management unit (MMU). The mapping of physical-memory to virtual-memory

addresses is stored in page tables, which are set up by the operating system and stored in memory. To

9Some architectures have multiple program counters to support multiple hardware threads. Such threads share functional units within
the core. However, the interactions between threads on a single core are unpredictable and difficult to quantify. Traditionally, in
real-time applications hardware threading is disabled, but we note that improving the predictability of hardware threading is an
interesting avenue of future research.
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facilitate faster translation in the MMU, a special page-table cache is implemented in hardware called the

translation lookaside buffer (TLB).

Virtual memory has a number of desirable properties. It simplifies application development as applications

are presented with a linear memory model. With a linear memory model, memory appears to the program as

a single contiguous address space. Programs need not be concerned with the memory allocations of other

processes. Not only does this improve programmability, but it also improves security by providing memory

isolation. With virtual memory, one process cannot access the memory of another process. Finally, virtual

memory allows for demand paging, where memory can be stored in persistent disk storage, thereby allowing

for a larger effective memory size. However, demand paging can introduce significant latency to memory

accesses to disk-resident data. In this dissertation, we assume that memory accessed by real-time tasks is

pinned into RAM, and therefore never swapped out to disk.

Physical memory that is external to the chip where the CPU cores reside is stored in hardware in dynamic

random-access memory (DRAM) banks. The architecture of DRAM banks is shown in Figure 2.15. Modern

DRAM designs contain multiple banks. Each bank consists of memory in an array of rows and columns,

along with a row buffer. For a memory location to be read or written, the row corresponding to that location

must be stored in the row buffer. If the necessary row is not stored in the row buffer, a row-buffer miss

occurs, and the row buffer must be loaded from DRAM. Otherwise, a row-buffer hit occurs, which reduces

the latency of the memory fetch. Memory controllers are designed to re-order memory references to achieve
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Figure 2.15: Figure depicting the architecture of a DRAM bank. Data is fetched one row at a time into the
row buffer, which acts as a cache of the contents of that row, accelerating memory lookups until another row
is loaded in.

better performance from the row buffer. Notably, for real-time applications, the performance metrics used in

the design of memory controllers are different from those in general-purpose computing applications.

2.3.1.3 Caches

While main memory can store significant amounts of data (up to few gigabytes for smaller embedded

applications, and a few terabytes for high-performance, general-purpose machines), the latency of accessing

that data can be significant. In the ARM Cortex A9 platform considered in Kim et al. (2016), memory

references have an access latency of between 120 and 300ns. For that machine, which is clocked at 800MHz,

this access latency is as much as 240 processor cycles. The purpose of smaller on-chip caches is to allow

some memory references to be cached so fewer clock cycles are wasted fetching data from memory. The

ARM Cortex A9 platform contains two cache levels, the access latencies of which are depicted in Table 2.2.

Caches store copies of data that reside in memory, thereby enabling faster access. Accesses to memory

addresses that are not cached must be fetched from memory itself. Application developers do not have

explicit access to the cache to decide when and where to cache what data, but instead, such decisions are

made by the cache hardware. (As an alternative or supplement to caches, some hardware platforms provide

scratchpad memory, a small fast memory to which application developers have direct access.)
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Level Access Latency Size
L1-I 5ns 32KB
L1-D 5ns 32KB
L2 38ns 1MB
Main Memory 120–300ns 1GB

Table 2.2: Access latency for different levels in the memory hierarchy in the ARM Cortex A9 platform
considered in (Kim et al., 2016) as measured using lmbench (McVoy and Staelin, 1996). The L1 is the cache
closest to the CPU, and is split between the L1-I, which stores instructions, and the L1-D which stores data.
The L2 cache is a second level further from the CPU than the L1.

Figure 2.16: Depicting the architecture of the set-associative cache in the ARM Cortex A9 platform. Each
column represents a way of set associativity, and the 16 colors correspond to 2048 cache sets, 128 cache sets
per color.

To better understand the inner workings of the cache, we begin our discussion with a single-level cache

before expanding the discussion to the complexities associated with multi-level caches. Cache data is

transferred to and from memory in fixed-size blocks called cache lines. Associated with each cache line is

a tag, indicating the address in memory from which it originated. Each memory address maps to a single

cache line. Because the cache is significantly smaller than memory, many memory addresses map to the

same cache line. In a direct-mapped cache, only one such address may be cached, while in a set-associative

cache, many addresses that map to the same cache set may be cached concurrently. In other words, several

conflicting cache lines may be concurrently cached, one per way of associativity. Set-associative caches

are most common, and therefore we focus on them for the remainder of this discussion. The collection of

addresses in a page map to a collection of sets, which is collectively referred to as a color. This is depicted in

Figure 2.16. Given this discussion, a set-associative cache can be thought of as a 2d grid of colors and ways.

When the processor issues a memory reference, it first looks to see if that address is cached. If it is, the

data is quickly returned, in what is called a cache hit. Otherwise, a memory request is issued to retrieve the

data, in what is called a cache miss. The fetched data is then stored in the cache in the set to which it maps.
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In the case of a set-associative cache, that data may be cached in one of several ways, so an eviction policy

decides where to store the data. The most well-known eviction policy is least-recently used (LRU). Under

LRU, the least-recently used cache line from the same set is evicted and replaced with the data that was just

fetched from memory. Another common eviction policy, which is found in the previously discussed ARM

platform, is pseudo random, which is rather common due to its simple implementation.

Multi-level caches. Next we expand our discussion to understand the complexities that arise when adding

additional cache levels, as is common in most processors today. Multi-level caches introduce additional

cache configuration options. Two common multi-level cache-configurations are strictly inclusive, in which

data in the lower-level cache (e.g., L1) must also reside in the upper-level cache (e.g., L2); and exclusive,

in which data may be cached in either the lower-level cache or the higher-level cache, but not both. Other

hybrid policies exist, but they are outside the scope of this discussion.

Caches may also be either split or unified. In a split cache, program instructions are stored in one cache

(L1-I in Figure 2.13 and Table 2.2), and program data is stored in another cache (L1-D in Figure 2.13 and

Table 2.2). These two caches are logically and physically separate. Split caches are common at the L1 level,

as depicted in Figure 2.13. Split caches prevent program instructions from thrashing, or repeatedly evicting,

the cached data, and vice versa. Higher cache levels are most often unified in that both instructions and data

are stored in the same cache.

Shared caches. Caches can also be shared or local. Local caches are only accessible by one processor,

while shared caches are accessible by two or more processors. Local caches are used for lower-level caches,

while shared caches are often used for the last-level cache (LLC). For example, instruction caches are always

local, as program instructions are rarely if ever shared across processors. Cache coherence protocols are used

to ensure that memory cached in two or more caches is consistent, or that a reference to either cache will

return the same result.

Shared caches can be quite useful in throughput-oriented applications, particularly multithreaded applica-

tions that share data. However, for real-time applications, they can be quite problematic. Tasks executing

on different cores can interfere with one another through the shared cache by evicting useful data. In turn,

this interference must be reflected in timing analysis, which is used to bound the execution time, ei, of each

task. Because this interference is difficult to analyze and quantify, common practice in multicore real-time
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applications is to simply disable all but one processing core. We will discuss later techniques that have been

presented to mitigate the effects of this interference.

2.3.1.4 I/O Devices and Accelerators

Modern computing platforms are becoming increasingly heterogenous. Special-purpose hardware is

designed and built to accelerate specific applications. Common examples of such accelerators include

digital signal processors (DSPs), and graphics processing units (GPUs). Recently, Google announced

that they use a new special-purpose machine-learning co-processor, which they call a tensor processing

unit (TPU) (Jouppi, 2016). The TPU reportedly offers ten times better performance on machine-learning

applications, and was used to power Google’s AlphaGo, the first artificial intelligence framework to beat the

Go world champion (Jouppi, 2016).

Given the diversity of the design of these different accelerators and I/O devices, we focus our discussion

on the challenges of interfacing with these devices, and for brevity omit discussion of the complexity of the

devices themselves. As depicted in Figure 2.13, I/O devices are connected to the multicore processor itself

via an I/O hub. As an example, recent Intel x86 processors are connected to the I/O hub via the QuickPath

Interconnect (QPI), and the I/O devices are connected to the I/O hub via the PCI Express (PCIe) bus. These

buses can be a point of contention as they have a finite bandwidth that may need to be multiplexed among

multiple concurrent data transfers.

2.3.2 Mitigating Shared-Hardware Interference

After describing the key components of the architecture of a multicore platform, we now turn our attention

to previous work that has identified and proposed approaches to mitigating interference that can arise due

to contention for shared hardware components. Quantifying and mitigating the effects of interference in

real-time systems has been studied extensively for quite some time, and therefore we limit this discussion to

only those works that are most relevant to the contributions of this dissertation.

2.3.2.1 Caches

We begin our discussion of interference caused by shared hardware with caches. Even on a uniprocessor

platform, local caches are shared among multiple processes or real-time tasks. However, on such platforms,

at most one task may be scheduled at a time, which limits the number of tasks that can access the cache
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at any time to at most one. However, when one task τl is preempted by a higher-priority task τh, τh may

evict the previously cached data of τl . When τl resumes execution, subsequent accesses to previously cached

data will miss, inflating the execution time of the task. Quantifying the cost of these cache misses is called

cache-related preemption delay (CRPD) analysis. For brevity, we refer the reader to (Altmeyer et al., 2012)

for further discussion on CRPD analysis for local caches.

Shared caches, which can be concurrently accessed by tasks executing on different processors, are a more

challenging issue. Two concurrently executing tasks may thrash one another with cross-core cache evictions,

thereby negating the benefit of the cache in the first place. This issue in particular has been identified by

the FAA in a recent position paper on the use of multicore processors in avionics (Certification Authorities

Software Team (CAST), 2014). For these reasons, as mentioned earlier, the current de facto standard practice

for multicore processors in industrial real-time applications is to simply disable all but one processing core,

so as to eliminate the possibility of cross-core evictions.

One general approach to mitigate cache interference from other tasks is cache partitioning (Kirk, 1989;

Bui et al., 2008; Altmeyer et al., 2014). Under cache partitioning, tasks are allocated memory in such a way so

as to minimize or eliminate the possibility of interference. Cache partitioning can be applied to local caches

on uniprocessors to eliminate cache-related preemption delays by partitioning all tasks to disjoint cache sets

(rows in Figure 2.16). Such allocation can also be automatically determined by the compiler (Mueller, 1995).

At the OS level, page coloring (Kessler and Hill, 1992) can be used to allocate memory pages that realize

cache partitioning. Under page coloring, pages that map to the same cache sets are assigned the same color,

and differently colored pages do not conflict in the cache.

Cache partitioning can also be applied to eliminate cross-core cache evictions in a shared cache. For a

partitioned scheduler, the cache can be partitioned among the processors, thereby eliminating the possibility

of cross-core cache evictions. This partitioning strategy effectively renders a shared cache as several smaller

local caches. The CRPD analysis mentioned previously could be used to quantify the effects of cache-related

preemption delays within each cache partition.

Cache lockdown. The previously discussed cache-partitioning techniques are set based. Using additional

hardware available on some platforms, it is also possible to partition based on the ways of the cache, or the

columns in Figure 2.16. To support way-based cache partitioning, the cache must support some form of cache

lockdown. Cache lockdown allows software to specify which ways of the cache may be evicted, and which
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are locked down, or prevented from being evicted. This feature can be implemented in a number of different

ways. For example, on some platforms, a global lockdown register specifies which ways are locked and

which are not. On others, a lockdown register exists per core. In the later case, way-based cache partitioning

can be realized by setting the cache-lockdown registers to all be disjoint, such that each core is partitioned to

a subset of the available ways. This lockdown hardware was used recently by Mancuso et al. (2013) in a

technique they called colored lockdown to permanently lock the most commonly accessed pages into the

cache.

Cache partitioning is static in that partitions are determined offline and remain throughout the execution

of the task system. However, in more recent work, several approaches have been presented that seek to

more dynamically manage the allocation of the cache so as to realize better cache performance, while still

providing cache isolation (Ward et al., 2013b; Xu et al., 2016; Kim et al., 2013). These techniques seek to

provide larger cache allocations, which in turn result in smaller execution-time bounds, while also limiting or

eliminating cache interference.

2.3.2.2 Memory

Memory references that do not hit in the cache are deferred to main memory. However, as described

previously, there are a number of different factors that affect the latency of memory requests. Furthermore,

interference from other memory references coming from other cores may also affect the latency of such

requests. Much recent research seeks to minimize the effect of such interference to increase the timing

predictability of memory references.

Similar to cache partitioning, the memory banks (recall from Figure 2.13) may also be partitioned, such

that there is no bank interference across cores. Yun et al. (2014) presented a framework called PALLOC

that allows for bank-aware memory allocations to minimize or eliminate interference through bank isolation.

PALLOC only affects memory allocations, and therefore does not aim to address memory interference at

runtime. Yun et al. (2013) presented a tool called MemGuard, which can be used to dynamically limit the

memory bandwidth tasks receive at runtime. MemGuard leverages the hardware performance counters and

suspends tasks that have used too much memory bandwidth in a given time interval, thereby freeing memory

bandwidth to other tasks. MemGuard is best suited to SRT applications, though the authors note that by

disabling some optimistic features, it may be possible to apply in HRT applications as well.

does not make performance guarantees, and is therefore best suited to SRT applications.
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Memory controllers have also been a focus in work on more predictable memory systems (e.g., (Krish-

napillai et al., 2014)). Real-time memory controllers offer the potential of more predictable memory-access

latency, and more effective use of the row buffer. In this dissertation, we focus more on software-based

techniques to improve the platform utilization of more widely available commercial off-the-shelf (COTS)

hardware platforms, and therefore discussion of special-purpose memory controllers, which are built into the

hardware platform, are beyond the scope of this dissertation.

In order to “hide” memory latency, as well as more carefully arbitrate access to memory resources, Wasly

and Pellizzoni (2014) presented an algorithm that schedules both processor and memory accesses. In that

work, the authors assume a two-phase memory model, in which during the first phase, the job loads all of its

data from memory into a cache, and during the second phase it executes on the processor. In this model, it is

assumed that during the second phase the task does not access main memory. They assume the existence of

a direct memory access (DMA) engine, which facilitates background memory transfers that do not occupy

processor cycles.

2.3.2.3 GPUs and Accelerators

GPUs and other hardware accelerators may be used by multiple tasks or processors. Similar to the

previously discussed resources, such sharing can also cause interference that can affect the timing behavior

of the use of such resources. How access to such resources is controlled is often specific to the underlying

hardware being controlled in order to better utilize the hardware. In this section, we briefly highlight common

techniques, and discuss a few examples.

Gai et al. (2003), who developed the previously discussed MSRP multiprocessor locking protocol,

considered the use of that locking protocol to control access to hardware resources on a system-on-chip

(SOC). The hardware platform they considered was a two-core system. They considered an automotive

power-train control system with I/O channels and analogue-to-digital (A/D) converters, and applied the MSRP

to synchronize access to these hardware resources, in addition to other memory resources. Locking protocols

have also been used to arbitrate access to other hardware resources as well. Elliott et al. (2013) presented

GPUSync, a framework that applies a synchronization-based approach to control access to GPUs and the

hardware elements therein. Locking protocols are particularly amenable to both of these motivating examples

due to the nature of the hardware being controlled. In both of these examples, tasks require exclusive access
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to the hardware to prevent interference that could negatively impact either the logical correctness, or the

timing behavior of the hardware.

Others have taken a more scheduling-oriented approach to managing GPU resources (Kato et al., 2011a,b,

2012). Fundamentally, these approaches seek to resolve contention for hardware resources on the GPU.

However, the implementation details associated with such management may differ greatly. GPUSync provides

an additional layer of abstraction on top of the closed-source GPU driver. This design reduces contention

for GPU resources at the driver level, thereby encouraging the driver to make more predictable resource-

allocation decision more amenable to real-time analysis. In other work, such as RGEM (Kato et al., 2011a)

and Gdev (Kato et al., 2012), the authors develop their own open-source GPU drivers through reverse

engineering, which allows the driver to more predictably manage access to GPU resources. For a complete

discussion of GPUs in real-time systems, we refer the interested reader to (Elliott, 2015).

2.4 Chapter Summary

In this chapter, we have formalized the real-time task and resource models that will be considered in

this dissertation. We also discussed relevant real-time scheduling theory, as well as prior work on real-time

synchronization. We have also discussed the architecture of modern multicore hardware platforms, and

how contention for features in the hardware architecture can cause interference that can cause adverse

time-performance effects. Several previous techniques for managing such contention were presented.
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CHAPTER 3: Real-Time Nested Locking Protocol (RNLP)1

This chapter presents the Real-Time Nested Locking Protocol (RNLP), the first real-time multiprocessor

locking protocol that both algorithmically and analytically supports fine-grained locking. Fine-grained

locking allows groups of resources to be decomposed into smaller elements that are individually acquired,

thereby allowing for the possibility of non-conflicting requests being satisfied concurrently. Such concurrency

can reduce the blocking time for other waiting requests, thereby allowing for improved schedulability.

The RNLP relies on a novel technique for ordering the satisfaction of resource requests to ensure a

bounded duration of priority inversions for nested requests. This technique can be applied on partitioned,

clustered, and globally scheduled systems in which waiting is realized by either spinning or suspending. Fur-

thermore, this technique can be used to construct fine-grained nested locking protocols that are efficient under

spin-based, suspension-oblivious, or suspension-aware analysis of priority inversions. As a result, the RNLP

is actually a family of efficient locking protocols. Under analysis assumptions used previously (Brandenburg,

2011; Brandenburg and Anderson, 2010a, 2011, 2014), all of the RNLP variants are asymptotically optimal.

Unlike group locks, the RNLP does not require resources to be statically grouped before execution.

Instead, the RNLP uses either a partial ordering on resource acquisitions, which is a common assumption

in practice to ensure that deadlock is impossible, or dynamic group locks, which allow for a collection of

resources (a subset of a larger group) to be atomically locked.

Organization. The remainder of this chapter is organized as follows. We begin in Section 3.1 by clarifying

assumptions specific to this chapter. In Section 3.2, we describe the basic architecture of the RNLP, which

is composed of two components. In Section 3.3 and Section 3.4, we describe and analyze each of these

components and how these components can be instantiated to minimize pi-blocking. In Section 3.5, we

describe extensions of the RNLP that support dynamic group locks. In Section 3.6, we present fine-grained

1Contents of this chapter previously appeared in preliminary form in the following papers:
Ward, B. and Anderson, J. (2012). Supporting nested locking in multiprocessor real-time systems. In Proceedings of the 24th
Euromicro Conference on Real-Time Systems, pages 223–232.
Ward, B. and Anderson, J. (2013). Fine-grained multiprocessor real-time locking with improved blocking. In Proceedings of the
21st Conference on Real-Time Networks and Systems, pages 67–76.
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blocking analysis for the RNLP. Finally, we conclude in Section 3.7. The RNLP presented in this chapter is

later considered as part of a larger experimental study presented in Chapter 4.

3.1 Resource Model

In this chapter, we assume a simplified resource model based on that described in Section 2.2. Specifically,

we assume a system containing nr shared mutex resources L= {`1, . . . , `nr} such as shared data objects or

I/O devices. Notably, however, we employ a k-exclusion lock to realize the locks that we construct. Unlike

many prior algorithms, we make no distinction between local and global resources, as the RNLP can be

applied to both. Furthermore, lock nesting is allowed, in accordance with the following assumptions.

3.1.1 Nesting

The classic means of supporting fine-grained locking is through lock nesting, in which a resource-holding

job issues another nested request. If Ji holds no resources when it issues a request, then the request is an

outermost request. We denote Ji’s kth outermost request asRi,k and the corresponding resource Fi,k. Once

Ji acquires a resource, it may issue a nested request for another resource. If Ji acquires a resource at time

t via an outermost request, and t ′ is the earliest subsequent time when Ji holds no resources, then (t, t ′] is

called an outermost critical section. Note that resource requests do not have to be properly nested, as seen

in Figure 3.1 (here, `a is acquired first, but `b is released last). We let wait(Ji, t) denote the resource for

which Ji is waiting at time t if any. The maximum number of outermost requests Ji issues is given by Ni.

The maximum duration of the kth outermost critical section of Ji is Li,k. For notational convenience, the

second subscript in all request-related notation may be omitted when it is inconsequential, e.g., Ri has a

critical-section length of Li.

Definition 3.1. A pi-blocked (s-blocked, s-aware, or s-oblivious) job Ji makes progress if at least one

resource-holding job that Ji is blocked by is scheduled.

As we will discuss later, there are a few ways that Ji can be blocked by other requests.

As described in Chapter 2, we measure the blocking behavior of the RNLP using the maximum duration

of pi-blocking. However, when supporting nested resource requests, a job can be pi-blocked while holding a

resource, as seen in Figure 3.1. This “inner” pi-blocking must be included in the analysis of the total duration

of pi-blocking. Furthermore, existing analysis of locking protocols is conducted in terms of the maximum
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Figure 3.1: Illustration of a job Ji’s outermost critical section. At time t1, Ji acquires resource `a. At time t2,
Ji issues a nested resource request for `b, and is blocked during the interval [t2, t3). At time t4, Ji releases `a.
Ji’s outermost critical section spans from t1 to t5 when Ji no longer holds any shared resources.

critical-section length. In our analysis, we instead consider the maximum execution time of a critical section,

since the maximum critical-section length can depend on the duration of “inner” pi-blocking caused by the

locking protocol. The maximum critical-section length and the maximum critical-section execution time are

the same when the RNLP is compared with single-resource locking protocols.

In order to prevent deadlock, we assume a strict (irreflexive) partial order, ≺, on the set of resources L

such that a job holding resource `b cannot issue a nested request for `a if `a ≺ `b. In addition to preventing

deadlock, this ordering can be used in blocking analysis to reduce pi-blocking bounds.

3.1.2 Dynamic Group Locks

An alternative means of supporting fine-grained locking instead of lock nesting is a mechanism called a

dynamic group lock (DGL). Lock nesting allows for multiple resources to be held concurrently, but resources

must be acquired individually. In contrast, under coarse-grained group locking, tasks acquire a single lock on

the entire set of resources in one operation; however, this set may include far more resources than actually

needed. Dynamic group locking merges these two means of allowing for jobs to concurrently access multiple

resources. DGLs extend the notion of fine-grained locking by allowing a request to specify a set of resources

to be locked. In this way, DGLs provide better concurrency than group locks, and the potential for lower

overheads than nested locking when the set of resources to lock in a nested fashion is known a priori. As

we will show, DGLs have the same analytical worst-case blocking as nested locking in the RNLP under the

analysis techniques we present herein.

Note that DGLs can be supported in addition to nested locking, that is, tasks can issue nested DGL

requests. Also, with the RNLP extended to support DGLs, individual nested requests can still be performed

like before. Such nesting is necessary, for example, when the resource-access sequence is determined by

executing conditional statements. Such nesting may be preferable to improve response times, as tasks
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Figure 3.2: Architecture of the RNLP.

are likely blocked by fewer requests. However, even if the set of resources that will actually be required

is unknown—for example, when the resource-access sequence is determined by executing conditional

statements—DGLs can still be employed to request all resources that might possibly be accessed, to reduce

locking overheads.

For ease of exposition, we first present the RNLP assuming lock nesting and no DGLs. Later, in

Section 3.5, we extend the rules of the RNLP to support DGLs, and show the parallels in their analyses.

3.2 RNLP Architecture

The RNLP is composed of two components, a k-exclusion token lock, and a request satisfaction mecha-

nism (RSM), as shown in Figure 3.2. The token lock restricts the number of jobs that can have an incomplete

resource request to the number of tokens T , while the RSM determines when requests are satisfied. As

depicted in Figure 3.3, in order for a job to issue a resource request, it must first acquire a token through the

token lock. The T token-holding jobs can then compete for shared resources according to the rules of the

RSM. Depending upon the system (partitioned, clustered, or global), how waiting is realized (suspension

or spinning), and the type of analysis being conducted (s-oblivious, s-aware, or spin-based), different token

locks, number of tokens (T is either n or m in all considered variants), and RSMs can be paired to yield an

asymptotically optimal locking protocol supporting nested requests.

We specify the RSM via a set of rules. Without loss of generality, these rules are presented assuming a

uniform cluster size of c. We assume a few basic properties of the token lock defined as follows (specific

token locks are considered in Section 3.4).

T1 There are at most T token-holding jobs at any time.
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Figure 3.3: Depiction of the the stages of a request in the RNLP.

T2 If a job is pi-blocked waiting for a token, then it makes progress.

Progress can be ensured by elevating the effective priority of a token-holding job through a progress

mechanism such as priority boosting, inheritance, or donation, as described in Section 2.2.

Once a job acquires a token, it is allowed to compete for a shared resource under the rules of the RSM.

There are several rules and key ideas common to all RSMs. For each shared resource `a, there is a resource

queue RQa of length at most T . The timestamp of token acquisition is stored for each job Ji, and denoted

ts(Ji).2 Each resource queue is priority ordered by increasing timestamp. In the absence of any nested

resource requests, this ordering is the same as FIFO ordering. Ordering request queues by timestamp allows

a job performing a nested resource request to effectively “cut in line” to where it would have been had it

requested the nested resource at the time of its outermost resource request. We denote the job at the head of

RQa as hd(a). The rules below (illustrated below in Example 3.1) are common to all RSMs.

Q1 When Ji acquires a token at time t, its timestamp is recorded: ts(Ji) := t. We assume a total order on

such timestamps.

Q2 All jobs in RQa are waiting with the possible exception of hd(a).

Q3 A job Ji acquires resource `b when it is the head of the RQb, i.e., Ji = hd(b), and there is no resource

`a such that `a ≺ `b and ts(hd(a))< ts(Ji).

Q4 When a job Ji issues a request for resource `a, it is enqueued in RQa in increasing timestamp order.3

Q5 When a job releases resource `a, it is dequeued from RQa and the new head of RQa can gain access to

`a, subject to Rule Q3.

2ts(Ji) is really a function of time because it is updated for every outermost critical section. However, because we analyze the RNLP
on a per-request basis, we omit the time parameter for notional simplicity.

3We assume the acquisition of a token and subsequent enqueueing into the wait queue RQa of the resource requested in the outermost
request occur atomically.
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Figure 3.4: Illustration of Example 3.1.

Q6 When Ji completes its outermost critical section, it releases its token.

These rules do not specify how waiting is realized. A specific RSM may employ either spinning or

suspending. Also, notably, Rule Q3 serves a similar purpose to the priority ceiling in ceiling-based protocols

such as the PCP and SRP. In those protocols, the system ceiling delays some lock acquisitions so as to

prevent subsequent deadlock, or otherwise adverse blocking conditions. In this way, the priority ceiling is a

non-greedy rule for lock acquisitions. Similarly, Rule Q3 also defers the lock acquisitions of some requests

in a non-greedy fashion, so as to also prevent subsequent adverse blocking. Effectively, Rule Q3 ensures that

resources are “reserved” for earlier-issued requests that may access them.

Example 3.1. To illustrate these rules, we present an example, which is depicted in Figure 3.4. Consider a

system scheduled according to G-EDF with three shared resources, `a, `b, and `c, and m = 4, and a total order

on resources by index (i.e., `a ≺ `b ≺ `c). As shown in Figure 3.4, each job Ji acquires a token at time t = i,

and thus by Rule Q1, ts(Ji) = i. Furthermore, F1 = `a, F2 = `b, F3 = `c, and F4 = `a. At times t = 2.5 and

t = 4.5, J1 issues nested requests for `b and `c, respectively. These requests are satisfied immediately, because

J1 has an earlier timestamp than any job in either RQb and RQc. Note that at time t = 3, J3 has the earliest

timestamp of the jobs in RQc. However, by Rule Q3, J3 must wait until J1 completes its outermost critical

section before it can acquire `c. Thus, when J1 requests `c at time t = 4.5, J3 has not acquired `c and hence
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J1’s request is satisfied immediately. At time t = 7, J1 finishes its outermost critical section, and J4 acquires

`a. Because J2 has an earlier timestamp than J4, J2 can also acquire `b at time t = 7. However, J3 must wait

until t = 10 for J2 to finish its outermost critical section before its request for `c is satisfied. Note that during

the interval [7,10), both J2 and J4 hold shared resources to which a group lock would have required serial

access. ♦

To analyze the behavior of an RSM, we first develop terminology and notation to describe when and how

jobs can be blocked. A job Ji in some resource queue RQa is said to be directly blocked by every job before it

in RQa. In our previous example, at time t = 4, J4 is directly blocked by J1 while J1 holds resource `a. The

set of jobs that Ji is directly blocked by is denoted

DB(Ji, t) = {Jk ∈ RQwait(Ji,t) | ts(Jk)< ts(Ji)}. (3.1)

Note that Ji can be directly blocked by at most one resource-holding job Jh. This is because only one job can

hold wait(Ji, t) at time t. It is possible that Jh itself is directly blocked by another resource-holding job. In

this case, all jobs that are blocking Jh also block Ji. We call this transitive blocking. Transitive blocking is the

transitive closure of direct blocking. The set of jobs that transitively block Ji at time t is given by

TB(Ji, t) = TBn(Ji, t), (3.2)

where

TBk(Ji, t) = TBk−1(Ji, t)
⋃

Jx∈TBk−1(Ji,t)

DB(Jx, t), (3.3)

TB0(Ji, t) = DB(Ji, t). (3.4)

Note that DB(Ji, t)⊆ TB(Ji, t).

Example 3.2. To illustrate transitive blocking we consider the schedule shown in Figure 3.5, which pertains

to the same task system as in Example 3.1. At time t = 1, job J1 acquires `c, at time t = 2, J2 acquires `b, and

at time t = 3, J3 acquires `a. Also, at time t = 3, J2 issues a nested resource request for `c, and at time t = 5,

J3 issues a nested request for `b. At time t = 5, J3 is directly blocked by J2, and J2 is directly blocked by J1.

Thus, J3 is transitively blocked by both J1 and J2. ♦
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Figure 3.5: Illustration of Example 3.2.

Reconsidering Example 3.1, at time t ∈ [3,4.5) in Figure 3.4, J3 waits by Rule Q3 even though it is at the

head of its resource queue. This gives rise to a different form of blocking that we must also quantify in our

analysis. We say that a job that is blocked by a job with an earlier timestamp in another queue is indirectly

blocked. The set of jobs that Ji is indirectly blocked by at time t is given by

IB(Ji, t) = {Jk ∈ RQa | `a ≺ wait(Ji, t) ∧ ts(Jk)< ts(Ji)}. (3.5)

We use the general term blocked to refer to either transitive or indirect blocking. We denote the set of jobs

that block Ji as

B(Ji, t) = TB(Ji, t)∪ IB(Ji, t). (3.6)

From the definition of B(Ji, t), we have the following.

