
A Time Complexity Lower Bound for Adaptive Mutual

Exclusion∗

Yong-Jik Kim

Tmax Soft Research Center

272-6 Seohyeon-dong, Seongnam-si

Gyeonggi-do, Korea 463-824

Email: jick@tmax.co.kr

James H. Anderson

Department of Computer Science

University of North Carolina at Chapel Hill

Chapel Hill, NC 27599-3175

Email: anderson@cs.unc.edu

September 2005

Abstract

We consider the time complexity of adaptive mutual exclusion algorithms, where “time” is measured by

counting the number of remote memory references required per critical-section access. We establish a lower

bound that precludes a deterministic algorithm with O(log k) time complexity (in fact, any deterministic

o(k) algorithm), where k is “point contention.”

∗Work supported by NSF grants CCR 9732916, CCR 9972211, CCR 9988327, ITR 0082866, and CCR 0208289. This work
was presented in preliminary form at the 15th International Symposium on Distributed Computing [13], where it received the best
student paper award.

1 Introduction

In this paper, we consider the time complexity of adaptive mutual exclusion algorithms. A mutual exclusion
algorithm is adaptive if its time complexity is a function of the number of contending processes [4, 8, 11, 14, 15].
Two notions of contention have been considered in the literature: “interval contention” and “point contention”
[1]. The interval contention over a computation H is the number of processes that are active in H, i.e., that
execute outside of their noncritical sections. The point contention over H is the maximum number of processes
that are active at the same state in H. Note that point contention is always at most interval contention.
Throughout this paper, we let N denote the number of processes in the system. Also, unless stated otherwise,
k denotes the point contention experienced by an arbitrary process while it is active.

The time complexity measure considered in this paper is motivated by work on local-spin synchronization
algorithms. In local-spin algorithms, all busy waiting is by means of read-only loops in which one or more locally-
accessible “spin variables” are repeatedly tested. The ability to locally access a shared variable is provided on
both distributed shared-memory (DSM) and cache-coherent (CC) machines, as illustrated in Figure 1. In a
DSM machine, each processor has its own memory module that can be accessed without accessing the global
interconnection network. On such a machine, a shared variable can be made locally accessible by storing it in
a local memory module. In a CC machine, each processor has a private cache, and some hardware protocol is
used to enforce cache consistency (i.e., to ensure that all copies of the same variable in different local caches are
consistent). On such a machine, a shared variable becomes locally accessible by migrating to a local cache line.

Because our main interest is local-spin algorithms, we determine the time complexity of a mutual exclusion
algorithm by counting the number of remote memory references generated by one process to enter and then
exit its critical section. A remote memory reference (RMR) is a memory access that requires a traversal of
the global processors-to-memory interconnect. This complexity measure is known as the RMR time complexity
measure [6].

In prior work, we presented an adaptive mutual exclusion algorithm with O(min(k, log N)) RMR time
complexity that is based only on reads and writes [4]. (A similar algorithm has also been presented by Afek et
al. [3].) In other prior work, we established a worst-case RMR time bound of Ω(log N/ log log N) for mutual
exclusion algorithms (adaptive or not) based on reads, writes, or comparison primitives1 such as test-and-
set and compare-and-swap [5]. This result shows that the Θ(log N) worst-case RMR time complexity of our
O(min(k, log N)) algorithm is close to optimal (specifically, within a factor of Θ(log log N)). In fact, we believe
it is optimal: we conjecture that Ω(log N) is a tight lower bound for this class of algorithms.

The Ω(log N/ log log N) lower bound mentioned above does not mention k, so it tells us very little about
RMR time complexity under low contention. The best we can say is that Ω(log k/ log log k) remote references
are required. In particular, the Ω(log N/ log log N) lower bound is established by inductively considering longer
and longer computations, the first of which involves N processes, and the last of which may involve fewer
processes. If we start instead with k process, then a computation is obtained with O(k) processes (and hence
O(k) point contention at each state) in which some process performs Ω(log k/ log log k) remote references.

If Ω(log N) is a tight lower bound, as conjectured above, then presumably a lower bound of Ω(log k) would
follow as well. This suggests two interesting possibilities: in all likelihood, either Ω(min(k, log N)) is in fact a
tight lower bound (i.e., the algorithm in [4] is optimal), or it is possible to design an adaptive algorithm with
O(log k) RMR time complexity (i.e., Ω(log k) is tight). Indeed, the problem of designing an O(log k) algorithm
using only reads and writes has been mentioned in at least two papers [4, 8].

1A comparison primitive conditionally updates a shared variable after first testing that its value meets some condition.

1

P P

MM

Interconnect

P P

C C

Interconnect

M M

.

. . .

(a) (b)

Figure 1: (a) DSM model. (b) CC model. In both insets, ‘P’ denotes a processor, ‘C’ a cache, and ‘M’ a
memory module.

In this paper, we show that an O(log k) algorithm in fact does not exist. In particular, we prove the following.

Given any k, define N̄ = N̄(k) = (2k + 4)2(2
k−1). For any N ≥ N̄ , and for any N -process mutual

exclusion algorithm based on reads, writes, or comparison primitives, a computation exists involving
Θ(k) processes in which some process performs Ω(k) remote memory references to enter and exit its
critical section.

Our proof of this result extends techniques used by us and others in several earlier papers [2, 5, 7, 9, 10, 12, 16].

The rest of the paper is organized as follows. In Section 2, our system model is defined. Our lower bound
proof is then sketched in Section 3. A formal proof of it is given in Section 4. We conclude in Section 5.

2 Definitions

In this section, we provide definitions pertaining to atomic shared-memory systems that will be used in obtain-
ing our lower bound. In the following subsections, we define our model of an atomic shared-memory system
(Section 2.1), state the properties required of a mutual exclusion algorithm implemented within this model
(Section 2.2), and present a categorization of events that allows us to accurately deduce the network traffic
generated by an algorithm in a system with coherent caches (Section 2.3). The same model was used earlier by
us to establish the previously-mentioned Ω(log N/ log log N) lower bound [5]. Therefore, most of the material
in this section is taken directly from [5].

2.1 Atomic Shared-Memory Systems

Our model of an atomic shared-memory system is similar to that used by Anderson and Yang [7].

