

Linux-rt: Turning a General Purpose
OS into a Real-Time OS

Peter Zijlstra
(peterz@infradead.org)

Red Hat Inc.

mailto:peterz@infradead.org

What is Linux

● An open source Unix-like Kernel
● Started by Linus Torvalds in 1991
● MINIX
● GNU – RMS - 1983

Linux

● SMP (1-4096 CPUs)
● Preemptive
● 24 Major

Architectures
● Countless

Boards/Systems

● 1000's of drivers
● 1000000's LOC
● 1000's contributors
● 1 community

linux-rt

● Turn Linux, a GPOS into a RTOS
● Because:

– People are adding GPOS features to RTOS'

– Gives the programmer a single framework

– It's fun

To Preempt or not to Preempt?

● !Preempt
– Analyze all sections

– Legacy code

– Too much

● Preempt
– Replace non-

preemptible constructs
with preemptible ones

– Solve priority inversion

Preempt_RT

● IRQs
● Spinlocks
● RCU
● Per CPU data
● RW locks

● Threaded IRQs
● Mutexes
● Preemptible RCU (*)
● +Locks/Atomic
● Mutexes (*)

Threaded IRQs

● Kernel thread per ISR
● Generic hard-IRQ handler

– Disables IRQ line

– Wakes thread

● No generic code in IRQ context
● Memory allocators can be preemptible

Spinlocks/Mutexes

● raw_spinlock_t
– For the few real sites

● spinlock -> mutex
– spin_lock_irq*() doesn't alter IRQ state

● Implicit preempt-disable dependencies

Preemptible RCU

● Fun subject to talk about with Paul McKenney
● Implicit dependencies on preempt_disable

– Lockdep annotation (?)

Per CPU data

● Add a lock
● Migration
● Atomics
● Trades performance for preemptibility

RW locks

● Non-deterministic
– Waiting for unbounded # of readers

● Complex boost chain
● Map to mutex (*)

– Sacrifice performance in favour or determinism

Priority Inversion

● Priority Inheritance
– Needs simplification (?)

● RCU Boost (*)
● Work Queues (deferred work)

Semaphores vs. PI

● No resource owner
– Convert to Mutex

– Convert to Completions

● Eradicate semaphores (?)

Trouble

●More preemption
– Bigger race windows

– More likely to hit deadlock

Lockdep

● Runtime lock dependencies
● Lock classes

– Lock initialization site

– Requires annotations

● Validate DAG
– Generates warnings before locking up

Lockdep

● Annotating classes
– I-nodes

● Class per filesystem

– Recursion
● mutex_lock_nested()

– Trees
● Balanced trees

– Limited depth
– Class for each level

● Unbalanced
– (?)

– RCU (?)

Tracing

● Quickly find problems
– IRQ-off latency

– Preempt-off latency

– OOPS-history

● Uses compiler prologue hooks (mcount)
● Records call trace history
● Catches races with predicates

Lockstat

● Lock usage statistics
– contentions/acquisitions

– wait-/hold-time

– bounces

– contention points

● Shows bottlenecks
– files_lock

Really cool stuff

● Lockless (read-side) pagecache
– RCU

● Concurrent (write-side) pagecache
– Optimistic locking/RCU

– Lock-coupling

Current developments

● Hot topics:
– RT balancer

– RCU Boost

– Adaptive spin

– RW locks

– Group scheduling (bandwidth limiting)

– Lockless get_user_pages()

RT balancer

● FIFO/RR
● SMP real-time invariant
● CPUSET root domain aware
● How to handle affinity (?)

RCU boost

● Prio boost all read-side sections on sync_rcu()
● Force grace period using krcupreemptd

Adaptive Spin

● Avoid context switch overhead
● Spin while owner is running

RW-locks

● Multi reader support
– Reader limit

● Full PI
– Boosts all the readers

– Prio-fair

● Horribly complex code (?)

RT group scheduling

● cgroups
– Task groups

– Hierarchical

● FIFO/RR
● Bandwidth limits

– Safe for !root users

● PI issues (?)

Lockless get_user_pages()

● Locklessly walk the page tables
● Avoids mmap_sem (rwlock)
● Improvements for:

– DIO

– futexes

Future Developments

● Things we hope will happen:
– Partitioned EDF scheduler (?)

● Deadline inheritance (?)

– Soft-RT scheduler class (?)

– RT network extensions (?)

– ...

EDF

● Partitioned EDF scheduler
● Needs to extend the already complex PI

framework
– Deadline inheritance

Soft-RT

● Integrated or its own class?

RT network extensions

● RX memory reserves
– Overlaps with swap over network effort

● Protocols (RTP?)

...

● We hope people will contribute their ideas
● And code
● Join the Linux(-rt) community
● Help obsolete the -rt patches

Academics vs Linux

● 'Cultural' differences
● Academic credit for work on Linux (?)
● Educate the kernel people

– Various backgrounds
● Physics, Math, HW Eng., MD

– Mental context switches
– Can't remember yesterday

How to do a kernel project

● Involve from the start
● Release early, release often
● Feedback on LKML

– Act on it

– Convince the other he's wrong

● Don't give up!

In theory, there is no difference
between theory and practice.

But, in practice, there is.