Lemma 3.1. For any job Ji and any time t, ∀Jk ∈ B(Ji, t), ts(Jk)< ts(Ji).

To ensure a bounded duration of pi-blocking, every RSM must satisfy the following property.

P1 If Ji is pi-blocked (s-oblivious, s-aware, or spin-based) by the RSM, then Ji makes progress.

Properties P1 and T2 combine to ensure that a job that is pi-blocked waiting for a token makes progress

towards acquiring the shared resource it needs. Property P1 will be proved in Section 3.3 for a number of

individual RSMs.
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Figure 3.6: Phases of a resource request in the RNLP.

Analysis. We now prove a bound on the maximum duration of pi-blocking experienced by a token-holding

job Ji. In the following analysis, let t1 denote the time that Ji makes a request for a token and t2 be the time

that Ji receives a token. Also, let t3 be the time that Ji’s outermost request is satisfied and t4 be the time that

its outermost critical section completes. These times are depicted in Figure 3.6.

A job’s worst-case duration of pi-blocking is equal to the sum of the maximum duration of pi-blocking

caused by the token lock during [t1, t2) and by the RSM during [t2, t3) before the Ji’s outermost request is

satisfied, as well as during [t3, t4) if Ji issues a nested request. We now consider the pi-blocking caused by the

RSM. Later, in Section 3.4 we consider worst-case pi-blocking under various token locks.

Theorem 3.1. The maximum duration of pi-blocking (regardless of whether waiting is realized by spinning

or suspending, or in the latter case if analysis is s-oblivious or s-aware), during [t2, t4) for any RSM is

(T −1)Lmax.

Proof. Property P1 ensures that if a job is pi-blocked, it makes progress. By Lemma 3.1, a job can never

be pi-blocked by a job with a later timestamp. By Property T1, there are at most T − 1 jobs with earlier

timestamps. Thus, a job can be pi-blocked in any RSM for at most T −1 outermost critical sections, each of

length at most Lmax.

3.3 Request Satisfaction Mechanisms

In this section, we describe five RSMs that rely on different progress mechanisms, the spin RSM (S-

RSM), boost RSM (B-RSM), restricted segment boosting RSM (RSB-RSM), inheritance RSM (I-RSM), and

donation RSM (D-RSM).
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3.3.1 Spinning

The S-RSM is the RSM used when waiting is realized by spinning instead of suspending. Spinning is

advantageous when critical-section lengths are short in comparison to the overhead of a context switch (Block

et al., 2007; Brandenburg, 2011). To construct an RSM in which waiting is realized by spinning, we add an

additional rule to those common to all RSMs.

S1 All token-holding jobs execute non-preemptively. A job that is waiting in a resource queue spins

non-preemptively.

This rule can be used on partitioned, clustered, or globally scheduled systems. However, there can

be no more than c spinning jobs per cluster, and thus there can be at most T = m tokens, c from each

cluster. Additionally, non-preemptivity can cause jobs that are not currently utilizing the locking protocol

to be pi-blocked. This progress-mechanism-related pi-blocking must be analyzed and incorporated into

schedulability analysis.

Lemma 3.2. The S-RSM for partitioned, clustered, and globally scheduled systems in which waiting is

realized by spinning ensures Property P1.

Proof. By Rule S1, every token-holding job is scheduled (and is spinning if it is waiting). Thus, every

resource-holding job is scheduled, which ensures that progress is made for all token-holding jobs.

3.3.2 Unrestricted Boosting

The B-RSM can be applied in partitioned-scheduled systems in which waiting is realized by suspending

instead of spinning. Under the B-RSM, progress is ensured by boosting the priority of (some) resource-

holding jobs. Priority boosting, like non-preemptive spinning, can cause jobs that are not utilizing the locking

protocol to be pi-blocked. The following rule defines the B-RSM.

B1 The effective priority of the resource-holding job with the earliest timestamp, if any, in each partition is

boosted above that of all other jobs in its partition.

This rule allows for any value of T , as it ensures that no more than one job can be priority boosted

concurrently. This rule is similar to the original partitioned-only version of the FMLP+ (Brandenburg, 2011).
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Rule B1 gives rise to another form of blocking, which we call processor blocking. Because each processor

can schedule at most one resource-holding job at a time, requests may be forced to block until a processor is

available. Given this observation, coupled with Definition 3.1, the following lemma follows immediately.

Lemma 3.3. The B-RSM for partitioned-scheduled systems in which waiting is realized by suspending

ensures Property P1.

Proof. Let Ji be a pi-blocked job within the RSM, and therefore blocked, directly or by a processor, at

least one other earlier-timestamp request. By Rule B1, the earliest-timestamp resource-holding job on each

processor is scheduled, therefore ensuring progress for Ji.

We note that Rule B1 has been adapted from its original presentation (Ward and Anderson, 2012) to

be specific to partitioned-scheduled systems only. In its original form, the B-RSM supported clustered and

globally scheduled systems, albeit suboptimally. Since the original work on the RNLP, Brandenburg (2014)

has presented restricted segment boosting (RSB) (recall from Chapter 2), which can be used under partitioned,

clustered, and global scheduling to achieve an optimal locking protocol in the FMLP+. As such, we next

present the RSB-RSM, based off of this new progress mechanism, and encourage its use for clustered and

global scheduling.

3.3.3 Restricted Segment Boosting

When Brandenburg (2014) presented the FMLP+ and RSB, he also briefly described how RSB could be

used in the context of the RNLP to support fine-grained locking. In the following discussion, we describe

more concretely how this is accomplished through the presentation of the RSB-RSM. The RSB-RSM is

designed for partitioned, clustered, and globally scheduled systems.

Under RSB, each job is decomposed into disjoint segments: independent segments, in which the job is

not engaged in the locking protocol at all, and request segments, in which the job is engaged in the locking

protocol by being either blocked, or holding resource(s). Importantly, in the context of nested locking the

request segment begins when the job engages the locking protocol to request a resource, and ends when it

completes its outermost critical section.

RSB1 Let Jb be the resource-holding job (if any) with the earliest request-segment start time, denoted tb, in

its cluster. Jb is priority boosted such that it is scheduled.
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RSB2 Let C(Jb) be the (at most) c−1 highest-priority ready jobs with priority higher than Jb and segment

start times before tb. All jobs in C(Jb) are co-boosted, and therefore also scheduled.

Recall the illustration of RSB in Example 2.7 and Figure 2.9. Note that Rule RSB1, similar to Rule B1,

gives rise to processor blocking, as at most one request per cluster is boosted at a time. Therefore, similarly

to the B-RSM, we have the following lemma.

Lemma 3.4. The RSB-RSM for partitioned, clustered, and globally scheduled system in which waiting is

realized by suspending ensures Property P1.

Proof. Let Ji be a pi-blocked job within the RSM, and therefore blocked, directly or by a processor, by at

least one other request with an earlier request-segment start time. By Rule RSB1, the job with the earliest

request-segment start time on each processor is scheduled, therefore ensuring progress for Ji.

Notably, co-boosting via Rule RSB2 is not necessary to ensure resource-holder progress. However, as

will be discussed later, Rule RSB2 is essential to achieve asymptotically optimal s-aware pi-blocking under

clustered scheduling.

3.3.4 Inheritance

The I-RSM is only applicable on globally scheduled systems because it requires that the priorities of all

resource-requesting jobs can be compared. It also requires waiting to be realized by suspending instead of

spinning. The I-RSM uses priority inheritance instead of priority boosting as a progress mechanism, which is

advantageous because it does not induce pi-blocking on non-resource-requesting jobs.

Example 3.3. To motivate the design of the I-RSM, consider again Example 3.1, illustrated in Figure 3.4.

Suppose at time t = 6 there exist m jobs (not shown) that do not utilize the locking protocol and that have

deadlines just after t = 12 but before J1’s deadline. Then J3 is the only token-holding job that has a sufficient

priority to be scheduled. However, J3 is blocked by J1, which holds `c, and J1 does not have sufficient priority

to be scheduled, and thus is also suspended. J3 therefore does not make progress and it can thus have an

unbounded duration of pi-blocking. Priority inheritance can be applied to limit such pi-blocking. ♦

We call the job with the earliest timestamp that blocks Ji the inheritance candidate of Ji. The inheritance

candidate is thus given by

ic(Ji, t) = argmin
Jk∈B(Ji,t)

ts(Jk). (3.7)
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A job Jc may be the inheritance candidate of several jobs. We define the inheritance candidate set (ICS) of Jc

to be the set of jobs for which Jc is the inheritance candidate.

ICS(Jc, t) = {Ji | ∃Ti ∈ τ, ic(Ji, t) = Jc}. (3.8)

Example 3.3 (continued). At time t = 6, J2, J3, and J4 are all blocked by J1. J1 is therefore the inheritance

candidate of J2, J3, and J4. J1 is also the earliest job by timestamp that blocks each of J2, J3 and J4. Thus,

ic(J2,6) = J1 and ICS(J1,6) = {J2,J3,J4}.

The I-RSM builds upon these ideas. If a job is pi-blocked, then the resource-holding job that blocks it,

its inheritance candidate, should be scheduled.

I1 A ready job Ji holding resource `k inherits the highest priority of the jobs for which it is an inheritance

candidate:

p(Ji, t) = max
Jk∈{Ji}∪ICS(Ji,t)

p(Jk, t). (3.9)

Example 3.3 (continued). ICS(J1,6) = {J2,J3,J4}. Of these jobs J3 has the highest priority, and thus J1

inherits the priority of J3 at time t = 6.

Lemma 3.5. A job Ji’s priority can be inherited by at most one job at a time.

Proof. By construction, Ji has at most one inheritance candidate at any time t, and thus there is only one job

Jc for which Ji ∈ ICS(Jc, t). Thus, Ji’s priority will be inherited by Jc or by no job at all.

Lemma 3.5 ensures that there are never two jobs executing with the same effective priority, which is

equivalent to a task having two threads. This would break the assumptions of the sporadic task model, and

thus the resulting system would not be analyzable using existing schedulability tests.

Lemma 3.6. For any job Ji, ic(Ji, t) is ready.

Proof. By contradiction. Assume that Jc = ic(Ji, t). If Jc is not ready, then it is suspended by either Rule Q2

or Q3. In either case, by Lemma 3.1, Jc is blocked by a job Jb with an earlier timestamp. Thus, Ji is also

blocked by Jb. This contradicts the fact that Jc is Ji’s inheritance candidate.

Lemma 3.7. The I-RSM for globally scheduled systems in which waiting is realized by suspending ensures

Property P1.
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Proof. If a job Ji is pi-blocked (s-oblivious or s-aware) at time t, then Ji has sufficient priority to be scheduled

under either definition of pi-blocking. By Lemma 3.6, ic(Ji, t) is ready. By Rule I1, ic(Ji, t) has priority

p(ic(Ji, t), t)≥ p(Ji, t), and thus ic(Ji, t) is scheduled.

The I-RSM does not place any restrictions on the number of tokens in the system, i.e., the value of

T . Depending upon the scheduler, analysis type, and token lock, T can be chosen to allow for increased

parallelism or decreased worst-case pi-blocking. This issue is considered in Section 3.4.

3.3.5 Donation

The D-RSM is designed for clustered (and hence global and partitioned) systems in which waiting is

realized by suspending. In these systems, the I-RSM is not sufficient to ensure progress because priorities

cannot be effectively compared across clusters, as discussed in Chapter 2. A job in one cluster therefore

cannot inherit the priority of a job in another cluster. In clustered systems, progress can be ensured through

priority donation, which prevents problematic preemptions of resource-requesting jobs (Brandenburg and

Anderson, 2011).

Example 3.4. In Example 3.1, if an additional job J5 were released at time t = 7 with a deadline of t = 11,

then it would donate its priority to J4, the lowest priority job, which has an incomplete resource request.

♦

There are no new rules for the D-RSM, however the D-RSM does require an additional constraint on the

token lock.

C1 A token-holding job has one of the highest c effective priorities in its cluster.

Because there are at most m jobs that have one of the highest c effective priorities in their cluster, there can be

at most m token holding jobs and thus T ≤ m. This property is satisfied by a token lock employing priority

donation such as the CK-OMLP.

Lemma 3.8. Property C1 implies Properties P1 on partitioned, clustered, and globally scheduled systems in

which waiting is realized by suspending.

Proof. Property C1 ensures that a token holding job has a sufficient effective priority to be scheduled. Thus,

a ready resource-holding job (which necessarily holds a token) is scheduled, and progress is ensured.
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Analysis Scheduler Token Lock T RSM PMR Pi-blocking Per-Request Pi-blocking
spin Any TTL m S-RSM O(m) (m−1)Lmax

s-aware

Partitioned TTL n B-RSM O(n) (n−1)Lmax
Clustered TTL n RSB-RSM O(n) (n−1)Lmax

Global TTL n RSB-RSM O(n) (n−1)Lmax
TTL n I-RSM O(n)† (n−1)Lmax

s-oblivious

Partitioned CK-OMLP m D-RSM O(m) (m−1)Lmax
Clustered CK-OMLP m D-RSM O(m) (m−1)Lmax

Global CK-OMLP m D-RSM O(m) (m−1)Lmax
R2DGLP m I-RSM 0 (2m−1)Lmax

† Applicable only under certain schedulers as discussed in Section 3.4.3.

Table 3.1: Configuration and worst-case pi-blocking of the RNLP on various platforms. The columns “Token
Lock” and “RSM” describe an instantiation of the RNLP that pairs a token lock with an RSM. The remaining
columns show the blocking complexity of the resulting locking protocol under the given assumptions just as
in Table 2.1.

The D-RSM itself does not cause pi-blocking for non-resource-requesting jobs. However, as we shall

see, a token lock that satisfies Property C1 can cause non-resource-requesting jobs to be pi-blocked.

3.4 Token Locks

In this section, we describe how existing k-exclusion locking protocols can be used as token locks. For

each token lock, we describe the best choice of k, how to pair the token lock with an RSM, and the analytical

worst-case pi-blocking complexity of the complete resulting locking protocol. The results of this section are

summarized in Table 3.1.

3.4.1 Spin T -exclusion

When waiting is realized by non-preemptive spinning as in the S-RSM, the best choice of token lock is

essentially no token lock at all, because the S-RSM alone upholds the properties of both an RSM as well as a

token lock. We call this token lock the trivial token lock (TTL) because a job acquires a token immediately

upon request. Because there can be at most m jobs running non-preemptively on m processors, T = m under

the TTL. For the remainder of this subsection, we assume T = m.

Lemma 3.9. Properties T1 and T2 are ensured by Rule S1.

Proof. By Rule S1, once a job issues a resource request, it runs non-preemptively until it finishes its outermost

critical section. No more than m jobs can therefore have incomplete resource requests at a time. This ensures
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Property T1. Property T2 is ensured because all jobs with incomplete resource requests are scheduled, and

thus make progress.

The non-preemptive nature of spin-locks, just like priority boosting and priority donation, can cause a

job to be pi-blocked even when it has no incomplete resource request.

Theorem 3.2. Any job in the system can be pi-blocked by a job spinning non-preemptively for a duration of

at most mLmax.

Proof. In the worst case, there can be m jobs that are not currently utilizing the locking protocol that have

sufficient priority to be scheduled but are not, due to m other jobs spinning non-preemptively. All m of

the token holding jobs must complete their outermost critical sections before the mth blocked job can be

scheduled.

Theorem 3.3. The maximum duration of s-blocking per-request in the S-RSM is (m−1)Lmax.

Proof. Follows from Theorem 3.1 and T = m.

3.4.2 CK-OMLP for Clustered Systems

The most versatile of existing k-exclusion locking protocols is the clustered k-exclusion OMLP (CK-

OMLP) developed by Brandenburg and Anderson (2011). The CK-OMLP can be employed on partitioned,

clustered, and globally scheduled systems in which waiting is realized by suspending, and it has asymptotically

optimal s-oblivious pi-blocking behavior on all such systems. The CK-OMLP relies upon priority donation to

ensure progress, and thus every job with an incomplete resource request has one of the c highest priorities in

its cluster. In the remainder of this section, we assume that T = m, which ensures that a job is not pi-blocked

waiting for a token. (While priority donors pi-block, the donation mechanism ensures that the (up to) m token

holders have the highest effective priorities in the system.)

Lemma 3.10. The CK-OMLP ensures Properties T1, T2, and C1.

Proof. The CK-OMLP is a k-exclusion locking protocol, and thus satisfies Property T1. Lemma 1 of (Bran-

denburg and Anderson, 2011) states that priority donation ensures that a resource-holding job is always

scheduled. Therefore a token-holding job (i.e., a job that is “within its critical section” from the CK-OMLP’s

65



perspective) has sufficient priority to be scheduled, which yields Property C1. By Lemma 3.8, a token holding

job makes progress. Thus, a job waiting for a token makes progress, satisfying Property T2.

Under priority donation any job can be forced to donate its priority on job release for a period of time. If

a job issues many resource requests, the amortized cost per request is reduced. However, because any job can

be pi-blocked while it is a priority donor, every job must inflate its execution cost. Because priorities cannot

be compared across clusters, we believe this donation cost for all jobs is fundamental on clustered systems.

Theorem 3.4. The maximum duration of s-oblivious pi-blocking per job (regardless of whether the job ever

issues a resource request) caused by the donation mechanism of the CK-OMLP is mLmax.

Proof. By Lemma 1 of (Brandenburg and Anderson, 2011), a token-holding job has sufficient priority to be

scheduled. By Lemma 2 of (Brandenburg and Anderson, 2011) and the assumption that T = m, the maximum

duration of s-oblivious pi-blocking caused by priority donation is bounded by the maximum amount of time a

job (the donee) can hold a token. A job can hold a token for Lmax time while it holds shared resource(s), plus

(T −1)Lmax time by Theorem 3.1. Since we assume T = m, the maximum duration of pi-blocking caused by

priority donation is thus mLmax.

Theorem 3.5. The maximum duration of s-oblivious pi-blocking per outermost resource request is (m−

1)Lmax under the D-RSM and CK-OMLP.

Proof. Follows from Theorem 3.1 and T = m.

Theorems 3.4 and 3.5 show that the RNLP with the D-RSM and CK-OMLP has the same s-oblivious

pi-blocking bound as a mutex lock in the C-OMLP, as seen in Table 2.1. In combination with the Ω(m)

pi-blocking lower bounds for s-oblivious and s-blocking discussed in Chapter 2, these results prove that the

RNLP is also asymptotically optimal in these cases. However, the RNLP supports nested locking while the

OMLP does not. Also note that while the D-RSM and the CK-OMLP produce the same blocking bounds as

the TTL and the S-RSM, the former produces a suspension-based lock while the latter produces a spin-based

lock. A system designer may choose one over the other depending upon critical-section lengths and system

overheads.
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3.4.3 Trivial Token Lock for S-Aware Analysis

The token locks discussed above lead to asymptotically optimal implementations under spin-based or

s-oblivious analysis. However, these locking protocols do not perform well under s-aware analysis. Under

s-aware analysis, it is best to choose T = n to allow for maximal concurrency, thus the TTL is used. From

the TTL, we have the following lemma.

Lemma 3.11. The TTL satisfies Properties T1 and T2.

Proof. By the assumption that T = n, and the fact that each job can hold at most one token, Property T1 is

satisfied. Because there is a token per job, there is no blocking waiting for a token, and therefore Property T2

holds vacuously.

Next we consider pairing the TTL with several of the RSMs previously presented.

B-RSM. We pair the TTL with the B-RSM under partitioned scheduling.

Theorem 3.6. On a partitioned system, the maximum duration of s-aware pi-blocking per outermost resource

request is (n−1)Lmax under the B-RSM and TTL.

Proof. Follows from Theorem 3.1 and T = n.

Under s-aware analysis we must carefully consider the pi-blocking boosting itself may cause.

Theorem 3.7. Let np be the number of tasks assigned to Ji’s partition. The worst-case s-aware progress-

mechanism-related pi-blocking of job Ji caused by the boosting of other jobs in the B-RSM is (np−1)Lmax.

Proof. In the worst case, all requests are serialized by the B-RSM, as any concurrency would decrease

s-aware pi-blocking. In this case, the blocking behavior is the same as the FMLP+ (Brandenburg, 2011)

because both the B-RSM and the FMLP+ employ unrestricted priority boosting. Thus, the bound follows

directly from the bound for the FMLP+ in Theorem 6.4 of (Brandenburg, 2011).

Note that the progress-mechanism-related and per-request pi-blocking are both O(n) (Theorems 3.7,

and 3.1, respectively) for the pairing of the TTL and the B-RSM. Given the s-aware lower bound of Ω(n)

discussed in Chapter 2, the RNLP with the TTL and B-RSM is asymptotically optimal for partitioned systems.
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RSB-RSM. The RSB-RSM can be used to construct optimal RNLP variants under partitioned, clustered,

and global scheduling when paired with the TTL and T = n. Notably, when using the TTL, the timestamp of

token acquisition is also the request-segment start time, because there is no blocking for tokens.

Theorem 3.8. On partitioned, clustered, and globally scheduled systems, the maximum duration of s-aware

pi-blocking per outermost resource request is (n−1)Lmax under the RSB-RSM and TTL.

Proof. In the worst case, all requests execute serially by Rule RSB1, because only one request can be boosted

at a time. Thus, the bound follows directly from Theorem 3.1 and T = n.

The co-boosting required by Rule RSB2, which is derived from the FMLP+ (Brandenburg, 2014), is

used to ensure smaller progress-mechanism-related pi-blocking bounds. In particular, co-boosting ensures

the following property.

Lemma 3.12. (Brandenburg, 2014, Lemma 13) Let [t0, t1] denote an independent segment of job Ji. During

[t0, t1], Ji incurs s-aware pi-blocking for the cumulative duration of at most one critical section per each other

task in its cluster.

Theorem 3.9. The worst-case s-aware progress-mechanism-related pi-blocking per job caused by the TTL

and the RSB-RSM under partitioned, clustered, or global scheduling is O(n).

Proof. Consider a job Ji in cluster k. Let nk denote the number of tasks in cluster k. By Lemma 3.12, each

independent segment may experience nk− 1 critical sections of progress-mechanism-related pi-blocking.

The number of independent segments per job Ji is a constant (Ni + 1), and therefore the total s-aware

progress-mechanism-related pi-blocking is O(n).

Priority inheritance. Priority inheritance is only applicable on globally scheduled systems and in general it

has the same Ω(φ) s-aware pi-blocking bound as priority boosting (Brandenburg, 2011), as was discussed

in Chapter 2. It is therefore preferable in most cases to use RSB under s-aware analysis instead of priority

inheritance. However, under G-FP scheduling, as well as constrained, fixed priority-point schedulers (e.g.,

FIFO, and G-EDF with relative deadlines at most periods), a special class of JLFP schedulers in which each

task’s relative priority point does not exceed its period, priority inheritance yields an asymptotically optimal

locking protocol.
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Theorem 3.10. The worst-case s-aware progress-mechanism-related pi-blocking per job caused by the TTL

and I-RSM under either G-FP or any constrained, fixed priority-point global scheduler is O(n).

Proof. In the worst case, all requests are serialized by the I-RSM as any concurrency would decrease s-aware

pi-blocking. In this case, the I-RSM is equivalent to the FMLP. From (Brandenburg, 2011), the maximum

s-aware pi-blocking caused by priority inheritance is O(n) for G-FP and constrained, fixed priority-point

global schedulers.

Theorem 3.11. The maximum duration of s-aware pi-blocking per outermost resource request is (n−1)Lmax

under the TTL and I-RSM.

Proof. Follows from Theorem 3.1 and T = n.

Note that asymptotically, the RNLP performs no worse than any existing locking protocols under s-aware

analysis. However, the increased concurrency afforded by the RSM leads to improved s-aware pi-blocking in

practice.

3.5 Dynamic Group Locks

In the preceding discussion, fine-grained locking was supported through nested locking. Next, we present

dynamic group locks (DGLs), as an alternative technique to support fine-grained locking.

3.5.1 Dynamic Group Lock Rules

When using DGLs, a job may issue a request for a set of resources, denoted Di. DGLs can be integrated

into the RSM rules of the RNLP with only minor modifications. As such, the rest of the mechanics of the

RNLP remain, including the need to acquire a token before issuing the DGL request to the RSM. Once Ji has

acquired its token, its request is enqueued in the resource queue for each resource in {RQa| `a ∈ Di}. The

DGL request is satisfied when it has acquired all resources in Di, at which point in time Ji is made ready.

This can be expressed by replacing Rules Q3 and Rule Q4 with the following more general rules:

DGL1 When a job Ji issues a requestRi for a set of resources Di, for every resource `a ∈ Di, Ji is enqueued

in RQa in timestamp order.
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DGL2 A job Ji with an outstanding resource requestRi for a subset of resourcesDi ⊆L acquires all resources

in Di when (i)Ri is the head of every resource queue associated with a resource in Di, and (ii) there is

no resource `a ∈ {`x | `x ∈ L∧ `y ∈ Di∧ `x ≺ `y} such that ts(hd(a))< ts(Ji).

Note that if there are no nested requests and fine-grained locking is supported only via DGLs, condition

(ii) of Rule DGL2 need not be checked; earlier-issued requests need not “reserve” resources for future

nested requests. For example, if Ri held `a and may later issue a nested request for `b, condition (ii) of

Rule DGL2 would prevent a later issued requestRk from acquiring `b. If instead,Ri issued a DGL request

with Di = {`a, `b}, and never requested any other resources, then condition (i) of Rule DGL2 is sufficient

to ensure that a request is never blocked by another later-issued request. Indeed, in the case of DGLs only,

there is no need for a resource ordering at all. This greatly simplifies the RNLP implementation. The

timestamp-ordered queues become simple FIFO queues, and there is no need for jobs to “reserve” a position

in any queue, or “cut ahead” of later-issued requests. This is due to the fact that all enqueueing due to one

request is done atomically. Thus, in this case, not only is the number of locking-protocol invocations reduced,

but the execution time of any one call is likely lessened as well.

3.5.2 Dynamic Group Lock Analysis

This modified version of the RNLP that support DGLs has the same worst-case blocking bounds as those

previously discussed for nested locking. Intuitively, such bounds do not change because a DGL request

enqueues in multiple resource queues atomically when it is issued, instead of enqueueing in a single queue

and essentially “reserving” slots in other queues for potential future nested requests. In the worst case, the set

of blocking requests is the same in either case.

Example 3.5. Consider a requestRi that within its outermost request may access `a and `b. Using nested

lockingRi first requests `a and then `b. In the RNLP, Rule Q3 prevents any requestR j issued afterRi from

accessing `b. In this way,Ri has “reserved” `b for its nested request. Note thatRi may still be blocked when

it issues its nested request for `b, but it will only be blocked by earlier-issued requests. Using DGLs, Ri

atomically requests both `a and `b and may be blocked by the same set of requests as in the nested case.

♦

Given the intuition developed in the example, the following discussion of blocking follows analogously

to the nested case (3.1)–(3.6).
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Let w(Ri, t) be the set of resources upon whichRi is waiting at time t. We say Ji is directly blocked by

all jobs with earlier timestamps in any of the resource queues in which Ji is enqueued.

DB(Ri, t) = {Rx ∈ RQa| `a ∈ w(Ri, t)∧ ts(Rx)< ts(Ri)} (3.10)

Additionally, it is possible that a job Ji is blocked because a request with an earlier timestamp could make a

nested request for the resource for which Ji is waiting. As before, this is also indirect blocking.

IB(Ri, t) = {Rx ∈ RQa| `a ∈ L ∧w(Ri, t)∩Lx 6= /0 ∧ ts(Rx)< ts(Ri)} (3.11)

Note that if there are no nested requests and fine-grained locking is supported wholly through DGLs, then

there is never any indirect blocking.

The set of all jobs that Ji is blocked by at time t is the transitive closure of both direct and indirect

blocking.

B(Ri, t) =
⋃

Rx∈DIB(Ri,t)

DIB(Rx, t) (3.12)

where DIB = DB(Ri, t)∪ IB(Ri, t). Note that DB(Ri, t)∪ IB(Ri, t)⊆ B(Ri, t).

From the definition of B(Ri, t), similar to Lemma 3.1, we have the following.

Lemma 3.13. For any requestRi and any time t, ∀Rx ∈ B(Ri), ts(Rx, t)< ts(Ri, t).

To ensure a bounded duration of pi-blocking, we require that all jobs that are pi-blocked make progress.

We thus require that Property P1 be upheld by any progress mechanism employed in an RSM supporting

DGLs (Rules DGL2 and DGL1). All of the previous progress mechanisms can be applied directly to DGLs4

while ensuring Property P1.

We then have the following, similar to Theorem 3.1.

Theorem 3.12. A job can be blocked by at most T −1 outermost requests within an RSM supporting DGLs

(Rules DGL1 and DGL2).

Proof. By Property P1 a job that is pi-blocked makes progress. By Lemma 3.13, a request can never be

blocked by another request with a later timestamp. Because there are at most T jobs with tokens, a job can

be request blocked by at most (T −1) requests with earlier timestamps.

4The priority inheritance rules must apply the DGL-specific definition of B(Ri, t) from (3.12) instead.
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Lemma 3.13 and Theorem 3.1 parallel Lemma 3.1 and Theorem 3.1, and thus the duration of pi-blocking

for DGLs is the same as requesting the set of resources in a nested fashion. This is because the set of requests

that block Ji is the same under either policy due to the non-greedy nature of the resource queues.

Progress mechanisms for DGLs. Property P1 can be directly satisfied using priority boosting (unrestricted

or restricted) or priority donation under DGLs. However, under the sporadic task model, which most existing

schedulability tests assume, two jobs cannot inherit the priority of one job simultaneously. Thus, if priority

inheritance is used to ensure progress, then we must be careful to ensure that this property is not violated.

The priority inheritance rule of the RNLP (Rule I1), allows only the earliest timestamp job that blocks

a job Ji to inherit Ji’s priority. This inheritance rule was defined to allow a job that either transitively or

indirectly blocks Ji to inherit Ji’s priority, and ensure progress. However, there is a single job with the earliest

timestamp that blocks Ji (because timestamps are totally ordered). Thus, a job’s priority can be inherited by

at most one job at a time, and hence, this inheritance rule also supports DGLs.

3.6 Fine-Grained Blocking Analysis

Our previous blocking analysis was sufficient to show the asymptotic optimality of the RNLP, and indeed

produced coarse blocking bounds that could be safely used in practice. In this section, we refine that analysis

to be more fine-grained in that more information about the length of each critical section, and the resources

requested are incorporated into the analysis to further improve the blocking bounds. As the novel contribution

of the RNLP that allows for fine-grained locking is the RSM logic, here we focus on request blocking

that occurs within the RSM. Later, we will discuss how token blocking and progress-mechanism-related

blocking can be bounded using the results of the RSM blocking analysis and the previous pi-blocking analysis

techniques (Brandenburg, 2011, 2013b; Wieder and Brandenburg, 2013).