An atomic shared-memory system S = (C, P, V) consists of a set of computations C, a set of processes P ,
and a set of variables V . A computation is a finite sequence of events. To complete the definition of an atomic
shared-memory system, we must formally define the notion of an “event” and state the requirements to which
events and computations are subject. This is done in the remainder of this subsection.

2

Informally, an event is a particular execution of an atomic statement of some process that involves reading
and/or writing one or more variables. Each variable is local to at most one process and is remote to all other
processes. (Note that we allow variables that are remote to all processes; thus, our model applies to both
DSM and CC systems.) The locality relationship is static, i.e., it does not change during a computation. A
local variable may be shared; that is, a process may access local variables of other processes. An initial value
is associated with each variable. An event is local if it does not access any remote variables, and is remote
otherwise.

Events, informally considered. Below, formal definitions pertaining to events are given; here, we present
an informal discussion to motivate these definitions. An event is executed by a particular process, and may
access at most one variable that is remote to that process (by reading, writing, or executing a comparison
primitive), plus any number of local (shared) variables.2 Thus, we allow arbitrarily powerful operations on local
variables. Since our proof applies to systems with reads, writes, and comparison primitives, it is important
to formally define the notion of a comparison primitive. We define a comparison primitive to be an atomic
operation on a shared variable v expressible using the following pseudo-code.

Compare and fg(v, old , new)
temp := v;
if v = old then v := f(old , new) fi;
return g(temp, old , new)

For example, compare-and-swap can be defined by defining f(old , new) = new and g(temp, old , new) = old .
We call an execution of such a primitive a comparison event . As we shall see, our formal definition of a
comparison event, which is given later in this section, generalizes the functionality encompassed by the pseudo-
code above by allowing arbitrarily many local shared variables to be accessed.

As an example, assume that variables a, b, and c are local to process p and variables x and y are remote to
p. Then, the following atomic statements by p are allowed in our model.

statement s1: a := a + 1; b := c + 1;
statement s2: a := x;
statement s3: y := a + b;
statement s4: compare-and-swap(x, 0, b)

For example, if every variable has an initial value of 0, and if these four statements are executed in order,
then we will have the following four events.

e1: p reads 0 from a, writes 1 to a, reads 0 from c, and writes 1 to b; /∗ local event ∗/
e2: p reads 0 from x and writes 0 to a; /∗ remote read from x ∗/
e3: p reads 0 from a, reads 1 from b, and writes 1 to y; /∗ remote write to y ∗/
e4: p reads 0 from x, reads 1 from b, and writes 1 to x /∗ comparison primitive execution on x ∗/

On the other hand, the following atomic statements by p are not allowed in our model, because s5 accesses
two remote variables at once, and s6 and s7 cannot be expressed as a comparison primitive.

2We do not distinguish between private and shared variables in our model. In an actual algorithm, some variables local to a
process might be private and others shared.

3

statement s5: x := y; /∗ accesses two remote variables ∗/
statement s6: a := x; x := 1; /∗ fetch-and-store (swap) on a remote variable ∗/
statement s7: x := x + b /∗ fetch-and-add on a remote variable ∗/

Describing each event as in the preceding examples is inconvenient, ambiguous, and prone to error. For
example, if statement s7 is executed when x = 0 ∧ b = 1 holds, then the resulting event can be described in the
same way as e4 is. (Thus, e4 is allowed as an execution of s4, yet disallowed as an execution of s7.) In order to
systematically represent the class of allowed events, we need a more refined formalism.

Definitions pertaining to events. An event e is denoted [p, Op, R, W], where p ∈ P (the set of processes).
We call Op the operation of event e, denoted op(e). Op determines what kind of event e is, and can be one of
the following: ⊥, read(v), write(v), or compare(v, α), where v is a variable in V and α is a value from the value
domain of v. Informally, e can be a local event, a remote read, a remote write, or an execution of a comparison
primitive. (The precise definition of these terms is given below.)

The sets R and W consist of pairs (v, α), where v ∈ V . This notation represents an event of process p that
reads the value α from variable v for each element (v, α) ∈ R, and writes the value α to variable v for each
element (v, α) ∈ W . Each variable in R is assumed to be distinct; the same is true for W . We define Rvar(e),
the set of variables read by e, to be {v | (v, α) ∈ R}, and Wvar(e), the set of variables written by e, to be
{v | (v, α) ∈ W}. We also define var(e), the set of all variables accessed by e, to be Rvar(e) ∪ Wvar(e). We
say that an event e writes (respectively, reads) a variable v if v ∈ Wvar(e) (respectively, v ∈ Rvar(e)) holds,
and that it accesses any variable that it writes or reads. We also say that a computation H contains a write
(respectively, read) of v if H contains some event that writes (respectively, reads) v. Finally, we say that process
p is the owner of e = [p, Op, R, W], denoted owner(e) = p. For brevity, we sometimes use ep to denote an event
owned by process p.

Our lower bound is dependent on the Atomicity property stated below. This assumption requires each
remote event to be an atomic read operation, an atomic write operation, or a comparison-primitive execution.

Atomicity property: Each event e = [p, Op, R, W] must satisfy one of the conditions below.

• If Op = ⊥, then e does not access any remote variables. (That is, all variables in var(e) are local to p.)
In this case, we call e a local event.

• If Op = read(v), then e reads exactly one remote variable, which must be v, and does not write any remote
variable. (That is, (v, α) ∈ R holds for some α, v is not in Wvar(e), and all other variables [if any] in
var(e) are local to p.) In this case, e is called a remote read event.

• If Op = write(v), then e writes exactly one remote variable, which must be v, and does not read any remote
variable. (That is, (v, α) ∈ W holds for some α, v is not in Rvar(e), and all other variables [if any] in
var(e) are local to p.) In this case, e is called a remote write event.

• If Op = compare(v, α), then e reads exactly one remote variable, which must be v. We say that e is a
comparison event in this case. Comparison events must be either successful or unsuccessful.

– e is a successful comparison event if the following hold: (v, α) ∈ R (i.e., e reads the value α from v),
and (v, β) ∈ W for some β �= α (i.e., e writes to v a value different from α).

– e is an unsuccessful comparison event if e does not write v, i.e., v /∈ Wvar(e) holds.

In either case, e does not write any other remote variable. �

4

Our notion of an unsuccessful comparison event includes both comparison-primitive invocations that fail
(i.e., v �= old in the pseudo-code given for Compare and fg above) and also those that do not fail but leave the
remote variable that is accessed unchanged (i.e., v = old ∧ v = f(old , new)). In the latter case, we simply
assume that the remote variable v is not written. We categorize both cases as unsuccessful comparison events
because this allows us to simplify certain cases in our lower bound proof. (On the other hand, we allow a remote
write event on v to preserve the value of v, i.e., to write the same value as v had before the event.)

Note that the Atomicity property allows arbitrarily powerful operations on local (shared) variables. For
example, if variable v, ranging over {0, . . . , 10}, is remote to process p, and arrays a[1..10] and b[1..10] are local
to p, then an execution of the following statement is a valid event by p with operation compare(v, 0).

if v = 0 then

v :=
“P10

j=1 a[j]
”

mod 11;

for j := 1 to 10 do a[j] := b[j] od
else

for j := 1 to v do b[j] := a[j] + v od
fi

In this case, Wvar(e) is {v, a[1..10]} if e reads v = 0 and writes a nonzero value (i.e., e is a successful
comparison event), {a[1..10]} if e reads and writes v = 0, and {b[1..v]} if e reads a value between 1 and 10 from
v.

It is important to note that, saying that an event ep writes (reads) a variable v is not equivalent to saying
that ep is a remote write (read) operation on v; ep may also write (read) v if v is local to process p, or if p is a
comparison event that accesses v.

We say that two events e = [p, Op, R, W] and f = [q, Op′, R′, W ′] are congruent, denoted e ∼ f , if and only
if the following conditions are met.

• p = q;
• Op = Op′, where equality means that both operations are the same with the same arguments (v and/or α).

Informally, two events are congruent if they execute the same operation on the same remote variable. For
read and write events, the values read or written may be different. For comparison events, the values read
or written (if successful) may be different, but the parameter α must be the same. (It is possible that a
successful comparison operation is congruent to an unsuccessful one.) Note that e and f may access different
local variables.

Definitions pertaining to computations. The definitions given until now have mostly focused on events.
We now present requirements and definitions pertaining to computations.

The value of variable v at the end of computation H, denoted value(v, H), is the last value written to v in H

(or the initial value of v if v is not written in H). The last event to write to v in H is denoted writer event(v, H),3

and its owner is denoted writer(v, H). If v is not written by any event in H, then we let writer(v, H) = ⊥ and
writer event(v, H) = ⊥.

We use 〈e, . . .〉 to denote a computation that begins with the event e, 〈e, . . . , f〉 to denote a computation
beginning with event e and ending with event f , and 〈〉 to denote the empty computation. We use H ◦ G to

3Although our definition of an event allows multiple instances of the same event, we assume that such instances are distinguishable
from each other. (For simplicity, we do not extend our notion of an event to include an additional identifier for distinguishability.)

5

denote the computation obtained by concatenating computations H and G. An extension of computation H

is a computation of which H is a prefix. For a computation H and a set of processes Y , H | Y denotes the
subcomputation of H that contains all events in H of processes in Y .4 If G is a subcomputation of H, then
H −G is the computation obtained by removing all events in G from H. Computations H and G are equivalent
with respect to Y if and only if H | Y = G | Y . A computation H is a Y -computation if and only if H = H | Y .
For simplicity, we abbreviate the preceding definitions when applied to a singleton set of processes. For example,
if Y = {p}, then we use H | p to mean H | {p} and p-computation to mean {p}-computation. Two computations
H and G are congruent, denoted H ∼ G, if either both H and G are empty, or if H = 〈e〉 ◦H ′ and G = 〈f〉 ◦G′,
where e ∼ f and H ′ ∼ G′.

Until this point, we have placed no restrictions on the set of computations C of an atomic shared-memory
system S = (C, P, V) (other than restrictions pertaining to the kinds of events that are allowed in an individual
computation). The restrictions we require are as follows.

P1: If H ∈ C and G is a prefix of H, then G ∈ C.
— Informally, every prefix of a valid computation is also a valid computation.

P2: If H ◦ 〈ep〉 ∈ C, G ∈ C, G | p = H | p, and if value(v, G) = value(v, H) holds for all v ∈ Rvar(ep), then
G ◦ 〈ep〉 ∈ C.
— Informally, if two computations H and G are not distinguishable to process p, if p can execute event ep after

H, and if all variables in Rvar(ep) have the same values after H and G, then p can execute ep after G.

P3: If H ◦ 〈ep〉 ∈ C, G ∈ C, and G | p = H | p, then G ◦ 〈e′p〉 ∈ C for some event e′p such that ep ∼ e′p.
— Informally, if two computations H and G are not distinguishable to process p, and if p can execute event ep

after H, then p can execute a congruent operation after G.

P4: For any H ∈ C, H ◦ 〈ep〉 ∈ C implies that α = value(v, H) holds, for all (v, α) ∈ Rvar(ep).
— Informally, only the last value written to a variable can be read.

P5: For any H ∈ C, if both H ◦ 〈ep〉 ∈ C and H ◦ 〈e′p〉 ∈ C hold for two events ep and e′p, then ep = e′p.
— Informally, each process is deterministic. This property is included in order to simplify bookkeeping in our

proofs.

Property P3 precisely defines the class of allowed events. In particular, if process p is enabled to execute a
certain statement, then that statement must generate the same operation regardless of the execution of other
processes. For example, if a is a local shared variable and x and y are remote variables, then the following
statement is not allowed.

statement s8: if a = 0 then x := 1 else y := 1 fi

This is because the event generated by s8 may have either write(x) or write(y) as its operation, depending on
the value possibly written to a by other processes.

2.2 Mutual Exclusion Systems

We now define a special kind of atomic shared-memory system, namely (atomic) mutual exclusion systems,
which are our main interest. An atomic mutual exclusion system S = (C, P, V) is an atomic shared-memory
system that satisfies the properties below.

4The subcomputation H | Y is not necessarily a valid computation in a given system S, that is, an element of C. However, we
can always consider H | Y to be a computation in a technical sense, i.e., it is a sequence of events.