RSM blocking analysis. The analysis of the worst-case blocking for nested locking and DGLs are the same.

Let Di, j,k be the set of resources potentially accessed within the kth critical section of Ji, j. In the case of

nested locking, if `a is the resource requested by the outermost request, then Di, j,k = {`b | `b ∈ L∧ `a � `b}.

While this may seem pessimistic, it is reflective of the effect of Rule Q3, which can cause indirect blocking

for all requests for resources later in the resource order. This has a similar effect to assuming thatRi, j,k may

request any resource later in the resource ordering. In the case of DGLs without nesting Di, j,k is simply the

72



set of resources requested byRi, j,k. We therefore assume in the remainder of this analysis that all fine-grained

locking is supported through DGLs. Consequently, all blocking in the RSM is direct blocking.

By Lemmas 3.1 and 3.13, a request may only be blocked by other requests with earlier timestamps.

Therefore, within the RSM, a request may be blocked by at most one outermost request per task (and thus

job). For the purpose of analysis, like previous blocking analysis (Brandenburg, 2011), we assume that

each job of the same task may issue the same set of requests,5 and thus Di, j,k =Di, j+1,k. Therefore, in the

remainder of this analysis, we need only consider conflicting requests from one job per task. We therefore

omit the job index and letRi,k denote the kth request of an arbitrary job Ji of τi. Similarly, Di,k is the set of

resources requested byRi,k.

Definition 3.2. The contention set is the set of all requests that could potentially contend within the RSM.

C(Γ) =
⋃

Jx∈Γ

{Rx,1,Rx,2, . . . ,Rx,Ni} (3.13)

The request under analysis, Ri,k, may not be blocked by all requests in C(Γ); the contention set may

include far more requests than available tokens T . Our goal through this fine-grained blocking analysis is

to determine the maximal subset of requests in the contention set that Ri,k may be blocked by in a given

schedule.

Example 3.6. Consider a task system with four resource-requesting tasks, each of which issues one request.

Then C(Γ) = {R1,1,R2,1,R3,1,R4,1}. ♦

Definition 3.3. A requestRi,k may be directly blocked by another requestRx,y if Di,k∩Dx,y 6= /0∧ i 6= x. Let

db(Ri,k,Rx,y) be true ifRi,k can be directly blocked byRx,y.

Example 3.6 (continued). Let D1,1 = {`a}, D2,1 = {`a, `b}, D3,1 = {`b, `c}, and D4,1 = {`c, `d}. Then

db(D1,1,D2,1) is true but db(D2,1,D4,1) is false.

Note that additional insights pertaining to the exact system configuration can be used to rule out potential

direct-blocking relationship. For example, in a spin-based, partitioned-scheduled system, Ri,k cannot be

directly blocked by another requestsRx,y in the same partition.

5A job with conditional code may not actually issue every request assumed analytically, however, this only reduces blocking. Task
models and schedulability analysis for tasks with more interesting per-job resource-access patterns are an interesting subject of
future work.
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Figure 3.7: Depiction of the blocking graph for Example 3.6 where Lx,y = 1 for allRx,y.

By our assumption that all fine-grained locking is supported through DGLs, there is no indirect blocking.

However, processor blocking may occur under both the B-RSM and the RSB-RSM when later-timestamp

requests must block while a processor is priority boosted.

Definition 3.4. In the B-RSM and the RSB-RSM, a request Ri,k may be processor blocked by another

request Rx,y if Ri,k and Rx,y are in the same cluster. Let pb(Ri,k,Rx,y) be true if Ri,k may be processor

blocked byRx,y, and false otherwise.

For simplicity, let ab(Ri,k,Rx,y) = db(Ri,k,Rx,y)∪ pb(Ri,k,Rx,y) for the B-RSM and RSB-RSM, other-

wise ab(Ri,k,Rx,y) = db(Ri,k,Rx,y).

Definition 3.5. Let G(Γ) = (V,E) be a blocking graph, which encodes all possible blocking.

G = (V,E),

V =C(Γ)

E = {(Ri,k,Rx,y) | ab(Ri,k,Rx,y)}.

The edge weights in the blocking graph are the critical-section lengths of the blocking requests.

w(Ri,k,Rx,y) =


Lx,y if (Ri,k,Rx,y) ∈ E,

0 otherwise.

Example 3.6 (continued). The example graph for the running example in this section is depicted in Fig-

ure 3.7, assuming Lx,y = 1 for allRx,y.
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Definition 3.6. A k-path P in a blocking graph G(Γ) is a simple path through G(Γ) of at most k edges with

no repeated vertices.

Example 3.6 (continued). {R1,1,R2,1,R3,1} is an example 2-path in G(Γ).

Definition 3.7. The total request blocking B(P) of a k-path P through a blocking graph is equal to the sum

of the weights of the edges in P.

B(P) = ∑
(Ri,k,Rx,y)∈P

w(Ri,k,Rx,y) (3.14)

Example 3.6 (continued). For the purpose of the running example, let Lx,y = 1 for allRx,y. Then B({R1,1,

R2,1,R3,1}) = 3.

With these definitions in place, we can derive a fine-grained blocking bound for the RSM.

Theorem 3.13. The worst-case request blocking for Ri,k in the RSM, denoted bRSM
i,k , is upper bounded by

the maximal total blocking of any (T −1)-path beginning withRi,k in G(Γ).

Proof. By Theorems 3.1 and 3.12, a request can be blocked by at most T − 1 outermost requests. By

construction G(Γ) encodes all possible direct blocking relationships, and thus any (T − 1)-path through

G(Γ) beginning fromRi,k is a possible blocking scenario. The total blocking of the maximal (T −1)-path

beginning withRi,k therefore upper bounds any possible blocking scenario in the RSM forRi,k.

Example 3.6 (continued). Consider the requestR2,1 and T = 2. The worst-case 1-path originating atR2,1

has a total request blocking of max(L1,1,L3,1) = 1 (again assuming Lx,y = 1 for allRx,y). Note thatR4,1 does

not contribute to the blocking forR2,1 as it is not “reachable” given the limited number of tokens.

It is well known that the longest-path problem, i.e., determining the maximum-length path in a graph, is

NP-complete (Cormen et al., 2001). The maximum-length k-path problem, which must be solved to compute

the bound given in Theorem 3.13, is related to the longest-path problem, and can be easily shown to be

NP-complete as well, via reduction from the longest-path problem.

Given the complexity of the maximal-length k-path problem, we present a less-tight bound that can be

computed more easily.

Corollary 3.1. Let Reach(Ri,k, l,G) denote the set of requests that are reachable in G(Γ) fromRi,k via an

l-path. The worst-case request blocking for Ri,k in the RSM, bRSM
i,k , is upper bounded by the sum of the

longest T −1 requests in Reach(Ri,k,T −1,G).
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Figure 3.8: Depiction of the blocking graph for Example 3.6 where L1,1 = 2 and L2,1 = L3,1 = L4,1 = 1.

Example 3.6 (continued). Let L1,1 = 2 and L2,1 = L3,1 = L4,1 = 1 and T = 3, as depicted in Figure 3.8.

Using the tighter bound in Theorem 3.13, the two possible 2-paths originating from R2,1 in G(Γ) have

B({(R2,1,R1,1)}) = B({(R2,1,R3,1),(R3,1,R4,1)}) = 2. Using Corollary 3.1, Reach(Ri,k,2,G(Γ)) =

{R1,1,R3,1,R4,1}. Therefore, the bound produced by Corollary 3.1 is L1,1 +L3,1 = 3, which is greater than

that produced by Theorem 3.13.

The key difference between Theorem 3.13 and Corollary 3.1 is that the latter does not consider explicit

blocking paths, only which requests are reachable through any (T −1)-path. As a result, the bound produced

may include requests from different paths through the blocking graph.

With the results for the RSM pi-blocking, we are now prepared to discuss bounding token blocking and

progress-mechanism-related pi-blocking.

Token lock pi-blocking. The modular nature of the RNLP, which separates the token lock from the RSM,

allows for the reuse of previous pi-blocking analysis for the token-lock analysis. In particular, the pi-blocking

analysis for the k-exclusion locking protocol can be applied directly by treating the critical-section length of

each requestRi,k as bRSM
i,k instead of Li,k.

Progress-mechanism-related pi-blocking. For the non-trivial token locks (non-TTL), progress-mechanism-

related pi-blocking is also bounded through the token-lock analysis. For example, under the R2DGLP, there is

no progress-mechanism-related pi-blocking, and under the CK-OMLP, priority donation causes pi-blocking,

which is analyzed in the CK-OMLP analysis.

Because the TTL does not itself cause any blocking (request or progress-mechanism-related), progress-

mechanism-related pi-blocking must be considered separately. However, this analysis follows directly from

previous analysis techniques, e.g., Lemma 13 from (Brandenburg, 2014) for RSB.
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Linear-programming-based fine-grained blocking analysis. In more recent work, Brandenburg (2013b)

presented a framework for conducting pi-blocking analysis using a linear program (LP). In that framework, an

LP is created for each job Ji, which enumerates all possible requests that could be issued while Ji is pending.

The LP optimization function maximizes the blocking incurred by these requests, subject to constraints

specific to each locking protocol that rule out potential schedules due to the behavior of the locking protocol.

For example, for a FIFO-ordered spinlock, a request may only be directly blocked by at most one request per

task. By adding constraints such as these to the LP, tighter blocking bounds result.

In this work, we did not specifically consider the use of LP-based blocking analysis for the RNLP.

However, we conjecture it may be possible to add additional constraints for the RNLP to this LP-based

analysis framework. For example, Corollary 3.1 could be used to add constraints that encode that within the

RSM, requests may only be directly blocked by T −1 requests in Reach(Ri,k,T −1,G). Adding constraints

that correspond to specific paths as in Theorem 3.13 would likely require integer variables.

3.7 Chapter Summary

In this chapter, we have presented the RNLP, a modular locking protocol composed of a k-exclusion

token lock and a progress mechanism. Token locks and progress mechanisms are paired depending upon the

scheduler, type of analysis, and how waiting is realized to achieve asymptotically optimal locking protocols

corresponding to all prior asymptotically optimal multiprocessor real-time locking protocols. Furthermore, the

modular nature of the RNLP allows for future progress mechanisms or k-exclusion locks to be incorporated

into the RNLP to improve performance in particular cases. Indeed, the RNLP predates RSB (Brandenburg,

2014), but RSB was easily be applied in the RNLP via the RSB-RSM to achieve asymptotic optimality in the

clustered, s-aware case, as we discussed herein.

The variants of the RNLP we have presented have s-oblivious, s-aware, and spin-based blocking behavior

no worse than existing multiprocessor locking protocols under the analysis assumptions we have employed.

The RNLP, however, supports nested resource requests, and it is possible for multiple jobs to concurrently

hold separate resources in a resource group. This increased parallelism can reduce both worst-case and

observed runtime blocking. The RNLP is also advantageous in that groups do not have to be statically

assigned before execution; resources can be dynamically added or removed so long as the relative order of all

other resources is not modified. This property adds flexibility to the RNLP.
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In the next chapter, we present extensions to the RNLP to support k-exclusion and reader/writer locking,

as well as present an evaluation of the RNLP and these extensions.
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CHAPTER 4: RNLP Extensions1

In Chapter 3, we considered a resource model in which all resources were assumed to be mutex resources.

As described in Chapter 2, some resources have more relaxed sharing constraints such as reader/writer sharing

or k-exclusion. In this chapter, we develop extensions to the RNLP that allow for fine-grained locking of

resources with these alternative sharing constraints. To our knowledge, these extensions are the only locking

protocols to support fine-grained reader/writer or k-exclusion locking.

Reader/writer. The first extension we consider in this chapter supports fine-grained reader/writer sharing,

which allows read-only accesses to execute concurrently. We call this protocol that R/W RNLP. As we shall

see, mixing read and write accesses in a fine-grained locking protocol gives rise to serious algorithmic and

analytical challenges. The design of the R/W RNLP breaks new ground in several ways. For example, it

is the first fine-grained multiprocessor real-time locking protocol that allows tasks to hold read locks and

write locks simultaneously on different resources, and the first to allow read locks to be upgraded to write

locks. We show that the R/W RNLP has worst-case pi-blocking no worse than previous coarse-grained

reader/writer real-time locking protocols (Brandenburg and Anderson, 2010b; Brandenburg, 2011), which

have been proven optimal with O(m) writer blocking and O(1) reader blocking.

Algorithmic and analytical challenges. The R/W RNLP was obtained by employing the concept of read

and write “phases,” as used in phase-fair reader/writer (R/W) locks (Brandenburg, 2011; Brandenburg and

Anderson, 2009, 2010b, 2011), within the context of the RNLP (Ward and Anderson, 2012), which provides

only mutex sharing. The RNLP effectively orders conflicting resource requests on a FIFO basis, i.e., earlier

requests are satisfied first. Thus, when abstractly considering behavior under the RNLP as a dynamically

changing wait-for graph, an important stability property emerges: once a resource request is issued, its

outgoing edge set, i.e., the set of requests upon which it is waiting, does not change.

1Contents of this chapter previously appeared in preliminary form in the following papers:
Ward, B. and Anderson, J. (2013). Fine-grained multiprocessor real-time locking with improved blocking. In Proceedings of the
21st Conference on Real-Time Networks and Systems, pages 67–76.
Ward, B. and Anderson, J. (2014b). Multi-resource real-time reader/writer locks for multiprocessors. In Proceedings of the 28th
Parallel and Distributed Systems Symposium, pages 177–186.
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Phase-fair locks expressly violate this stability property. In order to enable O(1) worst-case pi-blocking

for read requests, phase-fair locks allow later-requested reads to “cut ahead” of earlier-requested writes.

This is accomplished by alternating read and write phases; in a read (write) phase, the managed resource is

accessed by all (one) issued read requests (write request). (Note that this is with respect to a single resource:

prior work on phase-fair locks did not address the fine-grained sharing of multiple resources.) Because reads

can “cut ahead” of writes, the outgoing edge set of write requests in the wait-for graph is not stable—in fact,

it is not stable for any R/W locking protocol with O(1) worst-case reader pi-blocking.

Dealing with this lack of stability was one of the main challenges we faced in designing the R/W RNLP

since we desired O(1) reader pi-blocking. One issue that arises on account of instability is what we call

the R/W ordering dilemma. Consider a read request Rr
1 that is waiting to access two resources, `a, which

is read locked by request Rr
2, and `b, which is write locked by request Rw

3 , as illustrated in Figure 4.1.

Subsequently, a write requestRw
4 is issued for the read-locked resource `a. Which request should be satisfied

first, the waiting readRr
1 or the waiting writeRw

4 (i.e., where shouldRw
4 be inserted into the wait-for graph)?

Phase-fair logic suggests that Rw
4 be satisfied first (left side of Figure 4.1), as the resource for which it

is currently waiting is read locked (i.e., in a read phase, so a write phase should be next). However, this

is problematic because it increases the blocking bound of the read request Rr
1, which is already blocked

by another writer (Rw
3 ). Alternatively, if the read Rr

1 is satisfied next (right side of Figure 4.1), then the

write requestRw
4 may be blocked by two read requests, leading to longer pi-blocking bounds than under a

phase-fair lock.

Because we desire O(1) pi-blocking for read requests, we have no choice but to sometimes let read

requests “cut ahead” of write requests when resolving the R/W ordering dilemma, as in phase-fair locks. As

noted above, this “cutting ahead” inserts edges into the wait-for graph that are not in accordance with FIFO

request ordering. This has an effect that is not just localized but system-wide: in the wait-for graph, entire

paths, representing transitive blocking relationships, may be inconsistent with FIFO ordering. The resulting

transitive early-on-late pi-blocking can be difficult to properly handle and analyze.

Perhaps the most significant problem that arises in the development of a fine-grained R/W locking

protocol is that of inconsistent phases. For example, consider that both a read and a write request are waiting

for two resources, one of which is read locked, while the other is write locked. Which request should be

satisfied next? This problem is further complicated when considering transitive blocking relationships. From

the perspective of both waiting read and write requests, the resources for which they are waiting are in

80



Rr
1

Rr
2 Rw

3

Rw
4

Rr
1

Rr
2 Rw

3

?

Rw
4

Rr
1

Rr
2 Rw

3

?
`a `b `a `b `a `b

Rr
1 Request Resource`bWaiting for Held by

Figure 4.1: Illustration of the R/W ordering dilemma. The left and right side of the figure depict alternative
places to insert a new write requestRw

4 into the wait-for graph depicted in the middle.

inconsistent phases, in that one resource is in a read phase, while the other is in a write phase. This issue

is unique to fine-grained locking protocols, as coarse-grained ones arbitrate access to all resources as one.

To address this problem, we present the concept of request entitlement. The question of which request is

satisfied next is decided in favor of the request that is deemed entitled.

The algorithmic challenges and their solutions in the R/W RNLP were motivated by analytical consider-

ations. However, the analysis that proves the R/W RNLP to be optimal required insights in its own right.

In particular, the analysis pertaining to the problem of (and solution to) inconsistent phases required novel

insights, which can be seen both in the proof, as well as the definition of entitlement.

k-exclusion locking. In many applications, it may be desirable to support fine-grained locking among both

k-exclusion and mutex resources. For example, consider that a k-exclusion lock is used to arbitrate access to

a GPU, and that data must be transferred to and/or from the GPU while it executes. If that data is guarded by

a mutex lock, then the task may require simultaneous access to both the GPU and memory object(s).

This simple use case raises two research challenges. First, how can we support fine-grained locking

among k-exclusion resources where the number of replicas may be different? To resolve this issue, the rules

of the RNLP must be generalized.
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In order to prevent deadlock, resources are ordered in the RNLP, and tasks must request resources in

order. In order to maintain optimality, the RNLP enforces that a later-issued request never acquires a resource

`b if an earlier-issued request holds a resource `a such that `a ≺ `b. This rule ensures that an earlier-issued

request can never be blocked by a later-issued request when it issues a nested request. Generalizing this

rule to replicated resources is non-trivial. Do all replicas of resources later in the ordering need to be idled

when earlier resources are locked? If not, how should replicas be “reserved” to ensure earlier-issued requests

cannot block on later-issued requests?

As we will show in this chapter, this issue can be resolved by applying ideas from dynamic group

locking. With DGLs, tasks request all potentially accessed resources, which allows replicas of later-ordered

resources to be effectively “reserved.” These reservations resolve the aforementioned issues, and allow for

the construction of an asymptotically optimal fine-grained k-exclusion locking protocol.

Organization. The remainder of this chapter is organized as follows. We begin in Section 4.1 with a

presentation of the R/W RNLP. In Section 4.2 we describe how the RNLP can be extended to support

k-exclusion locking. In Section 4.3, we present schedulability studies conducted to evaluate the schedulability

benefits of fine-grained locking with the RNLP presented in Chapter 3 and the extensions presented in this

chapter.

4.1 R/W RNLP

Before describing the R/W RNLP, we begin by clarifying the models and assumptions used in this

section.

Scheduling. We consider clustered-scheduled systems, in which the m processors are grouped into m/c

clusters, each of size c. Note that these results can be applied to partitioned (c = 1) and global (c = m)

scheduling as well. As before, we assume a job-level fixed priority scheduling algorithm.

Resource model. In this section, we assume that all resources in L are reader/writer (R/W) resources. Each

resource indicated in a request is requested for either reading or writing. We say that a resource is read

(write) locked if it is held by a request that reads (writes) it. We assume that each resource `a is subject to a

reader/writer sharing constraint: writes of `a are mutually exclusive, but arbitrarily many reads of `a can

be executed concurrently. Such a read is not allowed to modify `a. Two requests conflict if they include a

common resource that is written by at least one of them.
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In constructing the R/W RNLP, we endeavor, to the extent possible, to enable non-conflicting requests

to be satisfied concurrently. Towards that end, we desire the following additional properties, in addition to

fine-grained reader/writer locking.

• R/W mixing. Some resources may be read and others written in one critical section. Such critical

sections can be satisfied concurrently if they do not conflict.

• R-to-W upgrading. A job that has acquired a resource for reading may upgrade its read to a write.

For example, a job may read a resource, and based upon the value read, decide that it needs to write

that resource.

• Incremental locking. The resources accessed by a job within a single critical section may be requested

via a sequence of requests. For example, a job may request `a, read its value, and then execute some

conditional code that requests `b.

However, to simplify exposition, we initially make the following simplifying assumption.

Assumption 4.1. All resources accessed within a single outermost critical section are requested via a single

request, these resources are either all read or all written, and no read request may be upgraded.

We relax Assumption 1 later in this section and support the aforementioned three features. Until then

(i.e., while Assumption 1 is still in place), we use the following notation. We denote the set of resources that

are needed inRi’s critical section as Ni. By Assumption 1, each request can be categorized as either a read

request or a write request, and each critical section as either a read critical section or a write critical section.

For notational clarity, we often annotate read (respectively, write) requests asRr
i (respectively,Rw

i ). Thus,

R1 andRw
1 refer to the same request. We denote the longest read (respectively, write) critical section length

as Lr
max (respectively, Lw

max), and we let Lmax = max(Lr
max,L

w
max). Further, after showing the parallels between

nested locking and DGLs in Section 3.5, for simplicity we also assume DGLs until we relax Assumption 1.

All other terminology and notation from previous chapters persists.

Progress mechanisms. The R/W RNLP has stricter requirements on the progress mechanism employed. In

particular, we require that a progress mechanism for the R/W RNLP satisfy the following two properties:

RWP1 A resource-holding job is always scheduled.

RWP2 At most m jobs may have incomplete resource requests at any time, at most c from each cluster.
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Figure 4.2: Queue structure in the R/W RSM. For each resource `a ∈ {`1, . . . , `q}, there is a read queue Qr
a

and a write queue Qw
a .

The two progress mechanisms that satisfy these properties that we consider here are priority donation (Bran-

denburg and Anderson, 2011), and for spin-based locks, non-preemptive unconditional boosting. Both of

these progress mechanisms trivially satisfy these two properties.

Token lock. Property RWP2 restricts the token lock to at most m-exclusion. Priority donation and spin-based

non-preemptive boosting both realize an m-exclusion lock, and therefore, no token lock is required (i.e., the

TTL can be used).

We also note that to date no single-resource multiprocessor locking protocol supports s-aware pi-blocking

that is O(1) for reads and O(n) for writes. It is for this reason, in this work we focus exclusively on spin-based

and s-oblivious analysis. As discussed in Chapter 3, m-exclusion token locks are optimal in these cases,

and indeed as we will show herein, are optimal for reader/writer fine-grained locking as well. S-aware

reader/writer locking is a challenging open problem that warrants further attention.

4.1.1 R/W RNLP Architecture

The key new component in the R/W RNLP is the R/W RSM. In the R/W RSM, two queues are used per

resource `a, a queue for readers, Qr
a, and a queue for writers, Qw

a , as depicted in Figure 4.2. We assume that

each read (respectively, write) request is enqueued atomically in the read (respectively, write) queue of each

resource it requests. The timestamp of the issuance of each requestRi is recorded and denoted ts(Ri). All

writer queues are order by these timestamps, resulting in FIFO queueing. We denote the earliest timestamped

incomplete write request for `a (i.e., the head of Qw
a ) as E(Qw

a ). Similar to phase-fair locks (Brandenburg

and Anderson, 2010a,b), the queue from which requests are satisfied (Qr
a or Qw

a ) alternates. The techniques

84



that govern such alternation, however, are quite different from traditional phase-fair locks due to the R/W

ordering dilemma.

Example 4.1. As we explain the rules of the R/W RSM, we will reference relevant parts of the example

schedule in Figure 4.3, which will later be explained in its entirety. In this running example, there are

five tasks and a processor for each task, such that all pending jobs are scheduled. Additionally, these

tasks share three resources, `a, `b, and `c. At time t = 2, when Rw
2 is issued, ts(Rw

2 ) = 2 is established.

Also, since Rw
2 requires all three resources and since it is the only write request waiting for any resource,

E(Qw
a ) = E(Qw

b ) = E(Qw
c ) =Rw

2 . ♦

Before describing the techniques that govern when requests should be satisfied, we define relevant

notation. We say that two resources `a and `b are read shared, denoted `a ∼ `b,2 if both `a and `b could be

requested together as part of a single read request (i.e., for some Rr
i , {`a, `b} ⊆ Ni). We call the set of all

resources that are read shared with `a the read set of `a, denoted S(`a) = {`b| `b ∼ `a}.

Example 4.1 (continued). In Figure 4.3, for Rr
5, N5 = {`a, `b}. Thus, `a ∼ `b (and `b ∼ `a). Since Rr

5 is

the only request for multiple resources, S(`a) = {`a, `b} and S(`c) = {`c}.

To avoid transitive early-on-late blocking, a write request may be forced to request additional resources

besides those needed in its critical section. To reflect this, we let Di denote the set of resources thatRi must

actually request. For a read requestRr
i , Di is simplyNi. However, for a write requestRw

i , Di =
⋃

`a∈Ni
S(`a).

While forcing write requests to acquire more resources than actually needed reduces runtime concurrency, it

does not negatively affect worst-case pi-blocking. As we shall see, this expansion rule enables us to avoid

transitive early-on-late blocking. Additionally, we shall show later that this expansion of write requests can

be relaxed to enable additional concurrency on average.

Example 4.1 (continued). SupposeRw
2 in Figure 4.3 only needsN2 = {`a, `c} in its critical section. Because

`a ∼ `b and `a ∈N2,Rw
2 actually requests D2 = {`a, `b, `c}.

General rules. The first few rules of the R/W RSM are common to both readers and writers and describe the

necessary actions that must be taken when a job either issues a request or completes a critical section.

G1 When Ji issuesRi at time t, the timestamp of the request is recorded: ts(Ri) := t.

2Read sharing is reflexive and symmetric.
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Figure 4.3: Illustration of the running example.
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G2 WhenRi is satisfied, it is dequeued from either Qr
a (if it is a read request) or Qw

a (if it is a write request)

for each `a ∈ Di.

G3 WhenRi completes, it unlocks all resources in Di.

G4 Each request issuance or completion occurs atomically. Therefore, there is a total order on timestamps,

and a request cannot be issued at the same time that a critical section completes.

Example 4.1 (continued). At time t = 8, when Rr
3 completes its critical section, D3 = {`c} is unlocked.

This allowsRw
2 to be satisfied (as explained later), and thereforeRw

2 is dequeued from Qw
a , Qw

b , and Qw
c .

The remaining read- and write-specific rules rely on the concept of entitlement, which we use to resolve

the R/W ordering dilemma. Intuitively, a request becomes entitled once it is the next request to be satisfied

(with respect to the resources for which it is waiting), and remains entitled until it is satisfied. While a request

is entitled, it blocks all conflicting requests. Entitlement is defined differently for read and write requests. We

begin with read requests, which are entitled if they are blocked only by satisfied (and not entitled) writes.

Definition 4.1. An unsatisfied read request Rr
i becomes entitled when there exists `a ∈ Di that is write

locked, and for each resource `a ∈ Di, E(Qw
a ) is not entitled (see Definition 4.2).3 (Note that E(Qw

a ) = /0

could hold. In this case, we consider E(Qw
a ) to be a “null” request that is not entitled.) Rr

i remains entitled

until it is satisfied.

Of course, if a newly issued read request does not conflict with satisfied or entitled incomplete requests,

then it is satisfied immediately (see Rule R1 below) and Definition 4.1 does not apply (only unsatisfied

requests can be entitled).

Example 4.1 (continued). At time t = 8, Rr
5 is blocked by Rw

2 , which holds `a, `b, and `c, as depicted in

Figure 4.4 (a). By Definition 4.1,Rr
5 becomes entitled at time t = 8 because `a and `b are write locked and

E(Qw
a ) = E(Qw

b ) = /0.

Next we consider the writer case. Intuitively, an entitled write is the head of all relevant write queues and

not blocked by any entitled reads (but possibly satisfied reads).

3 Entitlement is a property of a request, and Definitions 4.1 and 4.2 give conditions upon which a request becomes entitled in terms
of the entitlement of other requests. Therefore, while Definitions 4.1 and 4.2 reference each other parenthetically to aid the reader,
they are not in fact circularly defined.
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Rr
5

Rw
2

`a `b

(a) Reader entitlement.

Rw
2

Rr
4Rr

3

`a `b `c

Rr
5

(b) Writer entitlement.

Figure 4.4: Illustrations of the wait-for graphs of entitled read and write requests. Inset (a) corresponds toRr
5

at time t = 8, and inset (b) corresponds toRw
2 at time t = 7 in Figure 4.3. Note that in inset (a),Rr

5 is blocked
by at least one satisfied write request, and in inset (b)Rw

2 is blocked by at least one satisfied write request.

Definition 4.2. An unsatisfied write requestRw
i becomes entitled when for each `a ∈ Di,Rw

i = E(Qw
a ), no

read request in Qr
a is entitled (see Definition 4.1),4 and `a is not write locked. Rw

i remains entitled until it is

satisfied.

Observe that an entitled write requestRw
i is only blocked by satisfied but incomplete read requests since

according to Definition 4.2 no resource in Di is write locked.

Example 4.1 (continued). At time t = 7,Rr
3 holds `c, and blocksRw

2 , which is waiting for `a, `b, and `c, as

depicted in Figure 4.4 (b). BecauseRw
2 is the earliest timestamped writer waiting for any of the resources,

and none is write locked,Rw
2 becomes entitled. Note that, althoughRw

2 is entitled, it is still blocked. Prior to

time t = 5,Rw
2 was not be entitled because `a and `b were write locked byRw

1 .

An entitled request (read or write) may be blocked by multiple requests, each holding different resources.

We let B(Ri, t) be the set of satisfied requests that conflict with an entitled requestRi at time t (i.e., the set of

requests that blockRi at time t). Note that since read requests do not conflict with each other, B(Rr
i , t) only

contains write requests. Analogously, an entitled write is only blocked by read requests, and thus B(Rw
i , t)

only consists of read requests. This matches the phase-fair intuition that reads concede to writes, and writes

concede to reads.

4See Footnote 3.
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Example 4.1 (continued). At time t ∈ [6,8),Rw
2 is blocked byRr

3, thus B(Rw
2 , t) = {Rr

3}. Earlier, at time

t ∈ [5,6),Rw
2 is blocked by bothRr

3 andRr
4, so B(Rw

2 , t) = {Rr
3,Rr

4}.

Reader rules. We next define reader-specific rules, which utilize the previously given definition of enti-

tlement. These rules define the behavior of the R/W RSM, when a read request is issued and satisfied,

respectively.

R1 WhenRr
i is issued, for each `a ∈Di,Rr

i is enqueued in Qr
a. IfRr

i does not conflict with any entitled or

satisfied write requests, then it is satisfied immediately.

R2 An entitled read requestRr
i is satisfied at the first time instant t such that B(Rr

i , t) = /0.

Example 4.1 (continued). At time t = 3, Rr
3 is issued and it is satisfied immediately by Rule R1. Rr

3 is

allowed to “cut ahead” of Rw
2 in this case because Rw

2 is not entitled, and `c is unlocked. Further, at time

t = 10,Rr
5 is satisfied by Rule R2. This is becauseRr

5 is entitled, andRw
2 completed its critical section and

unlocked `a and `b.

Writer rules. The writer rules parallel the reader rules.

W1 WhenRw
i is issued, for each `a ∈Di,Rw

i is enqueued in timestamp order in the write queue Qw
a . IfRw

i

does not conflict with any entitled or satisfied requests (read or write), then it is satisfied immediately.

W2 An entitled write requestRw
i is satisfied at the first time instant t such that B(Rw

i , t) = /0.

Example 4.1 (fully explained). At time t = 1, a write request Rw
1 is issued for `a and `b, which is imme-

diately satisfied (by Rule W1). At time t = 2, another write request, Rw
2 , is issued for `a, `b, and `c and is

enqueued in Qw
a , Qw

b , and Qw
c (by Rule W1). Rr

3 is issued and satisfied immediately at time t = 3 by Rule R1,

as previously described. Similarly, at time t = 4,Rr
4 is issued and satisfied immediately (by Rule R1). Note

that at time t = 4, bothRr
3 andRr

4 have read locked `b, demonstrating reader parallelism. Further, at time

t = 4, `a and `b are write locked while `c is read locked, a level of concurrency only possible with fine-grained

locking. When Rw
1 completes at time t = 5, Rw

2 becomes entitled. At time t = 7, R5 is issued for `b and

`c, but it is not satisfied becauseRw
2 is entitled to both resources. After Rr

3 completes at time t = 8, Rw
2 is

satisfied (by Rule W2). Finally, afterRw
2 completes at time t = 10,Rr

5 is satisfied (by Rule R2).

This concludes the definition and introduction of the R/W RNLP. To summarize, the R/W RNLP

implements phase-fairness, where reads concede to writes and writes concede to reads. To resolve the R/W

ordering dilemma, we have introduced the concept of entitled blocking. Intuitively, an entitled request is
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“next in line” with regard to its requested resources and only blocked by satisfied, but incomplete requests of

the opposite kind.

4.1.2 Analysis

Similar to the analysis from Chapter 3, we begin with coarse-grained analysis, ultimately aimed at

proving asymptotic optimality. In Section 4.1.2.3, we present fine-grained pi-blocking analysis, similar to that

presented for the RNLP. For the purpose of asymptotic analysis, similarly to Chapter 3, we assume that m

and n (the number of processors and tasks, respectively) are variables, and all other parameters are constants.

Examples of such constants include critical-section lengths. Additionally, we assume that locking-protocol

invocations take zero time and all other overheads are negligible (such overheads can be easily factored into

the final analysis (Brandenburg, 2011, Chapters 3,7)).

4.1.2.1 Entitlement Analaysis

In this subsection, we present analysis showing a number of key properties about entitlement. In

presenting this analysis, we let I denote an arbitrary invocation of the locking protocol (read or write

issuance or read or write completion) that occurs at time tI , and we let t−I = limε→0 tI− ε be the time instant

immediately prior to that invocation. We say that I entitles (satisfies) a request Ri if Ri becomes entitled

(respectively, satisfied) as a result of I (i.e.,Ri is entitled (satisfied) after I but not before I).

Lemma 4.1. The following properties of satisfaction and entitlement hold.

E1 If I satisfiesRr
i , then I is either a read issuance or a write completion.

E2 If I satisfiesRw
i , then I is either a write issuance, a read completion, or a write completion.

E3 If I satisfiesRr
i and I is the issuance of read requestRr

x, thenRr
i =Rr

x.

E4 If I satisfiesRw
i and I is the issuance of write requestRw

x , thenRw
i =Rw

x .

E5 If I satisfiesRw
i and I is the completion of a conflicting read requestRr

x, then at time t−I ,Rw
i is entitled,

and B(Rw
i , t
−
I ) = {Rr

x}.

E6 If I satisfiesRr
i and I is the completion of a conflicting write requestRw

x , then at time t−I ,Rr
i is entitled,

and B(Rr
i , t
−
I ) = {Rw

x }.
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E7 If I satisfies Rw
i and I is the completion of a conflicting write request Rw

x , then at time t−I , for each

`a ∈ Dw
i ,Rw

i = E(Qw
a ) and no read request in Qr

a is entitled, and for each resource `a ∈ Di, `a is either

locked byRw
x , or unlocked.

E8 If I entitlesRr
i , then I is a read issuance or a read completion.

E9 If I entitlesRw
i , then I is a write issuance or a write completion.

E10 IfRw
i andRr

x conflict, then they are not simultaneously entitled.

Proof. We prove the stated properties in succession.

Proposition E1. If I is a write issuance, then it releases no resources for which Rr
i is waiting, and hence

cannot causeRr
i to become satisfied. On the other hand, if I is a read completion andRr

i is not entitled prior

to I, then by Rule R2, I cannot causeRr
i to become satisfied. If I is a read completion andRr

i is entitled (and

hence blocked) prior to I, then B(Rr
i , t
−
I ) contains at least one write request; I cannot cause this write request

to complete, thus following I,Rr
i remains entitled (and hence blocked).

Proposition E2. Like the first case considered above, I cannot causeRw
i to be become satisfied if it is a read

issuance.

Proposition E3. If I is the issuance of read request Rr
i , then it does not unlock any resources, and hence

cannot cause any previously issued request to become satisfied. However, by Rule R1, I may causeRr
i itself

to become satisfied.

Proposition E4. If I is the issuance of write requestRw
i , then it does not unlock any resources, and hence

cannot cause any previously issued request to become satisfied. However, by Rule W1, I may causeRw
i itself

to become satisfied.

Proposition E5. By Rule W2, if I satisfies Rw
i , then prior to I, Rw

i must have been entitled, and Rr
x must

have been the only request that blockedRw
i .

Proposition E6. By Rule R2, if I satisfiesRr
i , then prior to I,Rr

i must have been entitled, andRw
x must have

been the only request that blockedRr
i .

Proposition E7. By Rule W2, if I satisfiesRw
i , then it must be entitled. However, becauseRw

x is satisfied

at time t−I and conflicts with Rw
i , Rw

i is not entitled at time t−I by Definition 4.2. For Rw
i to be satisfied at

time tI , by Rule W2, it must become entitled at time tI . By Definition 4.2, for Rw
i to be entitled at time tI ,
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afterRw
x unlocks all resources in Dx, for each `a ∈ Di,Rw

i = E(Qw
a ), no read request in Qr

a is entitled, and `a

is not write locked. Furthermore, sinceRw
i is satisfied at time tI , all resources in Di are unlocked afterRw

x

completes. The proposition follows.

Proposition E8. By Definition 4.1, ifRr
i is unsatisfied and not entitled prior to I, i.e., at time t−I , then it is

blocked at t−I by an entitled write request,Rw
x . Thus, by Definition 4.2, the following hold at time t−I : Rw

x is

at the head of each write queue in which it is enqueued; no resource for whichRw
x is waiting is write locked;

andRw
x is not blocked by any entitled read request. Recall that entitled requests are, by definition, unsatisfied.

Thus,Rw
x must be blocked by at least one satisfied read request at time t−I . Now, if I is a write issuance, then

Rw
x clearly remains entitled at time tI , and hence Rr

i is not entitled at time tI . On the other hand, if I is a

write completion, then it may cause certain entitled reads to become satisfied; however, it will not cause the

satisfied read that blocksRw
x to complete. Thus, as before,Rw

x remains entitled at time tI , and henceRr
i is

not entitled at time tI .

Proposition E9. By Definition 4.2, ifRw
i is unsatisfied and not entitled prior to I, i.e., at time t−I , then it is

blocked at t−I by either (i) at least one earlier-issued write requestRw
x , or (ii) or some entitled read request

Rr
y (or both).

Case (i). If at time t−I , Rw
i is blocked by the earlier-issued write request Rw

x , then clearly if I is a read

issuance, then Rw
x will continue to block Rw

i at time tI . Hence, Rw
i is not entitled at time tI . If I is a read

completion, it may satisfy certain write requests, butRw
x will remain incomplete, henceRw

i is not entitled at

time tI .

Case (ii). If at time t−I , Rw
i is blocked by some entitled read request Rr

y, and I is a read issuance, then Rr
y

remains entitled, and henceRw
i is not entitled at time tI . If I is a read completion, thenRr

y remains entitled

(recall entitled requests are not satisfied) as the satisfied write request upon which it is blocked remains

satisfied. Hence,Rw
i is not entitled at time tI .

Not that if both conditions (i) and (ii) hold simultaneously, the proof logic from either case is sufficient

to show that the proposition holds.

Proposition E10. Definitions 4.1 and 4.2 preclude conflicting read and write requests from both becoming

entitled due to separate invocations of the locking protocol. Propositions E8 and E9 preclude such requests

from both becoming entitled due to the same invocation of the locking protocol.
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Next we show that once a write requestRw
i is entitled, no conflicting requestRx can be satisfied before

it, which implicitly bounds how long it remains entitled.

Lemma 4.2. If a write requestRw
i is entitled before and after I andRx ∈ B(Rw

i , tI), thenRx ∈ B(Rw
i , t
−
I ).

Proof. Suppose not. Then the mentioned requestRx (read or write) is satisfied by I, and by the definition of

B(Rw
i , tI),Rx conflicts withRw

i .

Assume thatRr
x is a read request. Then, by Proposition E1, I is a read issuance or a write completion. If

I is a read issuance, then by Proposition E3,Rr
x is issued at tI ; however, by Rule R1, I cannot then satisfyRr

x

becauseRw
i is entitled. If I is a write completion, then by Proposition E6,Rr

x is entitled at t−I ; however, by

Proposition E10, this implies thatRw
i is not entitled at t−I , contradicting the lemma statement.

Now assume thatRw
x is a write request. Then, by Proposition E2, I is a write issuance, read completion,

or write completion. If I is a write issuance, then by Proposition E4,Rw
x is issued at tI ; however, by Rule W1,

I cannot then satisfy Rw
x because Rw

i is entitled. If I is a read completion, then by Proposition E5, Rw
x is

entitled at time t−I ; however, by Proposition E10, this implies that Rw
i is not entitled at t−I , contradicting

the lemma statement. If I is a write completion, by the statement of the lemma, it follows thatRw
i andRw

x

conflict and share some resource `c. Moreover, by Proposition E7,Rw
x = E(Qw

c ) holds at t−I . However, by

Definition 4.2, this contradicts the assumption thatRw
i is entitled at t−I .

Similar to Lemma 4.2, we next show that once a read requestRr
i becomes entitled, no conflicting request

can be satisfied before it.

Lemma 4.3. If a read requestRr
i is entitled before and after I andRw

x ∈ B(Rw
i , tI), thenRw

x ∈ B(Rw
i , t
−
I ).

Proof. Suppose not. Then, the mentioned write request Rw
x is satisfied by I, and by the definition of

B(Rw
i , tI),Rw

x conflicts withRw
i . Thus, by Proposition E2, I is either a write issuance, read completion, or

write completion. If I is a write issuance, then by Proposition E4, I is the issuance ofRw
x itself; however, by

Rule W1, I cannot satisfyRw
x , becauseRr

i is entitled prior to I. If I is a read (respectively, write) completion,

then by Proposition E5 (respectively, Proposition E7),Rw
x is entitled at t−I ; however, by Proposition E10, this

contradicts the assumption thatRr
i is entitled at t−I .

The following two corollaries follow from Lemmas 4.2 and 4.3, respectively, and are crucial to our

blocking analysis.
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Corollary 4.1. Suppose that the requestRw
i becomes entitled at time te and satisfied at time ts. Then, no new

requests may be added to B(Rw
i , t) at any time time t ∈ [te, ts).

Proof. For contradiction, let t f ∈ [te, ts) be the first time instant in which a new request Rx is added to

B(Rw
i , t f ), i.e.,Rx 6∈ B(Rw

i , t
−
f )∧Rx ∈ B(Rw

i , t f ). Then by Lemma 4.2 and the fact thatRw
i is entitled during

[te, ts),Rx ∈ B(Rw
i , t
−
f ). Contradiction.

Example 4.1 (continued). This corollary is demonstrated at time t = 7 in Figure 4.3, when Rr
5 is issued.

BecauseRw
2 is entitled at that time,Rr

5 is forced to block until afterRw
2 completes, even though the resources

it requested are available.

Corollary 4.2. Suppose that the requestRr
i becomes entitled at time te and satisfied at time ts. Then, no new

requests may be added to B(Rr
i , t) at any time t ∈ [te, ts).

Proof. For contradiction, let t f ∈ [te, ts) be the first time instant in which a new request Rx is added to

B(Rr
i , t f ), i.e.,Rx 6∈ B(Rr

i , t
−
f )∧Rx ∈ B(Rr

i , t f ). Then, by Lemma 4.3 and the fact thatRr
i is entitled during

[te, ts),Rx ∈ B(Rr
i , t
−
f ). Contradiction.

While Corollary 4.2 is not depicted in Figure 4.3, it is similar to Corollary 4.1. Next, we show that

worst-case acquisition delay is O(1) for readers and O(m) for writers. Two additional lemmas are used in

establishing these results.

4.1.2.2 Blocking Analysis

After establishing the above key properties of entitlement, especially Corollaries 4.1 and 4.2, we now

proceed to leverage these properties in bounding worst-case pi-blocking.

Lemma 4.4. A write request Rw
i experiences acquisition delay of at most Lr

max time units after becoming

entitled.

Proof. Suppose thatRw
i becomes entitled at time te and satisfied at time ts. By Corollary 4.1, new requests

are not added to B(Rw
i , t) at any t ∈ [te, ts). Moreover, by Definition 4.2, each request in B(Rw

i , t) is a read.

By Property RWP1, every request in B(Rw
i , te) is scheduled, and therefore will complete in at most Lr

max time

units. Thus, by time te +Lr
max,Rw

i will not be blocked, and by Rule W2, will be satisfied.
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The following lemma is essential to show that transitive early-on-late blocking does not adversely affect

the worst-case blocking bounds.

Lemma 4.5. IfRw
i is the earliest timestamped write request among all incomplete write requests, thenRw

i is

either satisfied or entitled.

Proof. Suppose not. Then, by Definition 4.2, for some resource `a ∈ Di, either (i) Rw
i 6= E(Qw

a ), (ii) some

requestRr
x ∈Qr

a is entitled, or (iii) `a is write locked. By Rule W1, (i) and (iii) are not possible since the write

queues are ordered by timestamp, andRw
i is the earliest incomplete write. For (ii), assumeRr

x is entitled and

`a ∈ Di∩Dx. Then, by Definition 4.1,Rr
x is blocked by a satisfied write requestRw

h . Recall thatRw
h must

request all resources in the read sets of resources in Nh. Further, `a must be in at least one of these read sets.

Thus, `a ∈ Dh∩Di, andRw
h andRw

i conflict. Thus, since ts(Rw
i )< ts(Rw

h ),Rw
h cannot be satisfied.

Theorem 4.1. The worst-case acquisition delay of a read requestRr
i is at most Lw

max +Lr
max time units.

Proof. We first show that ifRr
i is issued at time ti, then it must become entitled or satisfied by time ti +Lr

max.

Suppose not. Then, throughout the interval [ti, ti +Lr
max),Rr

i is blocked by a non-empty set W of conflicting

entitled write requests, for otherwise,Rr
i would become entitled (by Definition 4.1) or satisfied (by Rule R1).

By Property RWP1 and Lemma 4.4, each write requestRw
x ∈W will be satisfied by time ti +Lr

max. Once all

such write requests are satisfied, by Definition 4.1,Rr
i will become entitled or satisfied, a contradiction.

IfRr
i becomes satisfied by time ti +Lr

max, then its acquisition delay is at most Lr
max time units. Consider

now the other possibility, i.e., thatRr
i becomes entitled by some time te ≤ ti+Lr

max. In this case, we show that

Rr
i is satisfied by time te +Lw

max, from which an acquisition delay of at most Lr
max +Lw

max time units follows.

By Corollary 4.2, the number of resource-holding write requests blockingRr
i monotonically decreases until

Rr
i is satisfied. By Property RWP1, each such blocking request completes in at most Lw

max time units. Thus,

Rr
i is satisfied by time te +Lw

max.

Theorem 4.2. The worst-case acquisition delay of a write requestRw
i is at most (m−1)(Lr

max +Lw
max) time

units.

Proof. Suppose that the write requestRw
i is issued at time ti and not satisfied immediately. LetRw

x be the

incomplete write request with the earliest timestamp at ti (Rw
x could be Rw

i ). By Lemma 4.5, Rw
x is either

entitled or satisfied at ti. Suppose the latter is true, i.e., Rw
x is satisfied at ti. Then, by Property RWP1, Rw

x
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completes its critical section by time ti +Lw
max. By Property RWP2, there are at most m−1 incomplete write

requests with timestamps earlier than that ofRw
i at ti. Thus, by time ti +Lw

max, there are at most m−2 such

requests. By Lemmas 4.4 and 4.5, the one with the earliest timestamp is satisfied by time ti +Lw
max +Lr

max,

and thus, by Property RWP1, completes its critical section by time ti +Lw
max +Lr

max +Lw
max. Continuing

inductively, all earlier-timestamped write requests complete their critical sections by time ti +Lw
max +(m−

2)(Lr
max +Lw

max). At that time,Rw
i has the earliest timestamp. Hence, by Lemma 4.4, it is satisfied by time

ti +Lw
max +(m−2)(Lw

max +Lr
max)+Lr

max, i.e., Rw
i ’s acquisition delay is at most (m−1)(Lr

max +Lw
max) time

units.

The remaining possibility to consider is that Rw
x is entitled at ti. In this case, by Definition 4.2, Rw

x

is blocked by some read request Rr
h. Thus, by Property RWP2, there are at most m−2 incomplete write

requests with timestamps earlier than that ofRw
i at ti.

By Property RWP1,Rr
h will complete by time ti +Lr

max, andRw
x is completed at time ti +Lr

max +Lw
max.

Again inductively, all earlier-timestamped write requests complete their critical sections by time ti +Lr
max +

(m−2)(Lr
max +Lw

max). Thus, it follows that Rw
i ’s acquisition delay is at most (m−2)(Lr

max +Lw
max)+Lr

max

time units. (Note that the blocking ofRw
x due toRr

h is accounted for in this reasoning by Lemma 4.4.)

For a spin-based lock, the worst-case acquisition delay for either reads or writes is the worst-case

s-blocking (recall Definition 2.3). However, non-preemptive spinning can cause other jobs, even non-

resource-using jobs, to be pi-blocked upon release. For example, if a high-priority job Jh is released that has

sufficient priority to be scheduled, but a low-priority job Jl is spinning non-preemptively, then Jh is pi-blocked.

The worst-case pi-blocking can easily be shown to be O(m) through analysis similar to single-resource

spin-based mutex or reader-writer locks (Brandenburg, 2011).

4.1.2.3 Fine-grained R/W RNLP Blocking Analysis

Similarly to the fine-grained blocking analysis for the mutex RNLP in Section 3.6, we also present

fine-grained blocking analysis for the R/W RNLP. There are many similarities in these analyses, and we

therefore use a similar analysis framework as that used in Section 3.6. We refer the reader back to Section 3.6

for pertinent examples that illustrate the concepts of the analysis framework.

In the analysis in Section 3.6, we observed that in the mutex RNLP a request may be blocked by at most

one other request per task within the RSM. By similar logic, since writes are satisfied in FIFO order (with
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respect to other writes) a request in the R/W RSM may be blocked by at most one write request per task.

However, because read and write phases are interleaved, it is possible for multiple read requests to block to

another write request. This observation affects the contention set.

Lemma 4.6. (Brandenburg, 2011, Lemma 5.1) At most
⌈

t + ri

pi

⌉
distinct jobs of a task τi can execute in

any interval of length t.

In applying this result to determine the number of contending requests, the response time of each task

is initially assumed to be equal to its period. A fixed-point iteration can be applied to determine more

precise blocking bounds. Specifically, after computing the response time including blocking bounds, the new

response-time bounds can be applied to recompute the tighter blocking bounds. This process can proceed

iteratively.

Definition 4.3. The write contention set of request Ri,k is the set of write requests that could potentially

contend within the R/W RSM withRi,k.

Cw(Γ) =
⋃

Jx∈Γ

{Rw
x,1,Rw

x,2, . . . ,Rw
x,Nw

iw
} (4.1)

Definition 4.4. The read contention set of request Ri,k is the set of read requests that could potentially

contend with the R/W RSM withRi,k in an interval of length t.

Cr(Ri,k, t) =
⋃

Jx∈Γ\{τi}

d t+rx
px
e⋃

y=1

{Rr
x,y,1,Rr

x,y,2, . . . ,Rr
x,y,Nr

ir
} (4.2)

Example 4.2. Consider a task system Γ = {τ1, . . .τ5} in which all tasks have the same period, pΓ, and each

job issues one resource request. Let R1,R2, and R3 be write requests and R2, and R4 be read requests.

Also, let D1 = {`a}, D2 = {`a, `b}, D3 = {`b, `c}, D4 = {`b, `c}, and D5 = {`c}. The write contention

set is Cw(Γ) = {R1,1,R3,1,R5,1}. The read contention set of Rw
1 over its period, pΓ, is Cr(Rw

1 , pΓ) =

{Rr
2,1,Rr

1,2,Rr
4,1,Rr

4,2}. By Lemma 4.6, assuming ri = pi, at most two distinct jobs of each other task can

execute within the period of τ1, hence there are two read requests in the read contention set ofRw
1 for each

task that issues read requests, τ2 and τ4. ♦

Definition 4.5. A requestRi,k may be directly blocked by another requestRx,y if Di,k∩Dx,y 6= /0, i 6= x, and

bothRi,k andRx,y are not read requests. Let db(Ri,k,Rx,y) be true ifRi,k can be directly blocked byRx,y.
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Figure 4.5: Depiction of the blocking graph G(Γ,Rw
5,1, pΓ) corresponding to Example 4.2 assuming that for

all τi ∈ Γ, Lr
i = Lw

i = 1.

By this definition, a request may be directly blocked by any conflicting request from a different task.

Next we define the blocking graph, similarly to the analysis in Section 3.6.

Example 4.2 continued. Rw
3 may be directly blocked byRr

2,Rr
4, andRw

5 , because it is a write request, and

requests a common resource with each of these other requests. However,Rr
2 is not directly blocked byRr

4

because, while they both request `b, they are both read requests, and therefore do not conflict.

Definition 4.6. Let G(Γ,Ri,k, t) = (V,E) be a blocking graph, which encodes all possible blocking.

G = (V,E),

V =Cw(Γ)∪Cr(Ri,k, t)

E = {(Ri,k,Rx,y) | db(Ri,k,Rx,y)}.

The edge weights in the blocking graph are the critical-section lengths of the blocking requests.

w(Ri,k,Rx,y) =


Lx,y if (Ri,k,Rx,y) ∈ E,

0 otherwise.

Example 4.2 continued. The blocking graph G(Γ,Rw
5 , pΓ) corresponding to the running example is depicted

in Figure 4.5.
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Figure 4.6: Depiction of the blocking graph G(Γ,Rr
4, pΓ) corresponding to Example 4.2 assuming Lr

i = Lw
i = 1

for all τi ∈ Γ.

Definition 4.7. A (r,w)-path P in a blocking graph G(Γ,Ri,k, t) is a simple path through G(Γ,Ri,k, t) of at

most r read vertices and w write vertices, excluding the source node.

Example 4.2 continued. Consider the path P = {Rw
1,1,Rr

2,1,Rw
3,1,Rr

4,1,Rw
5,1}. P is a (2,2)-path.

Theorem 4.3. The worst-case request blocking for a read requestRr
i,k in the R/W RSM is upper bounded by

the maximal total blocking of any (1,1)-path in G(Γ,Rr
i,k,ri) beginning withRr

i,k.

Proof. By Theorem 4.1, a request can be blocked by at most one read and one write phase. By construction,

G(Γ,Ri,k,ri) encodes all possible direct blocking relationships, and thus any (1,1)-path beginning withRr
i,k

is a possible blocking scenario. The total blocking of the maximal (1,1)-path beginning with Rr
i,k upper

bounds any possible blocking scenario in the R/W RSM forRr
i,k.

Example 4.2 continued. Consider the blocking graph G(Γ,Rr
4,1, pΓ), shown in Figure 4.6. Assuming

constant read and write critical-section lengths of one, the worst-case request blocking ofRr
4,1 is Lw

3 +Lr
2 =

2. However, as shown in Figure 4.7, if L5 = 5 the weight of the path {Rr
4,1,Rw

5,1} outweighs the path

{Rr
4,1,Rw

3,1,Rr
2,1} of weight two, even though it does not include a read request.

Theorem 4.4. The worst-case request blocking for a write requestRw
i,k in the R/W RSM is upper bounded

by the maximal total blocking of any (m−1,m−1)-path in G(Γ,Ri,k,ri).

Proof. By Theorem 4.2, a request can be blocked by at most m− 1 read and m− 1 write phases. By

construction, G(Γ,Ri,k,ri) encodes all possible direct blocking relationships, and thus any (m−1,m−1)-
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Figure 4.7: Depiction of the blocking graph G(Γ,Rr
4,1, pΓ) corresponding to Example 4.2 assuming that for

all τi ∈ Γ\{τ5}, Lr
i = Lw

i = 1, and Lw
5 = 5.

path beginning withRw
i,k is a possible blocking scenario. The total blocking of the maximal (m−1,m−1)

beginning withRw
i,k upper bounds any possible blocking scenario in the R/W RSM forRw

i,k.

Example 4.2 continued. Consider the blocking graph of Rw
5,1 depicted in Figure 4.5, and let m = 2. As-

suming all critical sections have a length of one, a maximum-length (2,2)-path through G(Γ,Rw
5,1, pΓ) is

{Rw
5,1,Rr

4,1,Rw
3 ,Rr

2,1,Rw
1,1}.

The blocking bound in Theorem 4.3 is more general than that in Theorem 3.13 (if there are no read

requests, the RNLP and R/W RNLP behave the same). The problem of computing this bound, similarly to

Theorem 3.13, is also NP-complete. (The problem of computing the bound in Theorem 4.3 is not NP-complete

given the constant-length (1,1)-path computed.) Similarly to Section 3.6, we give a looser bound which can

be computed more efficiently.

Corollary 4.3. Let Reach(Rw
i,k,r,w,G) denote the set of requests that are reachable in G from Ri,k via an

(r,w)-path. The worst-case request blocking forRi,k in the R/W RSM, is upper bounded by the sum of the

longest r read requests and w write requests in Reach(Ri,k,m−1,m−1,G(Γ,Rw
i,k,ri)).

As discussed in Section 3.6, using these bounds on request blocking, more detailed bounds on progress-

mechanism-related pi-blocking can be computed using previous techniques (Brandenburg, 2011). Also, we

conjecture that the linear-programming-based analysis of (Brandenburg, 2013b) could be applied to the R/W

RNLP by adding further constraints based on the analysis presented herein.
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4.1.3 R/W RNLP Optimizations

Next, we briefly summarize additional optimizations that can be incorporated into the R/W RNLP to

improve average-case parallelism, and thus responsiveness in many cases. These optimizations do not affect

the worst-case blocking bounds. We describe them independently for ease of exposition, but note that they can

be combined in a real implementation. These optimization improve parallelism, and therefore average-case

responsiveness, which is often desirable in practice.

4.1.3.1 Requesting Fewer Resources

Requiring write requests to lock an expanded set of resources enabled us to establish Lemma 4.5.

This lemma can instead be established by utilizing placeholders, which allow for increased parallelism.

Specifically, we require a write request Rw
i to enqueue a placeholder Rp

i in the queues of all non-needed

resources that we earlier required Rw
i to request. In this case, the R/W RNLP functions as previously

described with the following exceptions. A placeholder is never entitled or satisfied. Instead, each placeholder

Rp
i is removed from the write queue in which it is enqueued whenRw

i becomes entitled or satisfied. Therefore,

until Rw
i becomes entitled, its associated placeholders prevent later-issued write requests from becoming

entitled or satisfied, thereby ensuring that Lemma 4.5 is not violated.

Example 4.1 (continued). Continuing from the example in Figure 4.3, suppose that Rw
1 only needed

N1 = {`b} and Rw
2 only needed N2 = {`a, `c}. When Rw

1 is issued, it would enqueue a placeholder in Qw
a ,

but since it is satisfied immediately, the placeholder is removed. WhenRw
2 is issued, it enqueues in Qw

a and

Qw
c , and enqueues a placeholder in Qw

b . However,Rw
2 is not blocked by any conflicting requests, sinceRw

1

only holds the lock on `b, soRw
2 can be satisfied immediately at time t = 2, thereby improving concurrency.

Using placeholders allows for additional concurrency. However, this parallelism is not reflected in the

worst-case blocking bounds under our analysis assumptions.

4.1.3.2 R/W Mixing

Before we show how to relax Assumption 1 to allow jobs to issue mixed requests, we first extend our

notation. We denote the set of resources thatRi needs read (respectively, write) access to as N r
i (respectively,

N w
i ) and we let Ni =N r

i ∪N w
i . If N w

i = /0, then we say Ri is a read request, otherwise we say that Ri is

a write request. With this notation, a mixed request is a write request Rw
i with N r

i 6= /0 and N w
i 6= /0. We
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also adapt our definition of the read shared relation, ∼. Given two resources `a and `b, we say that `b is read

shared with `a, if for some potential requestRi, `a ∈Ni, and `b ∈N r
i .5

The rules of the R/W RNLP support mixed requests with only a minor modification. Intuitively, a mixed

request is treated almost exactly like an exclusively write request, though there are three key differences.

First, an entitled mixed request can be satisfied if all resources for which it requires read access are either

unlocked or read locked. Second, when a mixed request is satisfied, resources for which read-only access is

needed are read locked, not write locked, which allows read requests to be satisfied concurrently. Third, with

respect to writer entitlement (Definition 4.2), blocked write requests treat a resource that is read locked by a

mixed request as if it were write locked.