6

process p: • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ •

NCS
(statp = ncs)

Enterp

Entry Section
(statp = entry)

CSp

www
Critical section

Exit Section
(statp = exit)

Exitp

NCS
(statp = ncs)

)
“section” of p

¯
p-computation¯
transition
events of p

Figure 2: Transition events of an atomic mutual exclusion system. In this figure, NCS stands for “noncritical
section,” a circle (◦) represents a non-transition event, and a bullet (•) represents a transition event.

Each process p has a local auxiliary variable statp that represents which section in the mutual exclusion
algorithm p is currently in: statp ranges over ncs (for noncritical section), entry , or exit , and is initially ncs.
(For simplicity, we assume that each critical-section execution is vacuous.) Process p also has three “dummy”
auxiliary variables ncsp, entryp, and exitp. These variables are accessed only by the following events.

Enterp = [write(entryp), {}, {(statp, entry), (entryp, 0)}, p]

CSp = [write(exitp), {}, {(statp, exit), (exitp, 0)}, p]

Exitp = [write(ncsp), {}, {(statp, ncs), (ncsp, 0)}, p]

Event Enterp causes p to transit from its noncritical section to its entry section. Event CSp causes p to
transit from its entry section to its exit section.5 Event Exitp causes p to transit from its exit section to its
noncritical section. This behavior is depicted in Figure 2.

We define variables entryp, exitp, and ncsp to be remote to all processes. This assumption allows us to
simplify bookkeeping, because it implies that each of Enterp, CSp, and Exitp is congruent only to itself. (This
is the sole purpose of defining these three variables.)

The allowable transitions of statp are as follows: for all H ∈ C,

H ◦ 〈Enterp〉 ∈ C if and only if value(statp, H) = ncs;

H ◦ 〈CSp〉 ∈ C only if value(statp, H) = entry ;

H ◦ 〈Exitp〉 ∈ C only if value(statp, H) = exit .

In our proof, we only consider computations in which each process enters and then exits its critical section
at most once. Thus, we henceforth assume that each computation contains at most one Enterp event for each
process p. In addition, an atomic mutual exclusion system is required to satisfy the following.

Exclusion: For all H ∈ C, if both H ◦ 〈CSp〉 ∈ C and H ◦ 〈CS q〉 ∈ C hold, then p = q.

Progress: Given H ∈ C, define X = {q ∈ P | value(statq, H) �= ncs}. If X is nonempty, then there exists an
X-computation G such that H◦G◦〈ep〉 ∈ C, where p ∈ X and ep is either CSp (if value(statp, H) = entry)
or Exitp (if value(statp, H) = exit).

The Exclusion property precludes multiple critical-section events from being simultaneously “enabled.” Al-
though we assume that each critical-section execution is vacuous, we can certainly “augment” the algorithm by
replacing each event CSp by a set of events that represents p’s critical-section execution. If two events CSp and
CS q are simultaneously enabled after a computation H, then we can interleave the critical-section executions
of p and q, thus violating mutual exclusion. The Exclusion property states that such a situation does not arise.

5Each critical-section execution of p is captured by the single event CSp, so statp changes directly from entry to exit .

7

The Progress property is implied by livelock-freedom, although it is strictly weaker than livelock-freedom.
In particular, it allows the possibility of infinitely extending H such that no active process p executes CSp or
Exitp. This weaker formalism is sufficient for our purposes.

2.3 Cache-Coherent Systems

On cache-coherent (CC) shared-memory systems, some remote-variable accesses may be handled locally, without
causing interconnection network traffic. Our lower-bound proof applies to such systems without modification.
This is because we do not count every remote event, but only certain “critical” events that generate cache
misses. (Actually, as explained below, some events that we consider critical might not generate cache misses
in certain system implementations, but this has no asymptotic impact on our proof.) The notion of a critical
event presented here is taken directly from [5].

Precisely defining the class of such events in a way that is applicable to the myriad of cache implementations
that exist is exceedingly difficult. We partially circumvent this problem by assuming idealized caches of infinite
size: a cached variable may be updated or invalidated but it is never replaced by another variable. Note that, in
practice, cache size and associativity limitations should only increase the number of cache misses. In addition,
in order to keep the proof manageable, we allow cache misses to be both undercounted and overcounted. In
particular, as explained below, in any realistic cache system, at least a constant fraction (but not necessarily
all) of all critical events generate cache misses. Thus, a single cache miss may be associated with Θ(1) critical
events, resulting in overcounting up to a constant factor. Note that this overcounting has no effect on our
asymptotic lower bound. Also, an event that generates a cache miss may be considered noncritical, resulting in
undercounting, which may be of more than a constant factor. Note that this undercounting can only strengthen
our asymptotic lower bound. Therefore, an asymptotic lower bound on the number of critical events is also an
asymptotic lower bound on the number of actual cache misses.

Our definition of a critical event is given below. This definition is followed by a rather detailed explanation
in which various kinds of caching protocols are considered.

Definition: Let S = (C, P, V) be an atomic mutual exclusion system. Let ep be an event in H ∈ C. Then, we
can write H as F ◦ 〈ep〉 ◦G, where F and G are subcomputations of H. We say that ep is a critical event in H

if and only if one of the following conditions holds:

Transition event: ep is one of Enterp, CSp, or Exitp.

Critical read: There exists a variable v, remote to p, such that op(ep) = read(v) and F | p does not contain
a read from v.
— Informally, ep is the first event of p that reads v in H.

Critical write: There exists a variable v, remote to p, such that ep is a remote write event on v (i.e.,
op(ep) = write(v)), and writer(v, F) �= p.
— Informally, ep is a remote write event on v, and either ep is the first event that writes to v in H (i.e.,

writer(v, F) = ⊥), or ep overwrites a value that was written by another process.

Critical successful comparison: There exists a variable v, remote to p, such that ep is a successful compar-
ison event on v (i.e., op(ep) = compare(v, α) for some value of α and v ∈ Wvar(ep)), and writer(v, F) �= p.
— Informally, ep is a successful comparison event on v, and either ep is the first event that writes to v in H (i.e.,

writer(v, F) = ⊥), or ep overwrites a value that was written by another process.

8

Critical unsuccessful comparison: There exists a variable v, remote to p, such that ep is an unsuccessful
comparison event on v (i.e., op(ep) = compare(v, α) for some value of α and v /∈ Wvar(ep)), writer(v, F) �=
p, and either
(i) F | p does not contain an unsuccessful comparison event on v, or
(ii) F can be written as F1 ◦ 〈fq〉 ◦ F2, where fq = writer event(v, F), such that F2 | p does not contain
an unsuccessful comparison event on v.
— Informally, ep must read the initial value of v (if writer(v, F) = ⊥) or a value that is written by another process

q. Moreover, either (i) ep is the first unsuccessful comparison on v by p in H, or (ii) ep is the first such event by

p after some other process has written to v (via fq).
6 �

Note that state transition events do not actually cause cache misses; these events are defined as critical so
that certain cases can be combined in the proofs that follow. A process executes only three transition events per
critical-section execution, so defining transition events as critical does not affect our asymptotic lower bound.

It is possible that the first read of v by p, the first write or successful comparison event on v by p, and the
first unsuccessful comparison event on v by p (i.e., Case (i) in the definition above) are all considered critical.
Depending on the system implementation, the second and third of these events to occur might not generate a
cache miss. However, even in such a case, the first such event will always generate a cache miss, and hence at
least a third of all such “first” critical events will actually incur real interconnect traffic. Hence, considering all
of these events to be critical has no asymptotic impact on our lower bound.

All caching protocols are based on either a write-through or a write-back scheme. In a write-through scheme,
all writes go directly to shared memory. In a write-back scheme, a remote write to a variable v may create a
cached copy of v, so that subsequent writes to v do not cause cache misses. With either scheme, if cached copies
of v exist on other processors when such a write occurs, then to ensure consistency, these cached copies must be
either invalidated or updated. In the rest of this subsection, we consider in some detail the question of whether
our notion of a critical write and a critical comparison is reasonable under the various caching protocols that
arise from these definitions.

First, consider a system in which there are no comparison events, in which case it is enough to consider only
critical write events. If a write-through scheme is used, then all remote write events cause interconnect traffic,
so consider a write-back scheme. In this case, a write ep to a remote variable that is not the first write to v by
p is considered critical only if writer(v, F) = q holds for some q �= p, which implies that v is stored in a local
cache line of process q. (Since all caches are assumed to be infinite, writer(v, F) = q implies that q’s cached
copy of v has not been invalidated.) In such a case, ep must either invalidate or update the cached copy of v

(depending on the means for ensuring consistency), thereby generating interconnect traffic.

Next, consider comparison events. A successful comparison event on a remote variable v writes a new value
to v. Thus, the reasoning given above for ordinary writes applies to successful comparison events as well. This
leaves only unsuccessful comparison events. Recall that an unsuccessful comparison event on a remote variable
v does not actually write v. Thus, the reasoning above does not apply to such events.

In the remainder of this discussion, let ep denote an unsuccessful comparison event on a remote variable
v, where Case (ii) in the definition applies. Then, some other process q writes to v (via a write or successful
comparison event, or even a local, read, or unsuccessful comparison event, if v is local to q) prior to ep but
after p’s most recent unsuccessful comparison event on v, and also after p’s most recent successful comparison

6This definition is more complicated than those for critical writes and successful comparisons because an unsuccessful comparison
event on v by p does not actually write v. Thus, if a sequence of such events is performed by p while v is not written by other
processes, then only the first such event should be considered critical.

9

and/or remote write event on v. Consider the interconnect traffic generated, assuming an invalidation scheme
for ensuring cache consistency. In this case, p’s previous cached copy of v is invalidated prior to ep, so ep must
generate interconnect traffic in order to read the current value of v, unless an earlier read of v by p (after q’s
write) exists. Thus, ep fails to generate interconnect traffic only if there is an earlier read of v by p (after q’s
write), say fp, that does. Note that fp is either a “first” read of v by p or a noncritical read. The former
case may happen at most once per remote variable; in the latter case, we can “charge” the interconnect traffic
generated by fp to ep.

The last possibility to consider is that of an unsuccessful comparison event ep implemented within a caching
protocol that uses updates to ensure consistency. In this case, q’s write in the scenario above updates p’s cached
copy, and hence ep may not generate interconnect traffic. (Note that, for interconnect traffic to be avoided
in this case, the hardware must be able to distinguish a failed comparison event on a cached variable from
a successful comparison event or a failed comparison on a non-cached variable.) Therefore, our lower bound
does not apply to a system that uses updates to ensure consistency and that has the ability to execute failed
comparison events on cached variables without generating interconnect traffic. (If an update scheme is used,
but the hardware is incapable of avoiding interconnect traffic when executing such failed comparison events,
then our lower bound obviously still applies.) In fact, an algorithm with O(1) time complexity in such systems
is presented in [5].

As a final comment on our notion of a critical event, notice that whether an event is considered critical
depends on the particular computation that contains the event, specifically the prefix of the computation
preceding the event. Therefore, when saying that an event is (or is not) critical, the computation containing
the event must be specified.

3 Proof Strategy

In Section 4, we show that for any positive k, there exists some N̄ such that, for any mutual exclusion system
S = (C, P, V) with |P | ≥ N̄ , there exists a computation H such that some process p experiences point contention
k and executes at least k critical events to enter and exit its critical section. In this section, we sketch the key
ideas of the proof.

3.1 Process Groups and Regular Computations

Our proof focuses on a special class of computations called “regular” computations. The Ω(log / log log N)
lower bound mentioned earlier was also proved by considering such computations, so most of the definitions in
this subsection are taken directly from [5]. A regular computation consists of events of two groups of processes,
“active processes” and “finished processes.” Informally, an active process is a process in its entry section,
competing with other active processes; a finished process is a process that has executed its critical section once,
and is in its noncritical section. (Recall that we consider only computations in which each process executes is
critical section at most once.) These properties follow from Condition RF4, given later in this section.

Definition: Let S = (C, P, V) be a mutual exclusion system, and H be a computation in C. We define Act(H),
the set of active processes in H, and Fin(H), the set of finished processes in H, as follows.

Act(H) = {p ∈ P | H | p �= 〈〉 and 〈Exitp〉 is not in H}
Fin(H) = {p ∈ P | H | p �= 〈〉 and 〈Exitp〉 is in H} �

10

All Processes

Erased Processes
(perform no events in the

computation under consideration)

Active Processes Finished Processes
(have entered and exited
their CS’s exactly once)

Invisible Processes
(no information flow
among each other)

Promoted Processes
(will be empty for a
regular computation)︸ ︷︷ ︸

Roll-forward Set

���������
���������

�
��

�
��

Figure 3: Process groups.