Example 4.1 (continued). Consider the schedule depicted in Figure 4.3, without the placeholder opti-

mization described previously. Assume that Rw
2 is actually a mixed request that requires read access to

Dr
2 = {`a, `b} and write access to Dw

2 = {`c}. Then when Rr
5 is issued at time t = 7, because it does not

conflict withRw
2 (both requests only require read access to `a and `b),Rr

5 can be satisfied immediately by

Rule R1.

4.1.3.3 R-to-W Upgrading

We call a read request that can be upgraded to a write request, as previously described, an upgradeable

request, which we denote as Ru
i . Intuitively, we treat an upgradeable request as a write request that can

optimistically execute read-only code while its needed resources are read-locked to determine if write access

is necessary. Since the blocking bounds of a write request assume that it will be blocked by other read

requests, the optimistic execution of the read-only section essentially executes for free. Thus, an upgradeable

request has the same worst-case blocking bounds as a write request, but may offer additional concurrency if

the write segment of the critical section is not required.

To support this behavior in the R/W RNLP, we treatRu
i as two separate logical requests, a read request,6

Rur
i and a write requestRuw

i , which can cancel each other if necessary. (With respect to Property RWP2, an

upgradeable request is only one request; logical requests are not counted separately.) WhenRu
i is issued,Rur

i

is enqueued as a read request andRuw
i is enqueued as a write request. IfRuw

i is satisfied beforeRur
i , thenRur

i

5The read sharing relation may not be symmetric with mixed requests. For example, let Ni = {`a, `b} and N r
i = {`b}. Then `a ∼ `b,

but `b 6∼ `a.
6We assume the worst-case execution time of the read-only segment of the upgradeable request finishes in Lr

max time.

102



is canceled and removed from all read queues. IfRur
i is satisfied first, it executes its critical section, and upon

completion or realization that upgrading is not necessary,Ruw
i is canceled and removed from all write queues

in which it is enqueued. If Ru
i must be upgraded, then when the read-only segment of its critical section

completes, all resources are unlocked. Later, whenRuw
i is satisfied, the job can execute the write segment

of its critical section. Note that the state of any read objects may change betweenRur
i completing andRuw

i

being satisfied. Thus,Ruw
i may need to re-read data. If this behavior is unacceptable for a given application,

a write request should instead be issued for all resources that could be written.

4.1.3.4 Incremental Locking

Next, we show how the R/W RNLP can be adapted to allow jobs to incrementally request resources they

use within a critical section, as described earlier. We assume that it is known a priori the set of all resources

that could possibly be requested in this incremental fashion. For example, if resources are ordered, it may be

assumed that a requestRi may issue a nested request while holding `a for any resource `b such that `a ≺ `b.

Alternatively, the R/W RNLP could be implemented such that an outermost request informs the locking

protocol which resources it may request in a nested fashion.

To support this functionality, we initially treatRi as if it were a request for all of the resources for which

it could potentially lock incrementally. From Corollaries 4.1 and 4.2, afterRi becomes entitled, no conflicting

request can be satisfied beforeRi. Thus, ifRi only initially requires access to some subset s⊆Di, it can be

granted access as soon as it is entitled and each resource `a ∈ s is not locked by a conflicting request. Ri

remains entitled to all other resources in Di \ s, thereby preventing other conflicting requests from acquiring

those resources. If Ri later needs some additional resource(s) s′ ⊆Di \ s, then it waits until each `a ∈ s′ is

not locked by a conflicting request. However, becauseRi is entitled to all resources in Di, the total duration

of acquisition delay across all incremental requests is at most the worst-case acquisition delay previously

proven in Theorems 4.1 and 4.2.

Note that entitlement serves a similar purpose as priority ceilings (Sha et al., 1990), since it prevents

later-issued requests from acquiring resources that may be incrementally requested.

Example 4.1 (continued). Consider again the example schedule depicted in Figure 4.3. If Rw
2 were to

incrementally lock `a and/or `b, thenRw
2 could begin executing on either or both of these resources starting

at time t = 5 when Rw
1 unlocks `a and `b. If Rw

2 were to incrementally request `c, to which it is entitled
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beginning at time t = 5, then it would block and wait until time t = 8 when Rr
3 completes its read critical

section. Note that through this incremental locking, some of the critical section ofRw
2 executed early, serving

only to improve concurrency and reduce blocking.

4.1.4 Implementation

In this section, we present pseudocode for a spin-based implementation of the R/W RNLP for partitioned-

scheduled systems. This implementation does not support any of the extensions described in Section 4.1.3.

The implementation uses bitmasks to encode the state of each of the resources. These bitmasks are protected

by a phase-fair lock. Importantly, read requests only ever need read access to this lock. Write requests are

queued in shared per-resource FIFO queues, and a mutex lock is used to protect accesses and to ensure that

enqueues into multiple write queues are effectively atomic.

Listing 1 Shared variables in the R/W RNLP implementation.
1: Phase-fair PFLock
2: Mutex MLock
3: bitmask Unavailable, WEntitled, WLocked initially 0
4: Request struct WQueue[0..q−1][0..m−1] initially NULL
5: int WHead[0..q−1],WTail[0..q−1] initially 0
6: int Entry[0..m−1] initially 0
7: int Exit[0..m−1] initially 0
8: Request struct Requests[0..m−1] initially NULL

The implementation contains many shared-state variables, which are depicted in Listing 1. The mutex

lock MLock is used to ensure that enqueueing into the proper wait queues is atomic. The phase-fair lock

PFLock protects the state variables that encode that status of the resources. The variables Unavailable,

WEntitled, and WLocked are bitmasks where each bit corresponds to a single resource. Unavailable encodes

which resources are not available to be locked, WEntitled encodes whether or not there is an entitled write

request waiting for a given resource, and WLocked encodes whether a resource is write locked or not. Write

requests are stored in circular buffers, WQueue, and WHead and WTail store pointers to the head and the tail

of each resource queue. The Entry and Exit variables are used in a lock-free fashion to allow waiting requests

to detect when a blocking request has completed. The details of this logic will be described later. Finally,

Requests stores all of the outstanding requests, one per processor.
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The data structure corresponding to each individual request is shown in Listing 2. This structure encodes

what resources have been requested, the status of the request (i.e., whether it is waiting, entitled, or acquired),

the type of the request (i.e., read or write), and the processor from which the request was issued.

Listing 2 Request-struct members.
1: bitmask resources
2: status ∈ {WAITING,ACQUIRED,ENTITLED}
3: type ∈ {READ,WRITE}
4: int proc // the partition from which the request was issued.

Listing 3 Pseudocode for the R/W RNLP read lock function.
1: procedure READ LOCK(resources)
2: r← Requests[proc]
3: r.resources← resources
4: r.type← READ
5: r.status←WAITING
6: Entry[proc]← Entry[proc]+1
7: read-lock PFLock
8: if (r.resources & Unavailable) = 0 then
9: r.status← ACQUIRED

10: end if
11: unlock PFLock
12: if r.status 6= ACQUIRED then
13: while r.resources & WEntitled 6= 0 do
14: end while
15: r.status← ENTITLED
16: while r.resources & WLocked 6= 0 do
17: end while
18: end if
19: end procedure

We begin by describing the read-lock code in Listing 3. To begin, the request struct r is initialized,

and Entry[proc] is incremented. This indicates to other processors that another request has been issued by

processor proc. Next a check is performed to determine if the request can be satisfied immediately. This

check can be performed efficiently using bitmasks, though it must be done in a read critical section after

acquiring PFLock. In the case that the request is not satisfied immediately, then it must wait for conflicting

entitled and/or satisfied write requests to complete, as in Lines 12–18.

The read unlock logic, shown in Listing 4, is quite simple. The per-processor Exit counter is incremented,

which may trigger waiting write requests to proceed, as seen later, and the request is removed from the

Requests array.
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Listing 4 Pseudocode for the R/W RNLP read unlock function.
procedure READ UNLOCK(resources)

Exit[proc]← Exit[proc]+1
Requests[proc]← NULL

end procedure

Listing 5 Pseudocode for the write lock function.
1: procedure WRITE LOCK(resources)
2: req← requests[proc]
3: req.resources← resources
4: req.type←WRITE
5: req.status←WAITING
6: Entry[proc]← Entry[proc]+1
7: Lock MLock
8: for r ∈ resources do
9: WQueue[r][wtail[r]]← req

10: wtail[r]← (wtail[r]+1) % m
11: end for
12: Unlock MLock
13: for r ∈ resources do
14: while WQueue[r][WHead[r]] 6= req do
15: end while
16: end for
17: Write lock PFLock
18: Unavailable← Unavailable | req.resources
19: req.status← ENTITLED
20: Write unlock PFLock
21: for i ∈ {0, . . . ,m−1}\{req.processor} do
22: start← Entry[i]
23: end← Exit[i]
24: tmp← Requests[i]
25: if tmp.resources & req.resources = 0 ∨ start = end ∨ tmp.type = WRITE ∨ tmp.status =

WAITING then
26: continue
27: end if
28: while Exit[i]< start do
29: end while
30: end for
31: write-lock PFLock
32: WEntitled & req.resources // Zero the bits in WEntitled corresponding to each requested resource
33: wlocked← wlocked | req.resources
34: unlock PFLock
35: end procedure
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Listing 6 Pseudocode for the R/W RNLP write unlock function.
procedure WRITE UNLOCK(resources)

let req = requests[proc]
exit[proc] = exit[proc]+1
requests[proc]← NULL
write-lock PFLock
WLocked & req.resources // Zero the bits in WLocked corresponding to each requested resource
Unavailable & req.resources // Zero the bits in Unavailable corresponding to each requested resource
unlock PFLock
Lock MLock
for r ∈ resources do

WQueue[r][WHead[r]]← NULL
WHead[r]← (WHead[r]+1) % m

end for
Unlock MLock

end procedure

The write lock logic is shown in Listing 5. In our discussion of this procedure, we assume that τi has

issued Rw
i and is executing Listing 5. After initializing the request struct, in Lines 7–12, req is enqueued

into all necessary wait queues. This enqueueing is protected by the MLock mutex lock, so as to ensure that

enqueueing in all queues is effectively atomic. Next, in Lines 13–16, τi busy waits until it is the head of each

wait queue in which it is enqueued. At this point, τi becomes entitled, and all requested resources are marked

as unavailable, which prevents the resources from being acquired by a later-issued request. In Lines 21–30, τi

waits for each satisfied read request to complete. τi detects that a conflicting read request has completed when

it increments the per-processor Exit counter to be equal to the per-processor Entry counter. Finally, before

Rw
i is finally satisfied, the resources it requested are marked as locked in WLocked and no longer entitled in

WEntitled.

The last procedure in our R/W RNLP implementation is write unlock, which is shown in Listing 6.

This procedure is predominately bookkeeping. The per-processor Exit counter is incremented, and the per-

processor request struct is nullified. The unlocked resources are reflected in both WLocked and Unavailable,

and the head of each queue is incremented.

4.2 Multi-Unit Multi-Resource Locking

In this section, we turn our attention to showing how to support replicated resources within the RNLP.

We do this by leveraging recent work on asymptotically optimal real-time k-exclusion protocols (Elliott,
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Figure 4.8: Figure illustrating the basic queue structure used in previous k-exclusion locking protocols. The
arbitration mechanisms in these protocols behave similar to the token lock of the RNLP.

2015; Elliott and Anderson, 2013; Ward et al., 2012). Such protocols provide a limited form of replication:

they enable requests to be performed on k replicas of a single resource. We desire to extend this functionality

by allowing tasks to perform multiple requests simultaneously on replicas of different resources.

To motivate our proposed modifications to the RNLP, we consider three k-exclusion protocols, namely

the O-KGLP (Elliott and Anderson, 2013), the k-FMLP (Elliott, 2015), and the R2DGLP (described later in

Chapter 5), which function as depicted in Figure 4.8. In these protocols, each replica is conceptually viewed

as a distinct resource with its own queue. An “arbitration mechanism” (similar to our token lock) is used to

limit the number of requests concurrently enqueued in these queues. In the case of s-aware (respectively,

s-oblivious) analysis, the arbitration mechanism is configured to allow up to n (respectively, m) requests to be

simultaneously enqueued. A “shortest queue” selection rule is used to determine the queue upon which a

given request will be enqueued. This rule ensures that in the s-aware (respectively, s-oblivious and spin-based)

case, each queue can contain at most dn/ke (respectively, dm/ke) requests. From this, a pi-blocking bound of

O(n/k) (respectively, O(m/k)) can be shown. Both bounds are asymptotically optimal.

Suppose now that we have two such replicated resources, as shown in Figure 4.9, and that we wish

to be able to support requests that involve accessing two replicas, one per resource, simultaneously. If the

enqueueing associated with such a request is done by the arbitration mechanism atomically, then this is

simple to do: as a result of processing the request, it is enqueued onto the shortest queue associated with each

resource at the same time. This simple generalization of the aforementioned k-exclusion algorithms retains

their optimal pi-blocking bounds.
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Note that the functionality just described is provided by DGLs. Thus, to support multiple replicas when

simultaneous lock holding is done only via DGLs (and not nesting), we merely need to treat each replica

as a single resource and use a “shortest queue” rule in determining the replica queues in which to place a

request. If each resource is replicated at least k times then it is straightforward to show that the earlier-stated

pi-blocking bounds of O(m/k) and O(n/k) for s-oblivious and s-aware analysis, respectively, still apply. As

before, both bounds are asymptotically optimal.

If simultaneous lock holding is done via nesting, then the situation is a bit more complicated. This

is due to the RNLP’s conservative resource acquisition rule (Rule Q3), which enables a request with a

lower timestamp to effectively “reserve” its place in line within any queue of any resource it may request

in the future. This rule causes problems with replicated resources. Consider again Figure 4.9. Consider an

outermost requestRi for `a that may make a nested request for `b. Which replica queue for `b should hold its

“reservation?” If a specific queue is chosen by the “shortest queue” rule whenRi receives its timestamp, and

ifRi does indeed generate a nested request for `b later, then the earlier-selected queue may not still be the

shortest for `b when the nested request is made. If a queue is not chosen until the nested request is made,

then sinceRi had no “reservation” in any queue of `b until then, it could be the case that requests with later

timestamps hold all replicas of `b when the nested request is made. This violates a key invariant of the RNLP.

Our solution is to requireRi to conceptually place a reservation in the shortest replica queue for each

resource that may be required in the future. The idea is to enact a “DGL-like” request forRi when it receives

a token that enqueues a “placeholder” request for Ri on one replica queue, determined by the “shortest

queue” rule, for each resource it may access. Such a placeholder can later be canceled if it is known that

the corresponding request will not be made. Thus, as before, nesting and DGLs are equivalent from the

perspective of worst-case asymptotic pi-blocking.

4.3 Evaluation

In this section, we present experimental results for the RNLP extensions presented in this chapter.

4.3.1 R/W RNLP Evaluation

To evaluate the practicality of the R/W RNLP, we implemented the spin-based variant described in

Section 4.1.4, and conducted a schedulability study, in which we applied a schedulability test to tens of
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Figure 4.9: Figure illustrating how DGL can be used to request replicas of different resources.
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Procedure Median (µs) Worst (µs)
read lock 0.106 0.168
read unlock 0.048 0.124
write lock 0.478 0.626
write unlock 0.129 0.215

Table 4.1: Lock and unlock overheads for read and write requests. The worst-case overhead reported is the
99th percentile, to filter the effects of interrupts and other spurious behavior.

thousands of randomly generated task systems to determine the fraction of systems for which it could be

shown that no deadlines are missed.

We implemented the R/W RNLP based on the pseudocode presented earlier. The R/W RNLP was

run in user-space on top of LITMUSRT (LITMUSRT Project, 2016), a real-time extension of Linux. Our

implementation was designed for a partitioned scheduler (c = 1); the P-EDF scheduler was used in our

evaluations.

We evaluated our implementation on a 2.67Ghz quad-core Intel Core i7-920 processor. We measured the

overhead of the lock and unlock procedures used in the implementation, where such overhead is defined to

be the total procedure runtime minus any time spent busy waiting for other requests to complete. In total, we

measured overheads for 18 task-system configurations, corresponding to task-system configuration used in

the schedulability study below. These task systems were chosen to ascertain how the implementation behaves

under high contention, and under different ratios of read to write requests. Each task set was executed for two

minutes. The largest median- and worst-case overheads observed across all task sets are reported in Table 4.1.

These overheads are sufficiently small to demonstrate that the R/W RNLP can be practically implemented.

Furthermore, read requests have smaller overheads than writes, which is desirable for a R/W locking protocol

that is best used when reads are more common than writes.

Schedulability. Next, we present an evaluation of the R/W RNLP on the basis of schedulability. These

experiments are intended to show the effects that blocking bounds have on schedulability, and do not include

overheads.

We randomly generated sporadic task systems using a similar experimental design as previous studies

(e.g., (Brandenburg, 2011)). We assume that tasks are partitioned onto m = 4 processors, and scheduled

in EDF order. We generated task systems with a total system utilization in {0.1,0.2 . . . ,4.0}. Per-task

utilizations in a given task system were chosen to be medium or heavy, which correspond to uniformly

distributed utilizations in the range [0.1,0.4] or [0.5,0.9], respectively. The periods of all tasks were chosen

111



uniformly from either [3,33]ms (short) or [50,250]ms (long). All tasks were assumed to access shared

resources, but only Pr ∈ {50,70,90}% of the tasks issue read requests. Each read (write) request was

configured to access Nr ∈ {1,2,4} (respectively, Nw ∈ {1,2,4}) of 50 resources. Read and write critical-

section lengths for each job were exponentially distributed with a mean of either 10 µs (small) or 1000 µs

(large).

For each generated task set, we evaluated schedulability using four different real-time locking protocols,

OMLP mutex group locks (Brandenburg and Anderson, 2010a), the RNLP (Ward and Anderson, 2012),

Phase Fair (PF) R/W group locks (Brandenburg and Anderson, 2009, 2011), and the R/W RNLP presented

herein. Blocking bounds under each protocol were evaluated using fine-grained analysis similar to that

in (Brandenburg, 2011). For the RNLP and the R/W RNLP, additional optimizations were also included,

which are based on evaluating possible transitive blocking relationships.

While our experiments generated hundreds of schedulability graphs,7 here we present in Figure 4.10

a selection that depict relevant trends. In Figure 4.10, the curves denoted NOLOCK depict schedulability

assuming no resource requests, while the remaining curves depict schedulability using the locking protocol

as labeled. The protocol with a curve closest to NOLOCK provides the best schedulability.

Observation 4.1. In all observed cases, schedulability under the fine-grained locking protocols, the RNLP

and the R/W RNLP, was no worse than schedulability using the corresponding coarse-grained locking

protocols, the OMLP and phase-fair R/W locks, respectively.

This observation is supported by insets (a) and (b) of Figure 4.10. In inset (a), the R/W RNLP is roughly

the same as phase-fair R/W locks, while the RNLP significantly outperforms the OMLP. However, in many

cases, such as in inset (b), the fine-grained RNLP and R/W RNLP offer improved schedulability over their

coarse-grained counterparts.

Observation 4.2. For read-dominated workloads, i.e., those with larger Pr, phase-fair R/W locks, and the

R/W RNLP perform comparatively better. The R/W RNLP performs comparatively better than phase-fair

locks when Nr is small.

This observation is supported by inset (a) of Figure 4.10, in which read critical-section lengths are large

and write critical-section lengths are small, and 90% of tasks issue read requests. Additionally, in inset (b),

in which Nr = 1, schedulability under the R/W RNLP is better than under phase-fair locks. Note that the

7Available online at http://www.cs.unc.edu/~bcw/diss/
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gap between phase-fair locks and the R/W RNLP is smaller for larger Nr on account of write requests being

forced to request unneeded resources.

Observation 4.3. In some cases in which there are a comparatively large number of write requests, the

RNLP offers slightly improved schedulability over the R/W RNLP.

This observation is supported by inset (c) of Figure 4.10, in which 50% of tasks issue write requests.

Under the R/W RNLP, writer blocking is ((m−1)(Lr
max +Lw

max) instead of (m−1)Lmax for the RNLP) to

allow for O(1) reader blocking. When writes are comparatively common, the benefits of O(1) reader blocking

in some cases do not outweigh the cost of increased writer blocking, and thus the RNLP may outperform the

R/W RNLP by a small margin.

These schedulability results, in conjunction with our measured overheads, demonstrate that fine-grained

mutex and R/W locks are practically implementable, and offer improved schedulability over coarse-grained

alternatives.

4.3.2 k-exclusion RNLP Evaluation

Next we present an experimental evaluation of fine-grained locking via the RNLP and k-exclusion

RNLP through a schedulability study. In this study, we evaluated the schedulability of randomly generated

task systems, and report the fraction that are schedulable. These experiments were designed to depict

the effect of blocking bounds on schedulability, and therefore do not include overheads. We note the the

RNLP and k-RNLP have been implemented and been proven useful in the context of the aforementioned

shared-cache (Ward et al., 2013b) and GPU (Elliott et al., 2013) use cases, respectively.

We randomly generated task systems using a similar experimental design as previous studies, similarly to

the the previous subsection. We assume that tasks are partitioned onto m = 8 processors, and scheduled with

EDF priorities. We also assume that all tasks have implicit deadlines (di = pi). We generated task systems

with total system utilizations in {0.1,0.2, . . . ,8.0}. The per-task utilizations where chosen uniformly from

the range [0.1,0.4] or [0.5,0.9], denoted, medium or heavy, respectively. The period of each task was chosen

uniformly from either [3,33]ms (short) or [50,250]ms (long). All tasks were assumed to access N ∈ {2,4,8}

of 16 shared resources. The duration of each critical section was exponentially distributed with a mean of

either 10 µs (small) or 1000 µs (large).
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(a) Pr = 90%, Nr = 2, Nw = 4, large read and small write critical sections.
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(b) Pr = 50%, Nr = 1, Nw = 2, large read and small write critical sections.
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(c) Pr = 50%, Nr = 2, Nw = 4, large read and write critical sections.

Figure 4.10: Schedulability results.

For each generated task set, we evaluated HRT schedulability under four different locking protocols: two

coarse-grained protocols, the mutex OMLP and the clustered k-exclusion variant of the OMLP (Brandenburg
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and Anderson, 2011), the CK-OMLP, and two fine-grained protocols, the RNLP (Ward and Anderson, 2012)

and the k-exclusion RNLP variant presented herein (denoted K-RNLP). We also evaluated the schedulability

of the task system assuming no critical sections (denoted NOLOCK). For the RNLP variants, fine-grained

blocking analysis presented in Sections 3.6 and 4.1.2.3 is applied, specifically the bounds from Corollaries 3.1

and 4.3. We present a subset of our generated graphs in Figures 4.11–4.13, in which all critical-section

lengths are large.8

Observation 4.4. Schedulability is no worse using a fine-grained locking protocol than a similar coarse-

grained one.

This observation is supported by Figure 4.11, which depicts the schedulability of two different system

configurations. Inset (a) depicts a system in which fine-grained locking provides little if any schedulability

benefit over coarse-grained locking for either mutex or k-exclusion locks. Inset (b), on the other hand,

depicts a system in which fine-grained locking provides more significant schedulability benefits owing to the

additional analysis optimizations. We note that the blocking bounds for the coarse-grained locking protocols

upper bound the worst-case blocking for the fine-grained protocols, and thus the fine-grained protocols will

perform no worse than the coarse-grained ones.

Observation 4.5. Resource replication improves schedulability.

This observation is supported by Figure 4.12, which depicts the schedulability of a given system under

different degrees of resource replication. When resources are more highly replicated, more requests can be

satisfied concurrently, which decreases blocking bounds. The reduced blocking made possible by resource

replication can be reflected in the worst-case blocking bound, which is O(m/k). This improved blocking

bound results in improved schedulability, as is seen in Figure 4.12.

Observation 4.6. Fine-grained locking improves schedulability over coarse-grained locking most when the

number of resources accessed within an outermost critical section is small.

This observation is corroborated by Figure 4.13, which depicts the schedulability under the K-RNLP

of a given system with tasks requesting different numbers of resources, N. In that particular system,

the schedulability when N = 2 is considerably better than when N > 2, but the benefits of fine-grained

nesting diminish with larger N. This is because when the number of resources accessed within a critical

section is small, fine-grained locking is more likely to allow non-conflicting requests, which would have

8The remainder of the generated graphs are available online http://www.cs.unc.edu/~bcw/diss/.
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(a) k = 4, short periods, N = 8, heavy per-task utilizations.
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(b) k = 2, short periods, N = 2, heavy per-task utilizations.

Figure 4.11: Sample schedulability results. Inset (a) demonstrates that fine-grained nesting, in some cases
provides little if any advantage over coarse-grained nesting. Inset (b) demonstrates that in other cases,
fine-grained nesting can provide more significant schedulability benefits over coarse-grained nesting.
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Figure 4.12: Illustration of the improved schedulability made possible with a higher degree of resource
replication. In this figure, periods are long, per-task utilizations are medium, and N = 2.
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Figure 4.13: Illustration of the effect of the number of resources accessed within an outermost critical section
on schedulability. In this figure, periods are short, per-task utilizations are heavy, and k = 2.
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been serialized under coarse-grained locking, to be satisfied concurrently. In many cases, as is seen in

Figure 4.13, this parallelism can be reflected in the blocking analysis (though it does not affect blocking

bounds asymptotically). Note also the number of resources accessed within an outermost critical section are

often small in practice (Brandenburg and Anderson, 2007). Thus, the cases in which fine-grained locking

performs best are the most common in practice.

From these results, we conclude that fine-grained locking protocols offer improved schedulability over

coarse-grained ones. Furthermore, we note that even in cases in which fine-grained locking provides no

analytical benefit, it is still preferable in practice as it may lead to improved response times and therefore

safety margins and responsiveness.

4.4 Chapter Summary

We have presented the R/W RNLP, which is the first fine-grained real-time multiprocessor locking

protocol that supports reader/writer sharing. Having to support two different operations on resources—reads

and writes—introduces considerable difficulty in designing a fine-grained reader/writer real-time locking

protocol. The R/W RNLP resolves the R/W ordering dilemma using the concept of entitled waiting. The

R/W RNLP also prevents transitive early-on-late blocking that would increase worst-case pi-blocking bounds.

In addition, we also presented the first fine-grain multi-unit multi-resource locking protocol in the

k-RNLP. The k-RNLP has been applied in practice in the context of locking individual ways of the shared

cache in a multicore processor (Ward et al., 2013b), enabling more fine-grained control of resource allocation

than would have otherwise been possible.
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CHAPTER 5: Synchronization Algorithms for Shared Hardware Resources1

In the preceding two chapters, we developed the RNLP family of multiprocessor real-time locking

protocols, the first such protocols to support fine-grained locking. While the RNLP can be applied to any type

of resource, its design was primarily targeted at shared data objects. Later, the RNLP was applied to control

access to cache resources (Ward et al., 2013b). In this chapter, we focus our attention on synchronization

algorithms that are primarily motivated by the need to control access to shared hardware resources. While there

may be other applications for these algorithms, they were conceived as solutions to hardware-management

issues.

As described in Chapter 2, modern computer architectures, particularly multicore systems, include

shared hardware resources such as GPUs, caches, and interconnects that introduce timing-interference

channels. Unmanaged access to such resources can adversely affect the execution time of other tasks,

and lead to unpredictable execution times and associated analysis pessimism that can entirely negate the

benefits of a multicore processor. To mitigate such effects, accesses to shared hardware resources should be

managed, for example, by a real-time locking protocol. However, the synchronization requirements of these

hardware resources may be slightly different than other resources for which real-time locking protocols are

traditionally designed. In this chapter, we design several real-time locking protocols motivated by these new

synchronization requirements.

The first use case we consider in this chapter is that of shared GPUs. As described in Section 2.3.2.3,

real-time locking protocols have been applied to arbitrate access to GPUs (Elliott, 2015). An important

characteristic of the resource-usage pattern of GPUs is that GPU critical sections can be very long: typically

tens of milliseconds, but even as great as several seconds, in length. These lengths are orders of magnitude

greater than those normally associated with shared data structures (Brandenburg, 2011), a more typical

1Contents of this chapter previously appeared in preliminary form in the following papers:
Ward, B., Elliott, G., and Anderson, J. (2012). Replica-request priority donation: A real-time progress mechanism for global
locking protocols. In Proceedings of the 18th IEEE International Conference on Embedded and Real-Time Computing Systems and
Applications, pages 280–289.
Ward, B. (2015). Relaxing resource-sharing constraints for improved hardware management and schedulability. In Proceedings of
the Real-Time Systems Symposium, pages 153–164.
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Figure 5.1: Example of the effects of release-blocking under JRPD on a G-EDF-scheduled system with m = 2
processors. J4 is release-blocked at time t = 1 while it donates its priority to J1. This release-blocking causes
J4 to miss its deadline. If instead, J4 had preempted J1, J1 and J2 would finish three time units later, but still
meet their deadlines. Also, at time t = 1, J2 is request-blocked by J1, which holds the shared resource.

locking-protocol application. These long critical-section lengths motivate the design of locking protocols that

minimize or eliminate progress-mechanism-related pi-blocking, which affects all tasks. For example, under

priority donation (hereafter referred to as job-release priority donation (JRPD) for clarity), a latency-sensitive

application with a short period may be forced to donate its priority to a long GPU critical section, which

may not complete until after the deadline of the latency-sensitive application. This is depicted in Figure 5.1.

Clearly, for task systems containing very long critical section, an independence-preserving locking protocol

(recall from Section 2.2.3.8, an independence-preserving locking protocol has zero progress-mechanism-

related pi-blocking) is necessary. In this chapter, we present a new progress mechanism called replica-request

priority donation (RRPD), which has many parallels to priority donation as described in Section 2.2.3.8, but

is independence preserving. Using this new progress mechanism, we construct an independence preserving

k-exclusion locking protocol for globally scheduled systems called the replica-request donation global

locking protocol (R2DGLP).2 Since its inception (Ward et al., 2012), the R2DGLP has been applied in

GPUsync (Elliott, 2015) to control access to GPUs.

Accesses to other hardware resources may be managed with more relaxed sharing constraints than

mutual exclusion or k-exclusion, while still mitigating timing-interference channels. In this chapter, we

presents two new classes of sharing constraints, preemptive mutual exclusion, and half-protected exclusion,

2Previously called the I-KGLP in (Ward and Anderson, 2012) and presented in an unpublished online-only appendix.
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which are motivated by the sharing constraints of buses and caches, respectively. Synchronization algorithms

are presented for both sharing constraints, where applicable, on both uni- and multi-processor systems. A

fundamentally new analysis technique called idleness analysis is presented to account for the effects of

blocking in globally scheduled multiprocessor systems. Experimental results suggest that these relaxed

synchronization requirements and improved analysis techniques can improve schedulability by up to 250%.

Furthermore, idleness analysis can be applied to existing locking protocols to improve schedulability in many

cases.

Organization. In Section 5.1, we present RRPD and the R2DGLP, as well as experimental results pertaining

to this new locking protocol. In Section 5.2, we present the preemptive mutual exclusion sharing constraint,

as well as a simple synchronization algorithm that realizes that sharing constraint. Idleness analysis is also

presented in Section 5.2. In Section 5.3, we present the half-protected exclusion sharing constraint, and

present uni- and multi-processor synchronization algorithms that realize half-protected sharing. In Section 5.4,

we present an experimental evaluation of preemptive mutual exclusion and half-protected exclusion. Finally,

we summarize in Section 5.5

5.1 k-exclusion

In this section, we present RRPD and the R2DGLP. First, we formalize our resource model and assump-

tions.

5.1.1 Resource Model

In this section, we assume that each resources `a is a multi-unit resource, with ka serially reusable units

called replicas. Therefore, at most ka requests for `a may be satisfied at a time, one for each replica. We

assume that a job can only request one replica at a time. Note that in the case that ka = 1, the resource is

an ordinary serially reusable (mutex) resource. We assume that replica requests are non-nested, i.e., a job

holding a replica of `a cannot issue another replica request for another replica of any resource until its current

critical section is completed. Fine-grained locking can be supported via the k-exclusion variant of the RNLP,

as described in Section 4.2. The R2DGLP is also useful as a token lock in this case.

121



Figure 5.2: Phases of a replica acquisition under RRPD.

In the locking protocol presented in this section, the issuance ofR can be deferred from the first instant

at which Ji requires a replica of `a. All previous locking-related definitions persist (e.g., satisfied, incomplete,

completed). The phases of replica acquisition considered in this section are depicted in Figure 5.2.

5.1.2 Replica-Request Priority Donation

Job-release priority donation (JRPD) was designed as a progress mechanism for clustered systems (Bran-

denburg and Anderson, 2011). In a clustered-scheduled system, comparing priorities across clusters is

not very useful, because a high-priority job with respect to one cluster may have a relatively low priority

when compared to jobs in another cluster. To ensure progress, JRPD ensures that all resource-holding jobs

are scheduled by forcing high-priority jobs to suspend and donate their priority upon release to prevent

preemptions of resource-holding jobs. However, this donation can cause release-blocking for any job in the

system, not just those that engage in the locking protocol. We demonstrate such behavior in Figure 5.1, in

which, at time t = 1, J4 is released, and is forced to suspend and donate its priority to J1, so that J1 remains

scheduled.

In a globally scheduled system, priorities can be compared among all tasks, which allows us to adapt the

rules of priority donation such that jobs that do not ever require shared resources are never pi-blocked. Thus,

there is no release-blocking. To do so, we modify priority donation such that a job donates its priority on

replica request instead of job release. Elliott and Anderson (2013) proposed a similar request-time donation

mechanism, however their mechanism resulted in increased blocking bounds as compared to R2DGLP we

present here. We call this new definition of priority donation, replica-request priority donation (RRPD).

Note that RRPD on its own is not sufficient to ensure progress, but when coupled with a progress mechanism

such as priority inheritance, as we will demonstrate with respect to the R2DGLP in Section 5.1.3, yields
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desirable worst-case pi-blocking bounds. The rules of the RRPD will be demonstrated later in an example of

the R2DGLP.

In the following rules, let Ji be a job that requires a replica of `a at time t1. Let t2 be the time that Ji issues

its replica request. Let t3 and t4 be the times that Ji’s request is satisfied and completed, respectively. These

times are depicted in Figure 5.2. Additionally, let Jd be a priority donor of Ji. Also let Tx be the time that Jd

first requires a replica of `a. Jd suspends to let Ji complete its replica request.

D1 Ji may issue a request for a replica of `a only if it is among the m jobs of highest effective priority

that currently require a replica of `a (including jobs with an incomplete request for a replica of `a). If

necessary, Ji suspends until it may issue its replica request.

D2 Jd becomes Ji’s priority donor a time tx if (i) Jd has one of the m highest base priorities among jobs that

currently require a replica of `a, (ii) Ji is the lowest effective-priority job3 with an incomplete request

for a replica of `a at time tx, and (iii) there are m jobs with an incomplete request for a replica of `a.

D3 Ji assumes the priority of its donor (if any) Jd during [t2, t4). Jd is considered to have no effective

priority while it is a donor.

D4 If a job Jd donating its priority to Ji is displaced from the set of the m highest base-priority jobs that

require a replica of `a by a job Jh, then Jh becomes Ji’s priority donor and Jd ceases to be a priority

donor. (By Rule D3, Ji thus assumes Jh’s priority.)

D5 A priority donor is suspended throughout the duration of its donation.

D6 Jd ceases to be a priority donor as soon as either (i) Ji completes its critical section (i.e., at time t4), or

(ii) Jd is relieved by Rule D4.

Note that Rules D1-D6 on their own do not necessarily ensure progress. For example, consider a system

with two processors, and one replica of `a, in which two lower-priority jobs Jl1 and Jl2 have incomplete

requests for a replica of `a, and two higher-priority jobs Jh1 and Jh2 are the priority donors of Jl1 and Jl2 ,

respectively. If Ji is released and has one of the highest m effective priorities in the system, then only one of

Jh1 and Jh2 has sufficient priority to be scheduled. If Jh1 has a higher priority than Jh2 , but Jh1 is not donating

to the replica holder, than progress is not ensured. For this reason, we require the rules of a locking protocol

that utilizes RRPD to also ensure the following progress property.

3Ties are broken according to the scheduler’s tie-breaking rules.
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RRP1 A job Ji with an incomplete replica request makes progress (i.e., the replica-holding job for which Ji is

waiting is scheduled) if Ji has sufficient effective priority to be scheduled.

In the R2DGLP, this property is satisfied through the use of priority inheritance.

Analysis. We next analyze several qualities of RRPD that will later be used to bound the duration of

pi-blocking for the R2DGLP.

Lemma 5.1. A job Ji with an incomplete request for a replica of `a has one of the m highest effective

priorities among jobs that require a replica of `a (those that have issued a request, as well as those that are

suspended waiting to issue a request, as seen in Figure 5.2).

Proof. By contradiction. Assume Ji has an incomplete request for a replica of `a but does not have one of the

m highest effective priorities among the jobs that require a replica of `a. Thus there are at least m jobs of

higher effective priority than Ji that require a replica of `a. Then either all m of these higher effective-priority

jobs have issued requests, or there is at least one such higher effective-priority job that is suspended waiting

to issue its request by either Rule D1 or D5. We consider these cases separately.

If all m jobs with higher effective priority than Ji that currently require a replica of `a issued their replica

requests before Ji, then Ji would not have been allowed to issue its request by Rule D1.

Consider a job Jd that is one of the m jobs of higher effective priority than Ji, which is suspended and

waiting to issue its request for a replica of `a. Jd is not suspended by Rule D1, because it has one of the

highest m effective priorities among jobs that currently require a replica of `a. Thus Jd must be suspended by

Rule D2, and is thus a priority donor. Therefore Jd has no effective priority by Rule D3, because its priority

is being donated to a job with an incomplete request for `a (e.g., Ji).

Lemma 5.2. There are at most m jobs with an incomplete request for a replica of `a at any time.

Proof. Assume for contradiction that there are more than m jobs with an incomplete request for a replica

of `a. Let Ji be the job that issued the (m+1)st request for a replica of `a. By Rule D1, when Ji issued its

request, it was one of the m jobs of highest effective priority with an incomplete request for a replica of `a.

However, there were also m jobs with incomplete requests for a replica of `a, that, by Lemma 5.1, had the

highest m effective priorities of jobs that required a replica of `a. This contradicts the assumption that Ji was

allowed to issue a replica request.
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Lemma 5.3. A job Ji that has one of the highest m base priorities among jobs that currently require a replica

of `a also has one of the highest m effective priorities (with respect to priority donation only) among jobs that

currently require a replica of `a.

Proof. The only way for a job’s effective priority to be increased is through priority donation via Rule D2.

Priority donation forms a one-to-one relationship between donor and recipient, in which the effective priority

of the recipient is elevated while the effective priority of the donor is reduced to zero by Rule D3. Thus, the

highest m effective priorities are equal to the highest m base priorities among jobs that currently require a

replica of `a. Therefore, if a job Ji has one of the highest m base priorities, then Ji is neither a priority donor

nor the recipient of priority donation from another job Jd , and thus also has one of the highest m effective

priorities (with respect to priority donation only) among jobs that currently require a replica of `a.

Lemma 5.4. Under RRPD, if a job Ji that requires a replica of `a is pi-blocked waiting for a replica of `a it

either has an incomplete request for a replica of `a or it is a priority donor.

Proof. Assume for contradiction that a job Ji is pi-blocked, does not have an incomplete request for a replica

of `a, and is not a priority donor. By Definition 2.2, if Ji is pi-blocked, then it has one of the highest m base

priorities in the system, and by Lemma 5.3 is among the set of the highest m effective-priority jobs that need

a replica of `a. Thus, by Rule D1, Ji would issue a request for a replica of `a.

Lemma 5.5. A priority donor Jd can be pi-blocked during priority donation for at most the maximum

duration of time that a job can be pi-blocked with an incomplete request for a replica of `a (i.e., the time

between t2 and t4 in Figure 5.2), plus one critical section.

Proof. If Jd is pi-blocked while it is a priority donor, then the recipient of its priority donation Ji has sufficient

effective priority to be scheduled. By Property RRP1, Ji makes progress. Thus Jd can be pi-blocked while it

is donor for at most the maximum duration of time Ji can be pi-blocked waiting for its request to be satisfied,

plus Ji’s critical section length.

The rules of RRPD facilitate the design of a simple, optimal k-exclusion locking protocol, which we

present next.
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Figure 5.3: Queue structure used by the CK-OMLP, which is suboptimal when used with RRPD. Under
JRPD, the progress mechanism employed by the CK-OMLP, all replica-holding jobs are scheduled, and thus
the total pi-blocking is at most d(m− k)/keLmax. However, under RRPD, if Jh is the only job with sufficient
effective priority to be scheduled, then only one replica-holding job will be scheduled. Thus Jh must wait in
the wait queue for max((m− k−1)Lmax,0) time, which is suboptimal.

5.1.3 R2DGLP

The clustered k-exclusion OMLP (CK-OMLP) (Brandenburg and Anderson, 2011), which employs

JRPD, uses a single FIFO-ordered queue to order the acquisition of replicas. Under JRPD, every replica-

holding job is scheduled, and thus all requests make progress and the maximum duration of pi-blocking is

O(m/k). This design does not extend to RRPD. Under RRPD, a replica-holding job is not guaranteed to be

scheduled (if higher-priority work is present), and thus if only one job Ji with an incomplete replica request

has sufficient priority to be scheduled, only one replica-holding job would be scheduled. Thus it is possible

for all requests to be serialized on a single resource, which results in an max(0,(m− k−1)Lmax) blocking

bound, which is suboptimal, as shown in Figure 5.3. Instead the R2DGLP employs a similar queue structure

to the O-KGLP (Elliott and Anderson, 2013) and the k-FMLP (Elliott, 2015), in which there are ka queues for

each resource `a, one per replica.

Structure. In the R2DGLP, access to each replica of a resource `a is arbitrated by an individual FIFO ordered

replica queue denoted KQx. Within each replica queue, priority inheritance is used to ensure progress. As

will be proven later, this design limits the maximum queue length to dm/ke, and thus the maximum duration

of pi-blocking is O(m/k), which is optimal given the known lower bound of Ω(m/k) (Brandenburg, 2011,

Lemma 6.13). The queue structure of the R2DGLP is shown in Figure 5.4. In the following rules and analysis,

we consider, without loss of generality, only a single resource `a, with k replicas.
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Figure 5.4: Queue structure of the R2DGLP.

K1 Ji is enqueued on the shortest KQx when it issues R. Ji suspends until R is satisfied (if KQx was

non-empty).

K2 R is satisfied when Ji becomes the head of KQx. A resource-holding job is ready.

K3 The head of KQx inherits the highest effective priority (which could be a donated priority) of any job

in KQx.

K4 Ji is dequeued from KQx whenR is completed. The new head of KQx, if any, acquires replica x.4 Ji’s

priority donor (if any) may then issue a replica request subject to Rule D1.

Example 5.1. Consider a G-EDF-scheduled system on m = 4 processors with a single resource `a with

ka = 2 replicas as depicted in Figure 5.5. At time t = 0, jobs J1 and J2 are released with deadlines of d1 = 10

and d2 = 14. At time t = 1, J3 and J4 are released with deadlines d3 = 15 and d4 = 13. Also at time t = 1,

both J1 and J2 request and acquire a replica of `a. At time t = 2, J3 requests a replica of `a, and is enqueued

in KQ2 and suspends by Rule K1. Then at time t = 3, J5 and J6 are released with deadlines of d5 = d6 = 12.

At this time, J1,J4,J5, and J6 have the four highest effective priorities, and therefore are scheduled, even

though J2 is holding a replica of `a. At time t = 4, J4 requests a replica of `a, enqueues in KQ1 and suspends

by Rule K1. Also at time t = 4, J5 requests a replica of `a and because there are m = 4 jobs with incomplete

replica requests, by Rule D2, J5 must donate to J3, the job with the lowest effective priority among the jobs

with incomplete requests for a replica of `a. J2 then inherits J3’s effective priority, or J5’s priority, by Rule K3.

At time t = 5, J1 releases its replica of `a, allowing J4, the next job in KQ1 to acquire a replica of `a. Also

at time t = 5, J6 requests a replica of `a, and is enqueued in KQ1. J4 also inherits J6’s priority by Rule K3.

4As an implementation optimization, if KQx is left empty after Ji dequeues, a request from another KQy can migrate to KQx and
acquire replica x to reduce average-case pi-blocking. For example, the highest effective-priority job could be chosen to migrate.
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time
Figure 5.5: Figure depicting the task system in Example 5.1. In this example, k = 2 and m = 4.

At time t = 6, J2 releases its replica of `a, and J3 acquires it. At time t = 7, J4 releases its replica, which

allows J6 to begin its critical section. At t = 8, J3 finishes its critical section, and J5’s donation obligation

is finally completed by Rule D6, and it therefore is allowed to request a replica of `a. At this time, J5 can

immediately acquire its replica and begin its critical section. Finally, at times t = 9 and t = 10, J6 and J5

respectively complete their critical sections and the example returns to ordinary G-EDF scheduling. ♦

Analysis. Next, we analyze the worst-case pi-blocking of the R2DGLP. By Lemma 5.4, if a job is pi-blocked

it either has an incomplete replica request or it is a priority donor. Thus, the total duration of pi-blocking

is equal to the maximum duration of time a job can be pi-blocked while it is a priority donor as well as the

maximum duration of time a job can be pi-blocked while it has an incomplete replica request. We analyze

each of these times separately.

Lemma 5.6. The maximum length of KQx is dm/ke.
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Proof. By Lemma 5.2, there are no more than m jobs with incomplete replica requests. By Rule K1, jobs are

enqueued in the shortest queue upon request, and thus a job Ji will never be enqueued on a queue of length

longer than dm/ke, otherwise there would have been a shorter queue on which Ji would have enqueued.

Lemma 5.7. Rule K3 ensures Property RRP1.

Proof. If a job Ji with an incomplete request in KQx has sufficient effective priority to be scheduled, then by

Rule K3, the job at the head of KQx inherits Ji’s effective priority. Thus the replica holder is scheduled, and

Ji makes progress.

Lemma 5.8. A job Ji can be pi-blocked for (dm/ke−1)Lmax in KQx.

Proof. By Lemma 5.7, a job that is pi-blocked makes progress. By Lemma 5.6, there are at most dm/ke−1

jobs that are enqueued ahead of Ji in KQx. Thus, the maximum duration of pi-blocking in KQx is (dm/ke−

1)Lmax.

Lemma 5.9. A job Jd can be pi-blocked for a maximum duration of dm/keLmax while it is a priority donor.

Proof. Follows from Lemmas 5.5 and 5.8.

Theorem 5.1. The maximum duration of pi-blocking a job Ji can experience waiting for a replica per request

is (2dm/ke−1)Lmax.

Proof. Follows from Lemma 5.4, 5.8, and 5.9.

Note that the O-KGLP (Elliott and Anderson, 2013), the only other known asymptotically optimal

k-exclusion locking protocol under s-oblivious analysis that does not cause release-blocking, has a worst-case

pi-blocking bound of (2dm/ke+2)Lmax. Thus, the locking protocol we present has a worst-case blocking

bound that improves upon the O-KGLP by 3Lmax. These blocking bounds can be seen in Table 5.1. As we

show next in Section 5.1.4, this improvement can be quite significant when critical sections (i.e., Lmax) are

long.

Additionally, note that when k = 1, the blocking bound is (2m−1)Lmax, which is the same as that of

the global OMLP (Brandenburg and Anderson, 2010a). The R2DGLP is therefore a more flexible locking

protocol in that it can be used either for a mutex lock, or a k-exclusion lock, both with good blocking bounds.
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Release-blocking Request-blocking
R2DGLP 0 (2dm/ke−1)Lmax

O-KGLP 0 (2dm/ke+2)Lmax

CK-OMLP dm/keLmax (dm/ke−1)Lmax

k-FMLP dn/keLmax (dn/ke−1)Lmax

Table 5.1: Blocking bounds of several k-exclusion suspension-based locking protocols.

5.1.4 R2DGLP Evaluation

To better understand the schedulability properties of the R2DGLP, we randomly generated task sets with

varying characteristics. Soft real-time schedulability under G-EDF scheduling was determined, as described

in (Erickson, 2014) for tasks with relative deadlines equal to periods (di = pi). We focus our attention on

soft real-time schedulability since global schedulers (the only type the R2DGLP supports) are capable of

ensuring bounded deadline tardiness in sporadic task systems with no utilization loss. Schedulability was

also tested under different locking protocols for comparison. These were the k-FMLP (Elliott, 2015), the

CK-OMLP (Brandenburg and Anderson, 2011), and the O-KGLP (Elliott and Anderson, 2013).

Experimental design. The task set characteristics varied by per-task utilization, number of replicas k, critical

section length, and number of resource-using tasks in a task set. In all experiments, the system contained

a single k-exclusion resource, and each task’s period was selected from the range [3ms,33ms], a common

range for multimedia applications. Utilization intervals determine the range of utilizations for individual

tasks and were [0.01,0.1] (light), [0.1,0.4] (medium), and [0.5,0.9] (heavy). The number of replicas in each

case varied among k ∈ {2,4,6,8}. Critical section intervals determine the range of critical section lengths

for resource-using tasks and were (0%,2%] (very short), (0%,10%] (short), [10%,25%] (moderate), and

[50%,75%] (long), where critical section length is a percentage of ei. The moderate and long intervals are

inspired by GPU-usage patterns in which there are k GPUs (Elliott and Anderson, 2012) (our motivating

use case) while very short and short intervals may be common for other shared resources. Resource usage

percentage intervals determine the number of tasks in a task set that use a resource protected by the k-

exclusion lock and vary in increments of 10% from 0% to 100%. Each combination of these four parameters

resulted in an experimental scenario. Each scenario was used to evaluate schedulability under each locking

protocol on an eight-CPU system. For example, one such scenario tested schedulability for task sets with
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light utilizations, k = 4 replicas, short critical section intervals, where 50% to 60% of tasks required the use

of a replica of the shared resource. A total of 432 experimental scenarios were run.

We generated random task sets for each experimental scenario in the following manner. First, we selected

a total system utilization cap uniformly in the interval (0,8] capturing the possible system utilizations on

a platform with eight CPUs. We then generated tasks by making selections uniformly from the intervals

in each scenario. Per-task utilization was selected from the scenario’s utilization interval. Execution times

were derived from the selected utilization and period. We added the generated tasks to a task set until the

set’s total utilization exceeded the utilization cap, at which point the last-generated task was discarded. Next,

we designated some tasks to use the shared resource; we determined the number of resource-using tasks

by selecting a percentage from the resource usage percentage interval of the scenario. A critical section

length for each resource-using task was selected from the scenario’s critical section interval. Bounds on

pi-blocking were computed using detailed analysis similar to that presented in (Brandenburg, 2011) for each

tested locking protocol. As per s-oblivious analysis, task execution times were inflated by their respective

pi-blocking bounds (i.e., einflated
i = ei + bi, where bi is the pi-blocking bound of τi), prior to performing

the soft real-time schedulability test. Tardiness bounds were computed using the method developed by

Erickson et al. since it offers the tightest know tardiness bounds for G-EDF schedulers (Erickson et al., 2014).

These tardiness bounds were incorporated into fixed-point iterative schedulability tests. Fixed-point tests are

necessary because tardiness can affect bounds on pi-blocking, which in turn can increase tardiness. Thus,

tight tardiness bounds can improve soft real-time schedulability analysis.

Results. A selection of results that demonstrate observable trends across all scenarios is presented here.5 We

found that trends were most clearly expressed in scenarios using light utilizations since this resulted in task

sets with more tasks.

Observation 5.1. Schedulability is poor under the CK-OMLP when critical section lengths are long and

when there are relatively few resource-using tasks.

Figure 5.6 depicts schedulability under a scenario where a small percentage of tasks use a resource, yet

each of these have long critical sections. Under the CK-OMLP, all non-resource-using tasks experience

release-blocking from dm/ke replica requests. This negatively affects schedulability in all cases, but is

particularly harmful when critical section lengths are long, as is the case in Figure 5.6. Here, only 20%

5Additional schedulability graphs are available online: http://www.cs.unc.edu/~bcw/diss/.
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Figure 5.6: The R2DGLP dominates both the CK-OMLP and O-KGLP. This scenario highlights that release-
blocking affects negatively affect the CK-OMLP.
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Figure 5.7: The R2DGLP dominates both the CK-OMLP and O-KGLP. The O-KGLP performs poorly due to
additional blocking for resource-using tasks
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Figure 5.8: The R2DGLP dominates both the CK-OMLP and O-KGLP, and the O-KGLP dominates the
CK-OMLP. However, the k-FMLP outperforms the R2DGLP (occurred in about 14% of tested scenarios).

to 30% of tasks in every task set use a resource, but critical section lengths are long, ranging from 50%

to 75% of execution time. Roughly 50% of task sets with utilizations of 5.0 are schedulable under the

R2DGLP. In contrast, approximately 50% of task sets with utilizations of 2.5 (half that of the R2DGLP) are

schedulable under the CK-OMLP. Further, no task sets with utilizations greater than 4.0 are schedulable

under the CK-OMLP.

Observation 5.2. The R2DGLP improves upon the O-KGLP, especially when k is large.

Figure 5.6 also depicts schedulability under a scenario where k is large. Though both the R2DGLP and

O-KGLP are asymptotically optimal, the R2DGLP significantly outperforms the O-KGLP. Under the R2DGLP,

resource-using tasks can experience request-blocking from 2dm/ke−1 other replica requests (Theorem 5.1).

In comparison, these tasks experience request-blocking from 2dm/ke+2 other replica requests under the

O-KGLP; three more requests than the R2DGLP. When k is large, the addition of three requests to the

blocking term has a stronger affect on schedulability. For example, in the scenario depicted in Figure 5.6,

m = 8 and k = 8, so under the R2DGLP, requests are pi-blocked by only a single request versus four requests

under the O-KGLP.
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Observation 5.3. Schedulability under the CK-OMLP can be better than the O-KGLP when there are many

resource-using tasks.

Figure 5.7 illustrates a scenario where the number of resource-using tasks is relatively high and the

CK-OMLP can outperform the O-KGLP. Here, we begin to see trade-offs between release-blocking and

request-blocking between these two protocols. Like the R2DGLP, resource-using tasks can experience

pi-blocking from 2dm/ke−1 replica requests under the CK-OMLP, though non-resource-using tasks also

experience pi-blocking (Observation 5.1). Resource-using tasks experience pi-blocking from three additional

requests under the O-KGLP, but non-resource-using tasks experience no pi-blocking. When the relative

number of resource-using tasks is high, the blocking effects from non-resource-using tasks is decreased,

while the blocking effects from resource-using tasks are magnified. Thus, neither the CK-OMLP or O-KGLP

dominates the other in all scenarios. However, the R2DGLP dominates both of these in all scenarios.

Observation 5.4. The R2DGLP strictly dominates the CK-OMLP and O-KGLP when jobs only issue a

single request.

When jobs only make one replica request, the R2DGLP offers the best schedulability of known optimal

k-exclusion locking protocols for globally-scheduled JLFP systems. The dominance of the R2DGLP over the

CK-OMLP and O-KGLP in this case can be observed in Figures 5.6, 5.7, and 5.8. The R2DGLP exhibits

the best aspects of both the CK-OMLP and O-KGLP: resource-using jobs can experience pi-blocking from

2dm/ke−1 replica requests, and non-resource-using jobs experience no pi-blocking.

Note that if individual jobs issue many requests for shared resources than the CK-OMLP may have better

schedulability. In the CK-OMLP, jobs can be blocked upon release, however, subsequent requests can only

be blocked for (dm/ke−1)Lmax instead of (2dm/ke−1)Lmax. Therefore, if jobs issue many short requests,

the CK-OMLP may be favorable to the R2DGLP.

Observation 5.5. The k-FMLP sometimes outperforms the R2DGLP.

Figure 5.8 illustrates a scenario where the k-FMLP outperforms the R2DGLP, despite not being asymp-

totically optimal. This occurred in about 14% of the tested scenarios. While the R2DGLP is asymptotically

optimal, there are cases where the k-FMLP can offer better schedulability. This is due to two aspects of the

k-FMLP. First, resource-using tasks can experience pi-blocking from dna/ke requests, where na is the number

of tasks that may request `a. Thus, the k-FMLP can outperform the R2DGLP when na is sufficiently small.

Second, due to the FIFO ordering of all requests, a task can be pi-blocked by at most one request per task
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under the k-FMLP. Due to donation mechanisms, a task can be pi-blocked by at most two requests per task

under the R2DGLP, even though the total number of requests that may pi-block a task is 2dm/ke−1. A task

may experience less pi-blocking under the k-FMLP if there is a high degree of variance in critical section

lengths.

Minimum response-time constraints. As discussed at the beginning of the chapter, release-blocking im-

poses a minimum response time on all tasks, including those that do not use resources. This minimum

response time is on the order of several of the longest critical sections. As a result, non-resource-using

tasks must have similar response-time constraints to those of resource-using tasks. For implicit-deadline

systems, this means that all tasks, resource-using and non-resource-using, must have similar periods. This

limits system flexibility since not all potential applications have this characteristic. In order to highlight this

limitation, we selected a scenario from our prior experiments and scaled the execution times and periods of

non-resource-using tasks by a scaling factor, s ∈ {1/2,1/4,1/8}. Thus, task utilization remained constant,

yet response-time constraints on non-resource-using tasks become more stringent with smaller scaling factors.

The results of this are depicted in Figure 5.9. It is easily observed that release-blocking negatively affects

schedulability of the CK-OMLP. In contrast, the remaining protocols (which only incur request-blocking) are

unaffected.

This concludes our discussion of k-exclusion locking and the R2DGLP.

5.2 Preemptive Mutual Exclusion

In this section, we present the preemptive mutual exclusion sharing constraint, a synchronization algo-

rithm realizing this constraint, as well as idleness analysis. First, we introduce relevant models, assumptions,

and definitions.

5.2.1 Resource Model

In this section, we assume there to be nr non-processor shared resources, `1, . . . , `nr . Later, we formalize

the preemptive mutual exclusion sharing constraints for these resources. A job safely accessing a resource

given the assumed sharing constraints is said to be in a critical section. We assume that jobs occupy a

processor while executing critical sections. For simplicity, unless otherwise stated, critical sections are

assumed to be non-nested, i.e., only one resource may be accessed at a time. (In Section 5.3, we briefly
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Figure 5.9: Release-blocking imposes a minimum response time on all tasks. This negatively affects
schedulability of tasks with varying response-time constraints.

discuss how our analysis could be extended to nested requests.) A job is composed of alternating critical

sections and non-critical sections in which only a processor is used. As in previous chapters, a job of τi that

requires access to `q must issue a resource request to a locking protocol before it can execute its critical

section. A request may be blocked, or forced to wait, by the locking protocol to ensure that the sharing

constraint is not violated. The total length of all critical sections for `q by a job of task τi is given by Li,q. We

make no other assumptions in the remainder of this chapter as to the frequency or duration of critical sections

within each job. Critical-section execution times are incorporated in ei. A task τi’s per-resource utilization of

`q is defined as u`q
i = Li,q/pi, and its total resource utilization is given by uR

i = ∑
nr
q=1 u`q

i . The total resource

utilization of all tasks is UR = ∑τi∈Γ uR
i . Also, L∑ denotes the sum of the m−1 largest ∑

nr
q=1 Li,q. Formally,

L∑ =
m−1

∑
k=1

φk, (5.1)

where φk is the kth largest value of ∑
nr
q=1 Li,q for all τi ∈ Γ. Also, let Lall = ∑τi∈Γ ∑

nr
q=1 Li,q. Also let e∑ denote

the sum of the m− 1 largest per-task execution times, and eall be the sum of all per-task execution times.
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Similarly, L∑ denotes the sum of the m−1 largest per-task total critical-section lengths, and Lall denotes the

sum of all the per-task critical-section lengths.

We also formalize the following definitions.

Definition 5.1. Job Jl, j is pending at time t if al, j ≤ t ≤ fl, j.

(Recall from Chapter 2, al, j is the release time of Jl, j, and fl, j is the completion time of Jl, j.)

Definition 5.2. Job Jl, j is ready at time t if it is pending, and it is not blocked waiting for a shared resource.

Definition 5.3. Job Jl, j is CPU-preempted at time t if it is ready, but it does not execute at t.

Preemptive mutual exclusion and half-protected exclusion (described in Section 5.3) sometimes allow a

job executing a critical section to be preempted with respect to the resource it is accessing, thereby allowing a

higher-priority task to access the shared resource. Such a preemption is both a CPU preemption, as the job

must suspend execution, as well as a resource preemption.

Preemptive mutual exclusion. Locking protocols are often used to arbitrate access to non-processor shared

resources such as memory objects. Such protocols guarantee that each critical section executes entirely with

exclusive access to the locked resource before any other access is allowed. We call such a sharing constraint

non-preemptive mutual exclusion. In this section, we consider a weaker sharing constraint called preemptive

mutual exclusion, which is applicable to preemptive resources.