Initially, we start with a regular computation in which all the processes in P are active. The proof proceeds
by inductively constructing longer and longer regular computations, until the desired lower bound is attained.
The regularity condition defined below ensures that no participating process has “knowledge” of any other
process that is active.7 This has two consequences: we can “erase” any active process (i.e., remove its events
from the computation) and still get a valid computation; “most” active processes have a “next” non-transition
critical event. In each induction step, we append to each of the n active processes (except at most one) one
next critical event. These next critical events may introduce unwanted information flow, i.e., these events may
cause an active process to acquire knowledge of another active process, resulting in a non-regular computation.
Informally, such information flow is problematic because an active process p that learns of another active process
may start busy waiting. If p busy waits via a local spin loop, then it might not execute any more critical events,
in which case the induction fails.

In some cases, we can eliminate all information flow by simply erasing some active processes. Sometimes
erasing alone does not leave enough active processes for the next induction step. In this case, we partition the
active processes into two categories: “invisible” processes and “promoted” processes. The invisible processes
(that are not erased — see below) will constitute the set of active processes for the next regular computation in
the induction. No process is allowed to have knowledge of another process that is invisible. The promoted pro-
cesses are processes that have been selected to “roll forward.” A process that is rolled forward finishes executing
its entry, critical, and exit sections, and returns to its noncritical section. (Both of these techniques, erasing
and rolling forward, have been used previously to prove other lower bounds related to the mutual exclusion
problem [5, 7, 9, 10, 12], as well as several other lower bounds for concurrent systems [2, 16].) Processes are
allowed to have knowledge of promoted or finished processes. Although invisible processes may have knowledge
of promoted processes, once all promoted processes have finished execution, the regularity condition holds again
(i.e., all active processes are invisible). The various process groups we consider are depicted in Figure 3 (the
roll-forward set is discussed below).

The promoted and finished processes together constitute a “roll-forward set,” which must meet Condi-
tions RF1–RF5 below. Informally, Condition RF1 ensures that an invisible process is not known to any other
processes; RF2 and RF3 bound the number of possible conflicts caused by appending a critical event; RF4
ensures that the invisible, promoted, and finished processes behave as explained above; RF5 ensures that we
can erase any invisible process, maintaining that critical events (that are not erased) remain critical.

Definition: Let S = (C, P, V) be a mutual exclusion system, H be a computation in C, and RFS be a subset

7A process p has knowledge of another process q if p has read from some variable a value that is written either by q or another
process that has knowledge of q.

11

of P such that Fin(H) ⊆ RFS and H | p �= 〈〉 for each p ∈ RFS . We say that RFS is a valid roll-forward set
(RF-set) of H if and only if the following conditions hold.

RF1: Assume that H can be written as E ◦ 〈ep〉 ◦ F ◦ 〈fq〉 ◦ G.8 If p �= q and there exists a variable
v ∈ Wvar(ep) ∩ Rvar(fq) such that F does not contain a write to v (i.e., writer event(v, F) = ⊥), then
p ∈ RFS holds.
— Informally, if a process p writes to a variable v, and if another process q reads that value from v without any

intervening write to v, then p ∈ RFS holds.

RF2: For any event ep in H and any variable v in var(ep), if v is local to another process q (�= p), then either
q /∈ Act(H) or {p, q} ⊆ RFS holds.
— Informally, if a process p accesses a variable that is local to another process q, then either q is not an active

process in H, or both p and q belong to the roll-forward set RFS . Note that this condition does not distinguish

whether q actually accesses v or not, and conservatively requires q to be in RFS (or erased) even if q does not

access v. This is done in order to simplify bookkeeping.

RF3: Consider a variable v ∈ V and two different events ep and fq in H. Assume that both p and q are in
Act(H), p �= q, there exists a variable v such that v ∈ var(ep) ∩ var(fq), and there exists a write to v in
H. Then, writer(v, H) ∈ RFS holds.
— Informally, if a variable v is accessed by more than one processes in Act(H), then the last process in H to write

to v (if any) belongs to RFS .

RF4: For any process p such that H | p �= 〈〉,

value(statp, H) =

⎧⎪⎨
⎪⎩

entry if p ∈ Act(H) − RFS ,

entry or exit if p ∈ Act(H) ∩ RFS ,

ncs otherwise (i.e., p ∈ Fin(H)).

Moreover, if p ∈ Fin(H), then the last event by p in H is Exitp.
— Informally, if a process p participates in H (H | p �= 〈〉), then at the end of H, one of the following holds: (i) p

is in its entry section and has not yet executed its critical section (p ∈ Act(H) − RFS); (ii) p is in the process of

“rolling forward” and is in its entry or exit section (p ∈ Act(H)∩RFS); or (iii) p has already finished its execution

and is in its noncritical section (i.e., p ∈ Fin(H)).

RF5: For any event ep in H, if ep is a critical write or a critical comparison in H, then ep is also a critical
write or a critical comparison in H | ({p} ∪ RFS).
— Informally, if an event ep in H is a critical write or a critical comparison, then it remains critical if we erase all

processes not in RFS and different from p. �

Condition RF5 is used to show that the property of being a critical write/comparison is conserved when
considering certain related computations. Recall that, if ep is not the first event by p to write to v, then for
it to be critical, there must be a write to v by another process q in the subcomputation between p’s most
recent write (via a remote write or a successful comparison event) and event ep. Similarly, if ep is not the first
unsuccessful comparison by p on v, then for it to be critical, there must be a write to v by another process q

in the subcomputation between p’s most recent unsuccessful comparison on v and event ep. RF5 ensures that

8Here and in similar sentences hereafter, we are considering every way in which H can be so decomposed. That is, any pair of
events ep and fq inside H such that ep comes before fq defines a decomposition of H into E ◦ 〈ep〉 ◦ F ◦ 〈fq〉 ◦ G, and RF1 must
hold for any such decomposition.

12

if q is not in RFS , then other process q′ exists that is in RFS and that writes to v in the subcomputation in
question.

Note that a valid RF-set can be “expanded”: if RFS is a valid RF-set of computation H, then any set of
processes that participate in H, provided that it is a superset of RFS , is also a valid RF-set of H.