A preemptive resource is one for which at most one task can access the resource at any time t, but

accesses to that resource may be preempted, or paused, and later resumed. Preemptive resources differ from

non-preemptive ones in that non-preemptive mutex resources require that no other job accesses the resource

between the start and end of each critical section. Preemptive resources are motivated by bus scheduling, in

which multiple tasks may need to transmit data on a bus such as the memory bus, PCIe bus, or a network

link. Such transmissions can be “paused” to allow higher-priority transmissions to access the bus. We note

that there may be systems-level considerations associated with pausing a transmission, just as there are

systems-level considerations associated with scheduling real-time tasks on any physical processor. In this

work we build a formal foundation for preemptive non-processor resources.

5.2.2 Preemptive Mutual Exclusion on Uniprocessors

On a uniprocessor platform, optimally synchronizing access to preemptive resources is trivial—the

currently executing task implicitly has exclusive access to all preemptive resources. If a task executing a
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preemptive critical section is processor preempted, it is implicitly preempted from all preemptive resources.

Therefore, preemptive resources on uniprocessors can be supported with zero pi-blocking (s-oblivious or

s-aware), as they are trivially supported by existing uniprocessor scheduling algorithms.

5.2.3 Preemptive Mutual Exclusion on Multiprocessors

In contrast to the uniprocessor case, preemptive resources must be explicitly synchronized on multi-

processor platforms. If two tasks executing concurrently on different processors both need access to the

same preemptive resource, only one can execute at a time; the other task(s) must wait. We demonstrate this

behavior in the following example.

Example 5.2. Consider three EDF-scheduled tasks on two processors and one EDF-prioritized preemptive

resource, `p, as shown in Figure 5.10(a). At time t = 1, τ3 is released, and at time t = 2, it acquires `p. At

time t = 2, τ2 is released. At time t = 3, τ2 acquires `p, thereby preempting τ3 from both the processor as

well as `p. Also at time t = 3, τ1 is released. At time t = 4, τ1 preempts τ2 with respect to `p. Note that

during the interval [4,5), `p induces idleness on CPU 1, as there are two suspended tasks waiting to access `p.

At time t = 5, τ1 completes its preemptive critical section, and τ2 resumes its access of `p. At time t = 6, τ2

completes its preemptive critical section, but τ3 does not resume its preemptive critical section until time

t = 8, when τ1 completes, relinquishing CPU 0 to τ3. ♦

Access to preemptive resources can be arbitrated by a non-preemptive mutex locking protocol, as the

sharing constraint of a preemptive resource is weaker than a non-preemptive mutex. However, preemptive

sharing can reduce blocking, and therefore improve schedulability. This is demonstrated in Figure 5.10(b),

where the same task set shown in Figure 5.10(a) is scheduled using a non-preemptive locking protocol,6 and

τ1 misses a deadline on account of excessive blocking.

5.2.4 Schedulability Analysis

We next provide schedulability analysis for scheduling with EDF-prioritized preemptive resources. This

analysis is based on a novel technique called idleness analysis for accounting for the effects of blocking in

schedulability analysis. In contrast to either s-oblivious or s-aware blocking analysis described in Chapter 2,

in this section, we take a different approach entirely—we apply idleness analysis in place of blocking analysis.

6This schedule would result from using either the FMLP+ (Brandenburg, 2014) or the global OMLP (Brandenburg and Anderson,
2014), which are optimal under s-aware and s-oblivious analysis, respectively.
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(a) Fully preemptive resource example.

0 5 10

⌧1
⌧2
⌧3

(b) Schedule from (a) if `p were non-preemptive.

Figure 5.10: Comparison of non-preemptive and preemptive scheduling of a shared resource. Induced
idleness (Definition 5.6) occurs when a processor is idle and there are at least m pending jobs.
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Instead of determining the worst-case per-request pi-blocking, we instead determine the maximum amount

of induced idleness that can occur in an interval on account of synchronization. We then analytically treat

idleness as demand, similar to s-oblivious analysis.

Our analysis builds upon the previous G-EDF schedulability analysis of Baruah (Baruah, 2007) and

Liu and Anderson’s (Liu and Anderson, 2013) extension to self-suspending tasks. We begin with several

definitions.

Definition 5.4. A processor is busy if it is executing a job, and idle if it is not. A time instant t is said to be

busy if all processors are busy, and idle if at least one processor is idle.

Definition 5.5. An idle instant t is truly idle if there are at most m−1 pending tasks, and effectively busy if

there are m or more pending tasks.

Definition 5.6. Idleness that occurs in an effectively busy instant is said to be induced by blocking. We call

such idleness induced idleness.

Example 5.2 (continued). As depicted in Figure 5.10(a), the system is busy at time t = 7, as both processors

are in use, and idle at time t = 4.5 and t = 10. At time t = 4.5, all three tasks are pending, but there is idleness

induced by blocking, so t = 4.5 is effectively busy. By comparison, at time t = 10, τ3 is the only ready job,

and therefore t = 10 is truly idle.

Next, we derive sufficient conditions that ensure that no task misses any deadline. Suppose that Jl, j is the

first job of τl to miss a deadline, and let td = dl, j. Let ta = al, j denote the arrival time of Jl, j. Jl, j necessarily

misses its deadline if it executes for strictly less than el time units over the interval [ta, td). Job Jl, j may be

prevented from executing if it is preempted or blocked by higher-priority work. Therefore, we disregard

all jobs with deadlines later than td , as they do not affect the scheduling of Jl, j. (Note that with alternative

critical-section prioritizations, discarding lower-priority jobs is not safe, as will be considered in Section 5.3.)

Consequently, any blocking of Jl, j is induced idleness.

Definition 5.7. Let to denote the last truly idle time instant before ta. Let [to, td) be the analysis interval, and

let Al = ta− to.

Over the interval [to, ta), Jl, j is not pending, and therefore cannot execute. By construction, the entire

interval [to, ta) is effectively busy.
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Definition 5.8. Let Θ denote a collection of (possibly non-contiguous) intervals contained within [ta, td), in

which Jl, j does not execute. If the cumulative length of Θ exceeds dl− el , then Jl, j may miss its deadline.

By Definition 5.8, the total length of the intervals in [to, ta)∪Θ is at most Al +dl− el otherwise Jl, j is

unschedulable. At any time instant t ∈ [to, ta)∪Θ, all processors are effectively busy, i.e., either executing

work, or idle on account of blocking. Let W (τi) denote the higher-priority work contributed by τi to the

interval [to, ta)∪Θ. Similarly, let Iq(τl) denote the total amount of idleness induced in [to, ta)∪Θ due to

resource `q. When quantifying idleness, we sum across all processors, e.g., if idleness is induced on two

processors during [0,1], this is two units of idleness, not one. At any time instant t ∈ [to, ta)∪Θ, the m

processors can either be busy executing demand or idle on account of induced idleness. Thus, in order for Jl, j

to miss a deadline, it is necessary that the total amount of work and induced idleness in the interval [to, ta)∪Θ

satisfies

nr

∑
q=1

Iq(τl)+ ∑
τi∈Γ

W (τi)> m(Al +dl− el). (5.2)

To ensure that no task will ever miss a deadline, Condition (5.2) must not hold for any τl or value of

Al . The general proof framework codified by Condition (5.2) is depicted in Figure 5.11. We next derive

a corresponding schedulability test. Specifically, we review previous work that considers the work from

higher-priority jobs, W (τi) in Section 5.2.4.1, and then present new analysis for induced idleness Iq(τl) in

Section 5.2.4.2.

5.2.4.1 Demand

This subsection is largely a review of previous results, and therefore proofs are omitted. Similar to

previous work (e.g., (Baruah, 2007)), there are two types of tasks to consider, those with carry-in work,

i.e., demand that had been released before to, and those without carry-in work. First, we review the classic

demand-bound function (Baruah et al., 1990).

Lemma 5.10. The maximum cumulative execution requirement by jobs of a sporadic task τi that both arrive

in, and have deadlines within any interval of length t is given by the demand-bound function

DBF(τi, t) = max
(

0,
(⌊

t−di

pi

⌋
+1
)

ei

)
(5.3)
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Figure 5.11: Depiction of the overall proof framework.

We denote the workload contributed by τi over the interval [to, ta)∪Θ assuming no carry-in job as Wnc(τi).

Using the demand-bound function, we can derive the following bound on the work contributed by τi over

[to, ta)∪Θ.

Lemma 5.11. (Baruah, 2007).

Wnc(τi) =

 min(DBF(τi,Al +dl),Al +dl− el) i 6= l

min(DBF(τi,Al +dl)− el,Al) i = l
(5.4)

For tasks with carry-in jobs, the demand-bound function is modified, to account for carry-in demand.

DBF′(τi, t) =
⌊

t
pi

⌋
ei +min(ei, t mod pi) (5.5)

Using (5.5), we can derive the workload Wc(τi) contributed to the interval [to, ta)∪Θ by a carry-in task τi.

Lemma 5.12. (Baruah, 2007)

Wc(τi) =

 min(DBF′(τi,Al +dl),Al +dl− el) i 6= l

min(DBF′(τi,Al +dl)− el,Al) i = l
(5.6)

Next, we determine the maximal total demand ∑τi∈ΓW (τi, t) by considering which tasks have carry-in

work and which do not. In previous analysis of independent task system (Baruah, 2007), to is chosen to be

the last idle instant before ta, and therefore at most m−1 tasks can have carry-in work. Similarly, by our
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assumption that to is truly idle, at most m−1 tasks can have carry-in work. Note that this choice of to limits

carry-in work to O(m), as compared to the best known global s-aware schedulability test (Liu and Anderson,

2013), which has O(n) carry-in work.

Let Wd(τi) =Wc(τi)−Wnc(τi) be the amount of carry-in work τi could contribute. Then the total demand

contributed by all higher-priority tasks τi is given by

∑
τi∈Γ

W (τi) = ∑
τi∈Γ

Wnc(τi)+ ∑
the (m−1) largest

Wd(τi). (5.7)

This concludes our review of prior demand-based analysis. Next, we consider the idleness induced within

[to, ta)∪Θ, which is the novel aspect of our analytical contributions.

5.2.4.2 Idleness

At any time instant t ∈ [to, ta)∪Θ in which a processor is not busy executing higher-priority work,

idleness must be induced. Here we bound the amount of such idleness.

Traditionally, pi-blocking, which can cause idleness, is accounted for by computing the maximum

duration of pi-blocking for each request, and incorporating that into a compatible schedulability test. Such

approaches suffer from analysis pessimism in both the blocking analysis, as well as the associated schedu-

lability test. In this work, we take a more holistic analysis approach, and incorporate the critical-section

behavior into the schedulability analysis itself. We do so by effectively inverting the analysis logic—instead

of analyzing the worst-case blocking a request may experience, we instead analyze the worst-case idleness

that the same request can induce. To do so, we first consider the demand for shared resources within the

analysis interval, using similar analysis techniques as presented for processor demand.

Lemma 5.13. The maximum cumulative critical-section execution requirement by jobs of a sporadic task

τi for resource `q that both arrive in and have deadlines within any interval of length t is given by the

critical-section-bound function

CSBFq(τi, t) = max
(

0,
(⌊

t−di

pi

⌋
+1
)

Li,q

)
. (5.8)

Proof. We consider only jobs that are released and have deadlines within an interval of length t. The total

demand can be bounded by the scenario in which some job Ji,k has a deadline at the end of the interval, and

143



jobs are released periodically. There can be at most b t−di
pi
c jobs released before Ji,k that also have deadlines

within the interval. Each job can execute for at most Li,q time units within all of its critical sections for `q.

The lemma follows.

At the beginning of the analysis interval, carry-in jobs may also carry in critical sections that must be

executed during the analysis interval. We must account for those critical sections as well, and again, we can

apply similar reasoning as in the ordinary demand arguments. For the carry-in case, at most Li,q units of

critical-section workload carry-in to the analysis interval, similar to (5.5).

Lemma 5.14.

CSBF′q(τi, t) =
⌊

t
pi

⌋
Li,q +min(Li,q, t mod pi) (5.9)

Using Lemmas 5.13 and 5.14, we can quantify demand for each resource within the analysis interval.

Next, we bound idleness induced by such critical sections.

Lemma 5.15. The maximum total amount of induced idleness with respect to τl within [to, ta)∪Θ by requests

for resource `q is

Iq(τl) = (m−1)

∑
τi∈Γ

CSBFq(τi,Al +dl)+ ∑
the (m−1)

largest

δi

 (5.10)

where δi = CSBF′q(τi,Al +dl)−CSBFq(τi,Al +dl)

Proof. There can be at most m− 1 carry-in jobs, each of which contributes at most δi to the demand for

resource `q in [to, ta)∪Θ. All tasks contribute at most CSBFq(τi,Al +dl) non-carry-in demand for `q. For

each time unit of critical-section demand within [to, ta)∪Θ, at most m− 1 processors can have idleness

induced on account of blocking for `q.

From the preceding discussions and lemmas, we have the following Theorem.

Theorem 5.2. A task system Γ is G-EDF schedulable on m processors sharing nr preemptive resources if for

all tasks τl ∈ Γ and for all Al ≥ 0,

nr

∑
q=1

Iq(τl)+ ∑
τi∈Γ

W (τi)≤ m(Al +dl− el). (5.11)
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5.2.4.3 Run-Time Complexity

Similar to previous tests, (5.11) can be evaluated in time polynomial in n for each combination of τl and

Al . The following theorem, demonstrates that only a pseudo-polynomial number of values of Al need to be

evaluated to determine if (5.11) holds for all Al .

Theorem 5.3. If (U +(m− 1)UR) < m and (5.11) is violated for any Al , then it is violated for some Al

satisfying the following condition:

Al ≤
ξ

m− (U +(m−1)UR)
(5.12)

where ξ = ∑τi∈Γ(dl−di)((m−1)uR
i +U)+(m−1)(L∑ +Lall)+ e∑ + eall−m(dl− el).

Proof. For notational convenience, let T =Al +dl . Observe that Wnc(τi)≤DBF(τi,T), and Wd(τi)≤ ei. Also,

a carry-in job can carry in at most one job’s worth of critical sections, so CSBF′q(τi,Al +dl)−CSBFq(τi,Al +

dl)≤ Li,q.

If Condition (5.11) is violated we have

nr

∑
q=1

Iq + ∑
τi∈Γ

W (τi)> m(T − el)

⇒ Substituting for
nr

∑
q=1

Iq and ∑
τi∈Γ

W (τi) given the above observations.

(m−1)(L∑ + ∑
τi∈Γ

nr

∑
q=1

CSBFq(τi,T))+∑
τi

DBF(τi,T)+ e∑ > m(T− el)

⇒ By Equations Equation (5.3) and Equation (5.8)

(m−1)(L∑ + ∑
τi∈Γ

nr

∑
q=1

(bT −di

pi
c+1)Li,q + ∑

τi∈Γ

(bT −di

pi
c+1)ei + e∑ > m(T − el)

⇒ Removing the floors

(m−1)(L∑ + ∑
τi∈Γ

nr

∑
q=1

((T −di)u
`q
i +Li,q))+ ∑

τi∈Γ

((T −di)uP
i + ei)+ e∑ > m(T − el)

⇒ Rearranging

(m−1)(L∑ +Lall)+ e∑ + eall + ∑
τi∈Γ

((T −di)uP
i )+(m−1) ∑

τi∈Γ

nr

∑
q=1

(T −di)u
`q
i > m(T − el)

⇒ Substituting T and Rearranging

∑
τi∈Γ

((dl−di)((m−1)uR
i +U)+(m−1)(L∑ +Lall))+ e∑ + eall−m(dl− el)> Al(m− (U +(m−1)UR))
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⇒ Dividing and substituting

Al <
ξ

m− (U +(m−1)UR)

provided m− (U +(m−1)UR)< m.

Discussion. Since idleness analysis is a radically different approach to accounting for the effects of blocking

in schedulability, it is useful to compare and contrast it to previous methods to better understand its merits.

Under traditional blocking analysis, either s-oblivious or s-aware, blocking is quantified horizontally, or over

time with respect to the blocked task. For example, under the global OMLP (Brandenburg and Anderson,

2014) a request can be s-oblivious pi-blocked by 2m−1 other requests. This blocking is incorporated into the

task as additional time it must wait for the request to be satisfied. In contrast, in idleness analysis the effects

of blocking are quantified vertically, or with respect to processors. A request may delay higher-priority work,

but if it does not induce idleness, that blocking is analytically irrelevant—the processors are busy executing

other higher-priority demand. If a critical section is executing, it is occupying one processor, and in the

worst case idleness is induced on all of the remaining m−1 processors. By analyzing the impacts of critical

sections vertically instead of horizontally, we have essentially reduced the analytical impact of each critical

section from 2m−1 (OMLP) or n (FMLP) to m−1 via idleness analysis and relaxed sharing constraints. (In

practice, constant factors make this comparison more difficult, but this high-level comparison gives insight

into the differences.)

Under s-aware schedulability analysis, blocking does not contribute any demand to the analysis interval.

However, the main source of pessimism in prior G-EDF s-aware schedulability analysis (Liu and Anderson,

2013) is in bounding carry-in work. Any suspending (resource-requesting) task may contribute carry-in work,

instead of only m−1 as is possible using either s-oblivious or idleness analysis. In fact, Brandenburg (Bran-

denburg, 2014) showed that in some cases treating s-aware blocking bounds as demand and using s-oblivious

schedulability analysis yielded far greater schedulability than s-aware schedulability tests, likely due to the

issue of carry-in work. Idleness analysis allows for the analysis interval to be extended to a point where by

definition only m−1 jobs carry-in work, which can significantly reduce carry-in workload.

Under idleness analysis, the utilization loss due to a critical section is inflated by a factor of m. This

is similar to a bus-arbitration policy such as TDMA that fairly shares bandwidth among cores. However,

in practice many commercial off-the-shelf (COTS) memory controllers do not implement a fair arbitration
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policy, and therefore modeling bus accesses as preemptive critical sections can be used to achieve similar

theoretical results on a less predictable hardware platform. Furthermore, in practice, lower-priority jobs could

execute during induced idleness thereby improving response times, or idled processor could lead to power

savings.

5.3 Half-Protected Exclusion

In this section, we consider a weaker sharing constraint called half-protected, which is motivated by

managing caches. During program execution, a job may access many cache blocks, only some of which are

reused. Blocks that can be shown to be reused are called useful cache blocks (UCBs), and the remaining

accessed blocks are called evicting cache blocks (ECBs) (Lee et al., 1998). By managing cache accesses,

we want to ensure that UCBs are protected, or not evicted before they are reused. However, regions of code

in which evicting cache blocks may be accessed may be unprotected, and only prevented from interfering

(co-scheduling or preempting) with a protected section. Importantly, unprotected sections can be interrupted

at any time with no negative consequences, since they do not reuse cache blocks.

To illustrate this concept, consider the example schedule depicted in Figure 5.12, corresponding to

Example 5.3 described in greater detail later. In that example, consider that task τ2 executes a tight loop

during its protected section during time t ∈ [5,6), in which it reuses many cache blocks, and enjoys a

significant performance benefit from the cache. On some platforms, the latency difference between the

last-level cache and main memory is a factor of four or more. Also consider that the unprotected sections of

τ1 (during time [2,3) and [7,8)) and τ3 (during time [4,5) and [6,7)) are regions of code in which data that is

never reused is accessed. For example, if these tasks were writing results or executing a search algorithm,

there may be little, if any, cache reuse. In such cases, we need not protect such data from being evicted as it

will not be reused. For this reason, the preemption at time t = 5 by τ2 is acceptable. It may evict the cached

data of task τ1 and τ3, but because that data is not reused, such evictions are acceptable. However, if τ1 and

τ2 were co-scheduled, τ1 may evict the useful data of τ2 with accesses to data that it will never reuse.

In the remainder of this section, we formalize the half-protected sharing constraint, and present algorithms

for both uniprocessors and multiprocessors.

Problem description. There are two classes of requests for half-protected resources: protected requests,

which require non-preemptive mutual exclusion, and unprotected requests, which have no sharing constraints.
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Figure 5.12: Example schedule depicting half-protected sharing.

Therefore, a protected request can interrupt an unprotected request at any time, but the converse is not true.

On a multiprocessor, multiple unprotected sections can execute concurrently, but only one protected request

can execute at a given time, and it must execute non-preemptively with respect to the resource.

To better understand the half-protected sharing constraint, we compare it to reader/writer sharing. Under

reader/writer sharing, there are also two classes of requests: reads, which can execute concurrently or

processor-preempt one another, and writes, which have the same sharing constraint as protected sections.

However, both reads and writes are non-preemptive with respect to the resource. Therefore, a write request

cannot be satisfied until all incomplete reads have completed their critical sections. In half-protected

sharing, protected requests are identical to writes, while unprotected requests are a weaker version of reads.

Unprotected requests are effectively preemptive read requests.

Example 5.3. Consider the example in Figure 5.12 in which three tasks are scheduled on two processors

sharing a half-protected resource. At time t = 1, both τ2 and τ3 are released and begin executing. At time

t = 2, τ3 begins an unprotected section, and is processor-preempted by the release of τ1 at time t = 3. At

time t = 4, τ1 also begins an unprotected section. Note that τ3, while preempted is still in an unprotected

section at t = 4. With protected sections or non-preemptive sharing, two critical sections cannot be satisfied

concurrently. At time t = 5, τ2 begins a protected section, which resource-preempts τ1 and τ3. This induces
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idleness during the interval [5,6). At time t = 6, τ1 resumes its unprotected section. The remainder of the

example follows G-EDF scheduling. ♦

Scheduling upon uniprocessors. Half-protected resources can be supported with extensions to the Priority

Ceiling Protocol (PCP) (Rajkumar, 1991) or the Stack Resource Policy (SRP) (Baker, 1991). Interestingly,

unlike preemptive resources discussed previously, half-protected resources pose a new synchronization

problem on uniprocessor platforms.

In a priority-ceiling-based synchronization protocol, the current priority ceiling Π̂(t) at time t is equal to

the highest ceiling associated with any active critical section. For the simple case of non-preemptive mutual

exclusion, the ceiling of each resource is defined to be the highest-priority task that accesses that resource. If

a task does not have a priority higher than the current priority ceiling Π̂(t), then it is forced to block unless it

is executing the critical section responsible for setting the current priority ceiling. Priority inheritance is used

to ensure resource-holder progress if a higher-priority task is blocked waiting for a lower-priority one.

To realize any benefits of a more relaxed sharing constraint in a priority-ceiling-based protocol, the

rules for setting the current priority ceiling need to be relaxed to lower the ceiling and reduce blocking. For

example, for reader/writer sharing, the ceiling of a reader/writer resource `r during a read critical section is

set to the highest priority task that may read `r, while during a write critical section, the ceiling of `r is set to

the highest priority task that may read or write `r (Rajkumar, 1991). By reducing the ceiling for read requests,

some higher-priority read requests can processor-preempt tasks executing read critical sections, instead of

blocking.

The resource ceiling Πh of a half-protected resource `h depends upon whether it is currently in a protected

or unprotected section, similar to reader/writer sharing. The protected ceiling or the ceiling during a protected

section, is set to the priority of the highest-priority task that accesses `h. This ceiling value ensures that a

protected section runs non-preemptively with respect to `h. The unprotected ceiling or the ceiling during an

unprotected section, is set to the lowest priority in the system. This low ceiling ensures that any task can

processor- or resource-preempt a job in an unprotected section, therefore preventing any task from blocking

on an unprotected section. However, an unprotected section may still block on a protected section. Notably,

similar to other priority-ceiling-based protocols, protected and unprotected sections can be nested using this

approach.
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When these resource-ceiling definitions are applied in the context of the SRP, there is an additional benefit:

system calls are not necessary to enter or exit unprotected sections, thereby reducing overheads. In the SRP,

all blocking is incurred before a job begins, and therefore all resources can be accessed immediately without

blocking. System calls are required for protected sections, as the current priority ceiling may be increased to

prevent higher-priority jobs from beginning execution when resources they may need are currently locked.

However, unprotected sections will never increase the current priority ceiling, and therefore do not need to

issue system calls. In fact, in the SRP no run-time knowledge of unprotected sections is necessary. Such

knowledge is only necessary to set the protected-ceiling values offline. In contrast, in the PCP, entering

and exiting unprotected sections must be handled at runtime to ensure that unprotected sections block on

protected ones.

Scheduling upon multiprocessors. On a multiprocessor platform, half-protected resources pose new issues.

Protected sections must execute non-preemptively with respect to the half-protected resource, as well as non-

concurrently with any other protected or unprotected sections. In contrast, unprotected sections can execute

concurrently, and be arbitrarily resource preempted. In fact, one protected request can resource-preempt

multiple unprotected sections.

We consider the following half-protected synchronization policy. Protected requests are statically

prioritized over unprotected ones, i.e., a protected request will always preempt an unprotected request.

Unprotected requests execute whenever they are not preempted. Protected requests are assumed to be

prioritized against one another by non-preemptive EDF. Additionally, we assume that priority inheritance

is used to ensure the progress of protected requests, i.e., a protected request inherits the priority of the

highest-priority protected or unprotected request that it blocks. Given this synchronization policy, we next

extend our idleness analysis and derive an associated schedulability test.

Unprotected sections. Idleness analysis, as compared to blocking analysis, shifts the analysis burden from

blocked requests to satisfied requests. This analysis technique is particularly well suited to unprotected

sections.

Lemma 5.16. Unprotected sections do not induce idleness.

Proof. A satisfied request induces idleness if it blocks another request leaving a processor idle. Unprotected

requests can be satisfied concurrently, and therefore do not block one another. By assumption, unprotected
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requests are statically prioritized lower than protected requests, and do not block protected requests. Therefore,

unprotected requests do not block other requests and thus do not induce idleness.

Given this result, we can safely ignore unprotected requests in idleness analysis. Therefore, to avoid

notational clutter, for the rest of this section, we assume that Li,q is the total length of τi’s `q protected sections.

Notably, these results also apply to non-preemptive resources also.

Carry-up sections. In idleness analysis for preemptive resources (Section 5.2.4.2), all critical sections and

jobs with deadlines later than the analyzed job Jl, j were ignored as they could not delay the execution of

Jl, j. When considering non-preemptive resources, this is no longer true. A lower-priority job than Jl, j may

issue a request while Jl, j is blocked or scheduled on another core that may subsequently non-preemptively

block other higher-priority requests and induce idleness. We define a carry-up request to be a request that can

execute in the analysis interval but that has a deadline after the analysis interval. In comparison to carry-in

critical sections, which are issued by higher-priority jobs that were released before the analysis interval, a

carry-up critical section can be released at any point (even before to) but has a lower priority than the analyzed

job Jl, j. This behavior is depicted in Example 5.3 and Figure 5.12. Observe that when analyzing τ1, τ2 has a

deadline after d1. However, τ2 still induces idleness during time [5,6). In this case, the protected section of

τ2 is a carry-up section.

Carry-up critical sections must be accounted for in idleness analysis for protected sections to account for

the additional sources of induced idleness. Importantly, such analysis requires more carefully considering

jobs with deadlines after the end of the analysis interval, td . We therefore clarify several previous assumptions

and definitions in this context.

Recall from Definition 5.7 that to is defined to be the last truly idle time instant before ta, the release of

Jl, j. However, we had previously discarded all jobs with deadlines after td . We use the same definition here,

i.e., to is the last truly idle time instant before ta with respect to to jobs that have deadlines at or before td .

Thus, at time to, there are at most m−1 pending jobs with deadlines at or before td , which are the carry-in

jobs. Note that there could be additional jobs released before to but with deadlines after td that can contribute

carry-up critical sections. Such critical sections are considered carry-up critical sections, rather than carry-in.

Lemma 5.17. Let [t0, t1) be an interval of length t, and τi be a task without a carry-in job. The maximum

cumulative execution requirement of protected sections of a half-protected resource `q by jobs of a sporadic
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task τi that are pending at any time during [t0, t1) is given by the protected-section bound function

PSBFq(τi, t) =
⌈

t
pi

⌉
Li,q. (5.13)

Proof. There are two classes of tasks without carry-in work, those with all job releases after t0 (Case 1), and

those released before t0, and with deadlines after t1 (Case 2). Those with releases before t0 and deadlines

before t1, by definition have a carry-in job.

Case 1. The maximum execution time of protected sections generated by jobs of τi released after t0 is

bounded by the case in which the first job of τi is released at t0, and jobs are released periodically thereafter.

There are at most
⌈

t
pi

⌉
such jobs that could be released before t1, each of which executes protected sections

for at most Li,q time.

Case 2. If a job of τi is released strictly before t0, and has a deadline strictly after t1, then t < di ≤ pi. Thus,

there can be only one job of τi that is pending during [t0, t1), and it executes protected sections for at most

Li,q =
⌈

t
pi

⌉
Li,q.

Note that PSBFq(τi, t) has many commonalities with the well-studied request-bound function, which

bounds the execution requirement of jobs that can be released within an interval of length t. Similarly, we

consider the protected sections of all jobs that can be released in an interval of length t, as even jobs with

priority lower than τl, j can contribute carry-up sections, which can induce idleness.

Lemma 5.18. Let [t0, t1) be an interval of length t, and τi be a task with a carry-in job. The maximum

cumulative execution requirement of protected sections of a half-protected resource `q by jobs of a sporadic

task τi that are pending at any time during [t0, t1) is given by the protected-section bound function

PSBF′q(τi, t) =
⌈

t+di

pi

⌉
Li,q. (5.14)

Proof. By Lemma 5.1 of (Brandenburg, 2011), there are at most d t+Ri
pi
e distinct jobs of a task τi that can

execute in any interval of length t, where Ri ≤ di is the response time of τi. Thus,
⌈

t+di
pi

⌉
total jobs may

execute within [t0, t1), and each may execute protected sections for at most Li,q.

Any non-protected sections (i.e., unprotected or non-critical) of jobs with deadlines after td that execute

within the analysis interval execute either concurrently with Jl, j or during blocking of higher-priority jobs.
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Therefore, such demand does not delay Jl, j and need not be analyzed further. We next bound the total induced

idleness, similarly to Lemma 5.15, using the results from the previous two lemmas.

Lemma 5.19. The maximum total amount of induced idleness with respect to τl within [to, ta)∪Θ by

protected requests for a half-protected resource `q is given by

Ih
q (τl) = (m−1)

∑
τi∈Γ

PSBFq(τi,Al +dl)+ ∑
the (m−1)

largest

δi

 (5.15)

where δi = PSBF′q(τi,Al +dl)−PSBFq(τi,Al +dl).

Carry-up sections contribute demand to the analysis interval, as well as induce idleness. If a carry-up

section is executed during the analysis interval, priority inheritance ensures that it is scheduled if it would

induce idleness. However, because carry-up sections are contributed by lower-priority jobs, that demand is

not accounted for by the workload of higher-priority jobs.