The invisible and promoted processes (which partition the set of active processes) are defined as follows.

Definition: Let S = (C, P, V) be a mutual exclusion system, H be a computation in C, and RFS be a valid
RF-set of H. We define InvRFS (H), the set of invisible processes in H, and PmtRFS (H), the set of promoted
processes in H, as follows.

InvRFS (H) = Act(H) − RFS

PmtRFS (H) = Act(H) ∩ RFS �

For brevity, we often omit the specific RF-set if it is obvious from the context, and simply use the notation
Inv(H) and Pmt(H). Finally, the regularity condition can be defined as “all the processes we wish to roll
forward have finished execution.”

Definition: A computation H in C is regular if and only if Fin(H) is a valid RF-set of H. �

3.2 Detailed Proof Overview

Initially, we start with a regular computation H1, where Act(H1) = P , Fin(H1) = {}, and each process has one
critical event. We then inductively show that other longer computations exist, the last of which establishes our
lower bound. Each computation is obtained by rolling forward or erasing some processes. We assume that P is
large enough to ensure that enough non-erased processes remain after each induction step for the next step to
be applied. The precise bound on |P | is given in Theorem 2.

At the jth induction step, we consider a computation Hj such that Act(Hj) consists of n processes that
execute j critical events each. We construct a regular computation Hj+1 such that Act(Hj+1) consists of
Ω(

√
n/k) processes, each of which executes j + 1 critical events in Hj+1. The construction method, formally

described in Lemma 7, is explained below. In constructing Hj+1 from Hj , we may erase some processes and
roll at most two processes forward. At the end of step k − 1, we have a regular computation Hk in which each
active process executes k critical events and Fin(Hk) ≤ 2(k − 1). Since active processes have no knowledge of
each other, we may erase all but one active process from Hk and obtain a valid computation. This computation
has exactly one active process and at most 2(k − 1) finished processes. Thus, its contention is at most 2k − 1.
Moreover, the remaining active process performs k critical events, proving the desired lower bound.

We now describe how Hj+1 is constructed from Hj . Let n = |Act(Hj)|. As shown in Lemma 5, among the n

processes in Act(Hj), at least n− 1 processes can execute an additional critical event before entering its critical
section. We call these events “next” critical events, and denote the corresponding set of processes by Y . We
consider two cases, based on the variables remotely accessed by these next critical events.

Erasing strategy. Assume that there exist Ω(
√

n) distinct variables that are remotely accessed by some next
critical events. For each such variable v, we select one process whose next critical event accesses v. Let Y ′

be the set of selected processes. This situation is depicted in Figure 4. We now eliminate remaining possible
conflicts among processes in Y ′ by constructing a “conflict graph” G as follows.

13

. .
 .

Y’: subset of Act(Hj)

1
2
3
4
5

Events that are in Hj
(includes j critical
events per process)

Newly appended events
(includes one next critical event
per process, each accessing
a distinct variable, and perhaps
some noncritical events)

. .
 .

Z: saved
processes

1
2
3
4
5

No conflicts among active processes:
ready for the next induction step

: processes that are erased

: processes that are saved

: �conflicts�
1

2

3

4 5

�conflict graph�

Figure 4: Erasing strategy. For simplicity, processes in Fin(Hj) are not shown.

Each process p in Y ′ is considered a vertex in G. By induction, process p has j critical events in Act(Hj)
and one next critical event. For each of the j + 1 critical events of p, (i) if the event accesses the same variable
as the next critical event of some other process q, introduce edge (p, q). In addition, (ii) if the next critical
event of p remotely accesses a local variable of q, also introduce edge (p, q).

Since each process in Y ′ accesses a distinct remote variable in its next critical event, it is clear that each
process generates at most j +1 edges by rule (i) and at most one edge by rule (ii). By applying Turán’s theorem
(Theorem 1), we can find a subset Z of Y ′ such that |Z| = Ω(

√
n/j) and their critical events do not conflict

with each other. By retaining Z and erasing all other active processes, we can eliminate all conflicts. Thus, we
can construct Hj+1.

Roll-forward strategy. Assume that the number of distinct variables that are remotely accessed by some
next critical events is O(

√
n). This situation is depicted in Figure 5. Since there are Θ(n) next critical events,

there exists a variable v that is remotely accessed by next critical events of Ω(
√

n) processes. Let Yv be the set
of these processes. First, we retain Yv and erase all other active processes. Let the resulting computation be
H ′. We then arrange the next critical events of Yv by placing write, comparison, and read events in that order.
Then, all next write events (of v), except for the last one, are overwritten by subsequent writes, and hence
cannot create any information flow. (That is, even if some other process later reads v, it cannot gather any
information of these “next” writers, except for the last one.) Furthermore, we can arrange comparison events
such that at most one of them succeeds, as follows.

Assume that the value of v is α after all the next write events are executed. We first append all comparison
events with an operation that can be written as compare(v, β) such that β �= α. These comparison events must
fail. We then append all the remaining comparison events, namely, events with operation compare(v, α). The
first successful event among them (if any) changes the value of v. Thus, all subsequent comparison events must
fail.

Thus, among the next events (that are not erased so far), the only information flow that arises is from the
“last writer” event LW (v) and from the “successful comparison” event SC (v) to all other next comparison and
read events of v.

Let pLW and pSC be the owner of LW (v) and SC (v), respectively. (Depending on the computation, we may

14

. .
 .

Yv: subset of Act(Hj)

Events that are in Hj
(includes j critical
events per process)

Newly appended events
(includes one next critical event
per process, each accessing
variable v, and perhaps
some noncritical events)

Arrange the next critical events in order of
writes / comparison primitives / reads:

writes comparisons reads

�Last Writer� LW(v) �Successful Comparison� SC(

information flow

Figure 5: Roll-forward strategy. For simplicity, processes in Fin(Hj) are not shown.

have only one of them, or neither.) We then roll pLW and pSC forward by generating a regular computation G

from H ′ such that Fin(G) = Fin(H ′) ∪ {pLW, pSC}.
If either pLW or pSC executes at least k critical events before reaching its noncritical section, then the

Ω(k) lower bound easily follows. Therefore, we can assume that either of pLW and pSC performs fewer than
k critical events while being rolled forward. Each critical event of pLW or pSC that is appended to H ′ may
generate information flow only if it reads a variable v that is written by another process in H ′. Condition RF3
guarantees that if there are multiple processes that write to v, the last writer in H ′ is not active. Because
information flow from an inactive process is allowed, a conflict arises only if there is a single process that writes
to v in H ′. Thus, each critical event of pLW or pSC conflicts with at most one process in Yv, and hence can
erase at most one process. (Appending a noncritical event to H ′ cannot cause any processes to be erased. In
particular, if a noncritical remote read by pLW (respectively, pSC) is appended, then pLW (respectively, pSC)
must have previously read the same variable. By RF3, if the last writer is another process, then that process is
not active.)