Lemma 5.20. The maximum cumulative protected-section execution time of all carry-up requests with

respect to τl for a half-protected resource `q that run in [to, ta)∪Θ is given by

Cq(τl) = ∑
τi∈Γ

(PSBFq(τi, t)−CSBFq(τi, t))+ ∑
the (m−1) largest

αi− ∑
the (m−1) largest

βi (5.16)

where t = Al +dl , αi = PSBF′q(τi, t)−PSBFq(τi, t), and βi = CSBF′q(τi, t)−CSBFq(τi, t).

Proof. The total length of all protected requests, including carry-up requests, that execute within [to, ta)∪Θ

is given by ∑τi∈Γ PSBFq(τi, t)+∑the (m−1) largest αi. However, some of that demand is not carry-up demand,

but instead higher-priority demand. This higher-priority demand is quantified by Lemmas 5.13, and 5.14, and

totals ∑τi∈Γ CSBFq(τi, t)+∑the (m−1) largest βi. By subtracting the later term from the former term, we have

the total amount of carry-up demand that executes during [to, ta)∪Θ.

From these results and discussion, we have the following schedulability test.

153



Theorem 5.4. A task system Γ is global EDF schedulable on m processors sharing nr half-protected resources

if for all tasks τl ∈ Γ and for all Al ≥ 0,

nr

∑
q=1

(Cq(τl)+ Ih
q (τl))+ ∑

τi∈Γ

W (τi)≤ m(Al +dl− el). (5.17)

Again, we can bound the maximum number of testing points required to check schedulability.

Theorem 5.5. If (U +(m− 1)UR) < m and (5.17) is violated for any Al , then it is violated for some Al

satisfying the following condition:

Al <
φ

m− (U +(m−1)UR)
(5.18)

where φ = m(Lall +L∑)+(m−1)dlUR + e∑−m(dl− el)+∑τi∈Γ(dl−di)uP
i + eall .

Proof. For notational convenience, let T =Al +dl . Observe that Wnc(τi)≤DBF(τi,T), and Wd(τi)≤ ei. Also,

a carry-in job can carry in at most one job’s worth of critical sections, so CSBF′q(τi,Al +dl)−CSBFq(τi,Al +

dl)≤ Li,q, and PSBF′q(τi,Al +dl)−PSBFq(τi,Al +dl)≤ Li,q.

A task can only contribute carry-up critical sections from one job, thus PSBFq(τi,T)−CSBFq(τi,T)≤

Li,q, and PSBF′q(τi,T)−CSBF′q(τi,T)≤ Li,q. Therefore, ∑
nr
q=1Cq ≤ Lall +L∑. If Condition (5.17) is unsatis-

fied, we have

nr

∑
q=1

(Cq + Ih
q )+ ∑

τi∈Γ

W (τi)> m(T − el)

⇒ Substituting for
nr

∑
q=1

(Cq + Ih
q ) and ∑

τi∈Γ

W (τi)) as described above

Lall +L∑ +(m−1)
nr

∑
q=1

∑
τi∈Γ

(⌈
T
pi

⌉
Li,q +L∑

)
+ ∑

τi∈Γ

(⌊
T −di

pi

⌋
+1

)
ei + e∑ > m(T − el)

⇒ Removing floors and ceilings

Lall +L∑ +(m−1)
nr

∑
q=1

∑
τi∈Γ

(( T
pi
+1
)

Li,q +L∑

)
+ ∑

τi∈Γ

(
T −di

pi
+1

)
ei + e∑ > m(T − el)

⇒ Rearranging and substituting

m(Lall +L∑)+(m−1)TUR + e∑ + eall + ∑
τi∈Γ

(T −di)uP
i > m(T − el)

⇒ Rearranging and substituting T
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m(Lall +L∑)+(m−1)dlUR + e∑−m(dl− el)+ ∑
τi∈Γ

(dl−di)uP
i + eall > Al(m− (U +(m−1)UR))

⇒ Rearranging and substituting

Al <
φ

m− (U +(m−1)UR)
,

provided m− (U +(m−1)UR)< m.

Discussion. Perhaps surprisingly, the manner in which protected requests are prioritized against one another

does not affect schedulability under our idleness-analysis framework, so long as a progress mechanism such as

priority inheritance ensures that a carry-up request that induces idleness at time t is scheduled at time t. This

is due to how idleness analysis accounts for the effects of blocking vertically rather than horizontally. Even a

random prioritization among protected requests could not induce idleness more than m−1 processors during

the execution of a critical section, though the worst-case blocking bound would be quite pessimistic. Thus,

the above idleness analysis can be applied to existing non-preemptive locking protocols such as the global

OMLP (Brandenburg and Anderson, 2014), or the FMLP (Block et al., 2007) by treating all lock requests as

protected requests. Furthermore, nested locking protocols could also be supported at the expense of more

verbose notation, provided the protocol supported transitive priority inheritance and prevented deadlock.

5.4 Evaluation

We next present evaluations of our proposed algorithms and analysis with respect to hard real-time

schedulability. We considered two alternative schemes for randomly generating task systems, one motivated

by a preemptive bus or interconnect, and another similar to previous studies on real-time locking proto-

cols (Brandenburg, 2014). These two generation schemes provide insights into the schedulability gains

afforded by relaxed sharing constraints and idleness analysis.

Bus synchronization. We first consider a random task-system generation process that varies both the

total processor utilization and the total resource utilization of one preemptive resource. We considered

schedulability on m ∈ {2,4,8} processor systems. We generated task systems for each processor utilization in

{0.1,0.2, . . . ,m}. The total resource utilization of the generated tasks was selected from {0.1,0.2,0.3,0.4}.

The per-task processor utilizations were chosen from one of two exponential distributions with mean 0.1

(light) and 0.25 (medium), and restricted to [0,1]. The period of each task was uniformly chosen from
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[10ms,100ms]. The resource utilization of each task was uniformly random, and normalized across all tasks

to sum to the specific total resource utilization. We assume one critical section per job. For each combination

of parameters, task systems were randomly generated until the schedulability ratio could be estimated with

95% confidence to within 0.05.

For each generated task system, we considered schedulability under the global OMLP (Brandenburg and

Anderson, 2014); the FMLP+ (Brandenburg, 2014) assuming either Liu and Anderson’s s-aware analysis (Liu

and Anderson, 2013) (FMLP-A), or by treating s-aware blocking bounds as s-oblivious ones and applying

Baruah’s (Baruah, 2007) s-oblivious test (FMLP-O); preemptive sharing with idleness analysis (P-I); and

non-preemptive sharing with idleness analysis (NP-I). Note that NP-I follows from treating all lock requests

as protected requests. As a basis for comparison, we also plot schedulability without any synchronization

(NOLOCK), which upper bounds all other considered cases. An example schedulability graph from this

study is shown in Figure 5.13(a).7

Observation 5.6. Preemptive sharing and idleness analysis can greatly improve schedulability over non-

preemptive sharing.

This observation is supported by Figure 5.13(a). In particular, with preemptive sharing most task systems

with utilizations up to approximately 2.5 are schedulable, while most task systems with utilization greater

than 1.0 are unschedulable by all considered non-preemptive approaches. This demonstrates how more

relaxed sharing constraints can be exploited to improve schedulability.

Locking study. As we discussed previously, idleness analysis can be used in place of blocking analysis to

analyze schedulability for many existing real-time locking protocols, including the OMLP and the FMLP. We

therefore considered an alternative task-system generation scheme similar to previous studies to evaluate

the difference between idleness analysis and blocking analysis. In this study, tasks were generated as

described above with the following exceptions. Total resource utilization was not directly controlled, instead,

critical-section lengths were chosen uniformly among [1 µs,15 µs] (short), [1 µs,100 µs] (moderate), or

[5 µs,1280 µs] (long). Each task had a uniform probability pacc ∈ {0.1,1.0} of accessing one shared resource.

Example schedulability graphs from this study can be seen in insets (b) and (c) of Figure 5.13.8

7All other generated graphs are available online http://www.cs.unc.edu/~bcw/diss/.
8All other generated graphs are available online http://www.cs.unc.edu/~bcw/diss/.

156

http://www.cs.unc.edu/~bcw/diss/
http://www.cs.unc.edu/~bcw/diss/


OMLPFMLP-OFMLP-A P-INP-I NOLOCK

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

S
ch

e
d
u
la

b
ili

ty

(a) m = 4, UR = 0.1.
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(b) m = 2, pacc = 1.0.
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(c) m = 8, pacc = 0.1.

Figure 5.13: Three example schedulability graphs. (a) is drawn from the bus synchronization experiment,
and (b) and (c) are from the locking experiment. Task utilizations are light in all cases. Long critical sections
are assumed in (b) and (c).
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Observation 5.7. Idleness analysis can improve schedulability over both s-aware and s-oblivious blocking

analysis for existing real-time locking protocols.

This observation is supported by Figure 5.13(b), in which the curve NP-I has greater schedulability

than all of the existing locking protocols. As discussed previously, idleness analysis effectively reduces the

effect of blocking to m−1 from 2m−1 or O(n) for the OMLP and FMLP+, respectively. In comparison to

s-aware schedulability analysis, by explicitly analyzing induced idleness, we are able to bound carry-in work

to m−1 tasks instead of O(n). Consequently, idleness analysis can provide improved schedulability. This is

significant as the blocking bounds for the FMLP+ and the OMLP have been proven asymptotically optimal

under s-aware and s-oblivious analysis assumptions, while idleness analysis applies to a very general class of

mutex locking protocols, including random request prioritizations, which have very large worst-case blocking

bounds.

Observation 5.8. Idleness analysis is incomparable with both s-aware and s-oblivious blocking analysis.

This observation is supported by Figure 5.13(c), in which pacc = 0.1. In task systems in which the

number of resource-using tasks is small, or the number of processors is large, idleness bounds are most

pessimistic. In these cases, s-aware and s-oblivious blocking analysis can yield better schedulability. Idleness

analysis is therefore incomparable to blocking analysis.

Observations 5.7 and 5.8 demonstrate that there may be interesting tradeoffs to explore at the intersection

of idleness analysis and blocking analysis. For example, perhaps protocol-specific knowledge could be used

to tighten idleness bounds.

5.5 Chapter Summary

In this chapter, we have presented three algorithms and analyses motivated by the needs of shared-

hardware-management applications for GPUs, caches, and shared buses. In so doing, we have developed a

new progress mechanism in RRPD, which was used to construct the R2DGLP, an asymptotically optimal

independence-preserving k-exclusion locking protocol for global scheduling. The R2DGLP improves upon

existing k-exclusion locking protocols such as the O-KGLP and the CK-OMLP, as we have demonstrated.

These improvements are particularly significant for applications in which critical sections are long, as is the

case when using a locking protocol to arbitrate access to shared I/O devices such as GPUs. Notably, the
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R2DGLP has been applied in GPU-management applications (Elliott, 2015), as well as in the RNLP as a

token lock, as described in Chapter 3.

We also formalized two new weaker sharing constraints, preemptive mutual exclusion, and half-protected

exclusion, that enable reduced blocking in many cases. These two sharing constraints are motivated by

the desire to more predictably shared bus traffic, and caches, respectively. We have also presented simple

algorithms to realize these sharing constraints. To analyze the effects of blocking on schedulability of these

algorithms, as well as other synchronization algorithms, we have developed a novel analysis technique called

idleness analysis. Idleness analysis is used in place of blocking analysis in demand-based multiprocessor

schedulability tests. Instead of analyzing the delays due to blocking, idleness analysis quantifies the idleness

induced in the analysis interval, which can significantly reduce analysis pessimism. Experimental results

show up to 250% increase in schedulability as a result of our new analysis techniques and relaxed sharing

constraints.
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CHAPTER 6: CONCLUSION

The main objective of the research presented in this dissertation was to develop synchronization algo-

rithms for multiprocessor real-time systems that enable increased platform utilization. This objective was

accomplished by the development of several new multiprocessor real-time locking protocols, each motivated

by different use cases and resource-access patterns. By leveraging the semantics of the resource-access

patterns, these protocols in many cases offer improved platform utilization over previous real-time locking pro-

tocols. In the remainder of this dissertation, we summarize the results presented herein (Section 6.1), briefly

discuss other contributions to the field of real-time computing not included in this dissertation (Section 6.2),

and describe relevant open questions and avenues for future work (Section 6.3).

6.1 Summary of Results

In the following, we review the key results of the work presented in this dissertation.

Fine-grained locking in multiprocessor real-time systems. In Chapter 3, we presented the RNLP, the first

multiprocessor real-time locking protocol to support fine-grained locking. The problem of nested locking in

multiprocessor real-time systems stood open for over twenty years. Prior to the RNLP, nested locking of

resources shared among multiple processors in real-time systems was only supported through coarse-grained

locking, in which resources are grouped and treated as a single lockable entity. Fine-grained locking can be

realized through nested locking, or a new fine-grained locking technique called dynamic group locking. In

the latter case, a request atomically requests a set of resources, which may be a subset of a larger group of

resources that would be treated as a single lockable entity under coarse-grained locking.

The RNLP has a modular architecture, composed of a k-exclusion token lock and an RSM. In Chapter 3,

several RSMs that support mutex resources were presented, and in Chapter 4, RSMs that support reader/writer

sharing and k-exclusion were presented. We showed that there exist pairings of token locks and RSMs that

are optimal for all platform configurations in which optimal coarse-grained locking protocols are known.

Interestingly, at the time the RNLP was originally presented (Ward and Anderson, 2012), there was no known
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optimal mutex locking protocol for clustered systems under s-aware analysis. Since then, RSB has been

proposed (Brandenburg, 2014), we incorporated RSB into a new RSM presented herein, that is optimal in

that case as well. This demonstrates the utility of the modular architecture of the RNLP.

In this dissertation, we presented the first fine-grained blocking analysis of the RNLP. (In previous

publications (Ward and Anderson, 2012, 2014b), fine-grained blocking analysis was omitted due to space

constraints.) This blocking analysis is tighter than previous pi-blocking bounds for the RNLP, at the

expense of increased computational complexity. However, these tighter bounds results in improved platform

utilization.

Independence-preserving k-exclusion locking protocol. In Chapter 5, we presented the R2DGLP, an

asymptotically optimal, independence-preserving k-exclusion locking protocol for globally scheduled systems.

The R2DGLP is especially useful for managing access to multiple GPUs, and indeed has been applied in such

applications (Elliott et al., 2013; Elliott, 2015). In designing the R2DGLP, we also developed a new progress

mechanism, RRPD, which is similar to priority donation (Brandenburg and Anderson, 2011), but is applied

at the time of request issuance instead of job release. By shifting the time of donation to request issuance, it

is possible to construct an independence preserving locking protocol for globally scheduled systems. RRPD

is similar to a priority-donation technique presented by Elliott and Anderson (2013) for the O-KGLP, but

enables improved blocking bounds.

While the design of the R2DGLP was motivated by the need to manage access to GPUs, it is also useful

as a token lock in the RNLP. When combined with the I-RSM on globally scheduled systems, the resulting

RNLP variant is also independence preserving, and has a request-blocking bound no worse than the global

OMLP (Brandenburg and Anderson, 2010a).

Synchronization algorithms for shared hardware resources. In Chapter 5, we also defined two new

resource-sharing constraints motivated by the need to more predictably manage shared hardware resources

such as caches and buses. The goal of such shared-hardware management is to reduce or eliminate the effects

of timing interference caused by concurrently executing tasks, thereby improving timing predictability. In

turn, the improved predictability may offset the cost of shared-hardware management, leading to improved

schedulability.

Towards this goal, we presented preemptive mutual exclusion, which is motivated by the need to

manage access to a shared communication bus such as the memory bus, and half-protected exclusion, which
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is motivated by the need to manage access to cache resources. We considered simple, straightforward

algorithms that realize these sharing constraints, and provided analysis and experimental results showing the

schedulability improvements they may enable.

Idleness analysis. Locking protocols cause blocking as tasks are forced to wait until resources are available,

or to ensure resource-holder progress. This blocking must be somehow incorporated into schedulability

analysis in real-time systems so as to ensure that jobs do not miss deadlines on account of blocking.

Traditionally, blocking is analyzed via blocking analysis, the results of which are incorporated in schedulability

analysis. In Chapter 5, we presented a new technique, called idleness analysis, for incorporating the effects

of blocking into schedulability analysis, that does not require any blocking analysis. In idleness analysis,

idleness induced by blocking is analyzed, instead of the duration of blocking. This “flips the analysis” from

asking the question “how long can this request be blocked?” to instead asking “how much idleness can this

request cause?”

Idleness analysis and blocking analysis are theoretically incomparable with respect to schedulability,

i.e., neither dominates the other. In Section 5.4, we presented the results of schedulability studies that were

conducted to investigate in which cases one is favorable to the other. Idleness analysis is often favorable in

systems with smaller core counts, as fewer processors can be idled as a result of synchronization.

6.2 Other Related Work

During the course of my graduate education, I have contributed a number of results outside of the scope

of this document. This section briefly summarizes these results, which appeared in ten other peer-reviewed

papers. These contributions fall into three broad categories: (i) the analysis and management of shared

hardware components, (ii) multiprocessor synchronization, and (iii) soft-real-time schedulability and tardiness

analysis.
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6.2.1 Shared-Hardware Management and Analysis1

This dissertation has described several synchronization algorithms that are motivated by the application

of managing shared hardware devices. In work outside of the scope of this dissertation, I have co-authored

several other publications in which shared-hardware-management techniques have been applied in practice.

Many of these publications even apply algorithms described herein.

GPUs. In collaboration with Elliott and Anderson (Elliott et al., 2013), I helped design and analyze GPUsync,

which is a framework for managing GPUs in multi-GPU multiprocessor real-time systems. My contributions

to this work were predominantly targeted at the design and analysis of GPUsync, which leverages the R2DGLP

described in Chapter 5, and Glenn Elliott implemented, debugged, and evaluated the entire system.

GPUsync takes a synchronization-oriented approach to GPU management and applies locking protocols

to GPUs, as well as hardware components therein. GPUsync was designed with flexibility, predictability, and

parallelism in mind. Specifically, it can be applied under either static- or dynamic-priority CPU scheduling;

can allocate CPUs/GPUs on a partitioned, clustered, or global basis; provides flexible mechanisms for

allocating GPUs to tasks; enables task state to be migrated among different GPUs, with the potential of

breaking such state into smaller “chunks”; provides migration cost predictors that determine when migrations

can be effective; enables a single GPU’s different engines to be accessed in parallel; properly supports

GPU-related interrupt and worker threads according to the sporadic task model, even when GPU drivers are

closed-source; and provides budget policing to the extent possible, given that GPU access is non-preemptive.

No prior real-time GPU management framework provides a comparable range of features.

1This subsection summarizes results from the following papers:
Elliott, G., Ward, B., and Anderson, J. (2013). GPUSync: A framework for real-time GPU management. In Proceedings of the 34th
IEEE Real-Time Systems Symposium, pages 33–44.
Ward, B., Herman, J., Kenna, C., and Anderson, J. (2013b). Making shared caches more predictable on multicore platforms. In
Proceedings of the 25th Euromicro Conference on Real-Time Systems, pages 157–167.
Ward, B., Thekkilakattil, A., and Anderson, J. (2014). Optimizing preemption-overhead accounting in multiprocessor real-time
systems. In Proceedings of the 22nd Conference on Real-Time Networks and Systems, pages 235–243
Chisholm, M., Ward, B., Kim, N., and Anderson, J. (2015). Cache sharing and isolation tradeoffs in multicore mixed-criticality
systems. In Proceedings of the 36th Real-Time Systems Symposium, pages 306–316.
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Multiprocessor cache-related preemption delay analysis. Preemptions (and migrations, in which a task is

scheduled on one processor and moved to another processor), can increase the execution time of tasks due to

the interference caused with respect to the cache. When a task is preempted, another task executes instead and

may evict cache lines that the preempted task otherwise would have reused. When the preempted task resumes,

it must reload previously cached data from memory that had it not been preempted, would have been cached

and therefore accessed more quickly. There are a number of techniques known for quantifying this effect,

known as cache-related preemption delay (CRPD) or cache-related preemption and migration delay (CPMD)

analysis. Broadly, these two classes of techniques can be classified as either preemption-centric, in which the

additional delays are analytically accounted for by inflating the execution time of the preempting task, or

task-centric, in which the additional delays are analytically accounted for by inflating the execution time of

the preempted task. We presented a new CRPD analysis technique that combined these two approaches to

CRPD analysis into a linear program, which can be solved to minimize the utilization loss associated with

CRPDs (Ward et al., 2014).

Dynamic shared-cache management In collaboration with Herman, Kenna, and Anderson (Ward et al.,

2013b), I helped design shared-cache management techniques designed to improve predictability with respect

to shared-cache accesses, thereby improving analytical platform utilization. In that work, we developed and

analyzed several techniques for minimizing or eliminating interference among concurrently executing tasks

through the shared cache. These two techniques are called cache locking, and cache scheduling. Cache

locking applies a variant of the k-exclusion RNLP described in Chapter 4 to individual ways of shared-cache

colors. Cache scheduling applies a scheduling algorithm, such as EDF, to the ways of cache colors. These

techniques are also applied in a mixed-criticality scheduling framework.

Mixed-criticality shared-cache and memory-bank management. In a series of papers (Chisholm et al.,

2015; Kim et al., 2016; Chisholm et al., 2016), we developed support in the mixed-criticality on multicore

(MC2) scheduling framework for shared-cache and DRAM-bank partitioning. Extensive experimental

evaluations were conducted to quantify the effects of isolation vs. sharing with respect to both the shared

cache as well as the DRAM banks. Furthermore, these evaluations were conducted to reflect the analysis

assumptions used at different criticality levels—higher-criticality tasks are provisioned more pessimistically,

while lower-criticality tasks may be provisioned based on observed average-case performance. Based on

the results of these experimental evaluations, a linear-programming-based optimization framework was
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developed to allow shared-cache and DRAM-bank partitions to be optimized to improve the overall platform

utilization within the context of the mixed-criticality analysis framework. This optimization balances the

cache and memory-bank allocation among the criticality levels, based on tradeoffs observed in experimental

evaluations of the execution time of tasks given different cache and memory-bank allocations. This work

combined recent advances in mixed-criticality scheduling, with work on hardware management, and showed

how these two orthogonal approaches can be used together to realize better overall platform utilization.

More recently in this line of work, we have considered challenges raised by data sharing among tasks

in the context of both mixed-criticality scheduling and hardware management. Hardware management

techniques have predominantly focused on providing isolation with respect to hardware resources, but data

sharing must fundamentally break some forms of isolation, thereby causing capacity loss, or a reduction in

schedulability. To address this issue, we developed inter- and intra-criticality data-sharing mechanisms, and

evaluated the extent to which they reduce data-sharing-related capacity loss.

6.2.2 Contention-Sensitive Locking2

While the RNLP enables fine-grained locking, there exist pathological resource-access patterns in which

the worst-case blocking behavior is the same or quite similar to existing coarse-grained locking protocols.

One such problematic, pathological case occurs when there is a high degree of transitive blocking. For

example, consider thatR1 requests D1 = {`a, `b},R2 requests D2 = {`b, `c},R3 requests D3 = {`c, `d}, etc.

In this case, a long transitive blocking chain can arise, that serializes all requests, even though some requests

in the chain do not conflict with one another. To address this issue, we developed the C-RNLP (Ward and

Anderson, 2014a; Jarrett et al., 2015), which allows some requests to “cut ahead” of others, so long as it does

not increase the blocking of earlier-timestamped requests. In the previous example, it may be possible forR3

to cut ahead of R2, and be satisfied concurrently with R1. By supporting such cutting ahead, we showed

that the worst-case blocking bound for each request is then contention sensitive, i.e., a function of only the

number of requests with which it directly conflicts.

2This subsection summarizes results from the following papers:
Jarrett, C., Ward, B., and Anderson, J. (2015). A contention-sensitive fine-grained locking protocol for multiprocessor real-time
systems. In Proceedings of the 23rd International Conference on Real-Time Networks and Systems, pages 3–12.
Ward, B. and Anderson, J. (2014a). A contention-sensitive multi-resource locking protocol for multiprocessor real-time systems. In
Proceedings of the 35th IEEE Real-Time Systems Symposium Work-in-Progress Session, pages 11–12

165



6.2.3 Improved Soft Real-Time Tardiness Bounds3

As discussed briefly in Chapter 2, G-EDF, or other G-EDF-like schedulers, can schedule soft-real-time

systems with no capacity loss and bounded deadline tardiness. The tightest known bounds on deadline

tardiness are derived through compliant vector analysis (CVA), which derives per-task tardiness bounds.

Using CVA, Erickson and Anderson (2012) showed that by setting the priority point (or the “effective

deadline” used as the scheduling priority) differently from the actual deadline as in G-EDF, it is possible

to create schedulers with tardiness less than that of G-EDF as computed via CVA. Based on this work, we

showed how to formulate CVA as a linear program, which in turn allows for priority points to be determined

based on different optimization objectives and constraints (Ward et al., 2013a; Erickson et al., 2014). For

example, we considered minimizing the maximum per-task lateness, and maximum relative lateness, or li/pi.

6.3 Future Work

Next we discuss future research directions that could improve or build upon the results presented in this

dissertation.

6.3.1 GPUs

As described previously, real-time locking protocols can be applied to manage GPUs (Elliott et al.,

2013; Elliott, 2015). Task interactions with GPUs can be decomposed into three phases, memory transfer to

the GPU, execute on the GPU, and transfer data back to system memory. Current GPUs require that GPU

computations execute non-preemptively, and therefore are amenable to being managed by a non-preemptive

mutex. However, for the purpose of predictable execution times, memory transfers to the GPU copy engine(s)

may be modeled using preemptive mutual exclusion. (In practice, due to implementation concerns, chunks

of data must be transferred non-preemptively.) A potential area of future research may be to manage copy

engines as preemptive resources, and to apply idleness analysis to a GPU-management framework such as

GPUSync (Elliott et al., 2013; Elliott, 2015).

3This subsection summarizes results from the following papers:
Ward, B., Erickson, J., and Anderson, J. (2013a). A linear model for setting priority points in soft real-time systems. In Proceedings
of Real-Time Systems: The past, the present, and the future–A conference organized in celebration of Alan Burns’s sixtieth birthday,
pages 192–205.
Erickson, J., Anderson, J., and Ward, B. (2014). Fair lateness scheduling: Reducing maximum lateness in G-EDF-like scheduling.
Real-Time Systems, 50(1):5–47.
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LP-based blocking analysis. Recently, Brandenburg (2013b) has pioneered a new methodology for express-

ing and computing blocking bounds through linear programming. This analysis technique has been shown to

result in tighter blocking bounds in some cases. A promising direction for continued research on the RNLP

family of locking protocols would be to develop LP-based blocking analysis for different RNLP variants.

As briefly discussed in Sections 3.6 and 4.1.2.3, some of the insights in the fine-grained blocking analysis

presented herein may be able to be leveraged in a linear program.

Extending idleness analysis. Idleness analysis has been presented herein as a technique for globally sched-

uled systems. An interesting avenue of future research is to consider how idleness analysis may be extended

to partitioned or clustered systems, and whether or not idleness analysis is at all advantageous for such

platform configurations.

Also, recently, Yang et al. (2015) presented a new analysis framework in which the effects of blocking

are incorporated directed into an LP-based schedulability analysis. This work shares a similar motivation to

idleness analysis; traditional blocking analysis can be pessimistic because it assumes all requests experience

the worst-case blocking, when in fact only some requests may experience such severe blocking. An interesting

avenue for future work is to try to combine these two analysis techniques, perhaps by incorporating ideas or

concepts from idleness analysis into the LP-based response-time analysis.

Tight lower bound on synchronization-related utilization loss. In all previous approaches to accounting

for synchronization in schedulability, blocking results in utilization loss. For s-oblivious schedulability

tests, there exist locking protocols with O(m) worst-case s-oblivious pi-blocking per task. It is possible

all n tasks request resources, so the total utilization loss could be O(nm). In the s-aware case, previous

work has produced optimal locking protocols with O(n) worst-case blocking per task. Liu and Anderson

(2012) presented an s-aware soft real-time schedulability test with O(m) utilization loss, assuming constant

suspension lengths. By combining that analysis with an O(n) s-aware blocking bound, the total utilization

loss is also O(nm). Finally, the schedulability test for idleness analysis (Ward, 2015) explicitly incorporates

an O(nm) utilization-loss term, even for preemptive resources.

Given that each of these three research directions has arrived at similar results, it seems that Ω(nm)

utilization loss may be a tight lower bound for synchronization-related utilization loss. While pieces of this

puzzle have been proven optimal, for example, the s-oblivious and s-aware blocking bounds, no lower-bound
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results exist for synchronization-related utilization loss. A potential avenue for future research is to show

than Ω(nm) synchronization-related utilization loss is fundamental.

Real-time lock-based transactional memory. Transactional memory (TM) is a paradigm for synchroniza-

tion that dates back over 20 years (Herlihy and Moss, 1993), but that has seen significant recent interest.

In a TM system, programmers need only specify regions of code that must execute effectively atomically,

and the TM system resolves all conflicts, and ensures transactions are executed safely. In comparison to

the lock-based synchronization mechanisms described previously in Chapter 2, TM has the benefit of being

much simpler to use—developers need not concern themselves with coarse- vs. fine-grained synchronization,

or which objects to lock and unlock when and where. This is particularly advantageous in safety-critical

real-time systems, as parallel algorithms are notoriously difficult to both develop, as well as prove correct.

TM has the potential of significantly easing the certification process of parallel algorithms in safety-critical

systems, provided a certifiable real-time TM system can be developed.

An interesting avenue for future research is to apply the RNLP in the context of a lock-based real-time TM

system, thereby enabling strong run-time parallelism, in addition to improved blocking bounds in comparison

to coarse-grained approaches. The most significant hurdle in this line of research is in the static-analysis

tools necessary to automatically convert transactional semantics into the appropriate lock/unlock calls to the

previously presented locking protocols. To use the RNLP in particular, static-analysis tools must be able to

determine at compile time all objects that may potentially be accessed within the transaction.

The results of static analysis are necessary in order to determine which resources to lock and unlock,

as well as compute blocking bounds for the RNLP. However, if determining the set of potentially accessed

resources is too difficult or pessimistic, less-pessimistic locking protocols (recall the RNLP is not work

conserving, in order to attain asymptotic optimality) could be used in conjunction with idleness analysis,

which was discussed in Section 5.2.4.2. Bounding the amount of idleness a particular transaction can induce

in the system may be less pessimistic than bounding the amount of blocking it may experience, particularly if

the set of accessed resources must be grossly over-approximated. Furthermore, idleness analysis may enable

the use of less-complex, lower-overhead locking protocols to be used instead of the RNLP. However, great

care must be taken to avoid deadlock, which is a significant concern when not leveraging a deadlock-free

algorithm such as the RNLP.
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