Therefore, the entire roll-forward procedure erases fewer than 2k processes from Act(H ′) = Yv. We can
assume |P | is sufficiently large to ensure that

√
n > 4k. This ensures that Ω(

√
n) processes survive after the

entire procedure. (Actually, as seen in Theorem 2, we only ensure that Ω(
√

n/k) processes survive, in order to
simplify bookkeeping. This results in a larger bound on |P |. However, it is only of secondary interest, since our
main goal is a lower bound on the number of critical events.) Thus, we can construct Hj+1.

4 Detailed Lower Bound Proof

In this section, we establish our lower-bound theorem. Throughout this section, we assume the existence
of a fixed mutual exclusion system S = (C, P, V). We began by stating six lemmas concerning mutual ex-
clusion systems as defined here that were proved previously (in particular, in the paper that establishes the
Ω(log N/ log log N) lower bound mentioned earlier) [5].

According to Lemma 1, stated next, any invisible process can be safely “erased.”

Lemma 1 Consider a computation H and two sets of processes RFS and Y . Assume the following:

• H ∈ C; (1)
• RFS is a valid RF-set of H; (2)

15

• RFS ⊆ Y . (3)

Then, the following hold: H | Y ∈ C; RFS is a valid RF-set of H | Y ; an event e in H | Y is a critical event
if and only if it is also a critical event in H.

The next lemma shows that the property of being a critical event is conserved across “similar” computations.
Informally, if process p cannot distinguish two computations H and H ′, and if p may execute a critical event
ep after H, then it can also execute a critical event e′p after H ′ ◦ G, where G is a computation that does not
contain any events by p. Moreover, if G satisfies certain conditions, then H ′ ◦G ◦ 〈e′p〉 satisfies RF5, preserving
the “criticalness” of e′p across related computations.

Lemma 2 Consider three computations H, H ′, and G, a set of processes RFS, and two events ep and e′p of a
process p. Assume the following:

• H ◦ 〈ep〉 ∈ C; (4)
• H ′ ◦ G ◦ 〈e′p〉 ∈ C; (5)
• RFS is a valid RF-set of H; (6)
• RFS is a valid RF-set of H ′; (7)
• ep ∼ e′p; (8)
• p ∈ Act(H); (9)
• H | ({p} ∪ RFS) = H ′ | ({p} ∪ RFS); (10)
• G | p = 〈〉; (11)
• no events in G write any of p’s local variables; (12)
• ep is critical in H ◦ 〈ep〉. (13)

Then, e′p is critical in H ′ ◦ G ◦ 〈e′p〉. Moreover, if the following conditions are true,

(A) H ′ ◦ G satisfies RF5;
(B) if ep is a comparison event on a variable v, and if G contains a write to v, then G | RFS also contains a
write to v.

then H ′ ◦ G ◦ 〈e′p〉 also satisfies RF5

The next lemma provides means of appending an event ep of an active process, while maintaining RF1 and
RF2. This lemma is used inductively in order to extend a computation with a valid RF-set. Specifically, (20)
guarantees that RF2 is satisfied, and (21) forces any information flow to originate from a process in RFS , thus
satisfying RF1. (Note that, if q = ⊥, q = p, or vrem /∈ Rvar(ep) holds, then no information flow occurs.)

Lemma 3 Consider two computations H and G, a set of processes RFS, and an event ep of a process p.
Assume the following:

• H ◦ G ◦ 〈ep〉 ∈ C; (14)
• RFS is a valid RF-set of H; (15)
• p ∈ Act(H); (16)
• H ◦ G satisfies RF1 and RF2; (17)
• G is an Act(H)-computation; (18)
• G | p = 〈〉; (19)
• if ep remotely accesses a variable vrem, then the following hold:

− if vrem is local to a process q, then either q /∈ Act(H) or {p, q} ⊆ RFS, and (20)

16

− if q = writer(vrem,H◦G), then one of the following hold: q = ⊥, q = p, q ∈ RFS, or vrem /∈ Rvar(ep). (21)

Then, H ◦ G ◦ 〈ep〉 satisfies RF1 and RF2. �

The next lemma gives us means for extending a computation by appending noncritical events.

Lemma 4 Consider a computation H, a set of processes RFS, and another set of processes Y = {p1, p2, . . . ,

pm}. Assume the following:

• H ∈ C; (22)
• RFS is a valid RF-set of H; (23)
• Y ⊆ InvRFS (H); (24)
• for each pj in Y , there exists a computation Lpj

, satisfying the following:
− Lpj

is a pj-computation; (25)
− H ◦ Lpj

∈ C; (26)
− Lpj

has no critical events in H ◦ Lpj
, that is, no event in Lpj

is a critical event in H ◦ Lpj
. (27)

Define L to be Lp1 ◦ Lp2 ◦ · · · ◦ Lpm
. Then, the following hold: H ◦ L ∈ C, RFS is a valid RF-set of H ◦ L,

and L contains no critical events in H ◦ L.

The next lemma states that if n active processes are competing for entry into their critical sections, then at
least n − 1 of them execute at least one more critical event before entering their critical sections.

Lemma 5 Let H be a computation. Assume the following:

• H ∈ C, and (28)
• H is regular (i.e., Fin(H) is a valid RF-set of H). (29)

Define n = |Act(H)|. Then, there exists a subset Y of Act(H), where n − 1 ≤ |Y | ≤ n, satisfying the
following: for each process p in Y , there exist a p-computation Lp and an event ep by p such that

• H ◦ Lp ◦ 〈ep〉 ∈ C; (30)
• Lp contains no critical events in H ◦ Lp; (31)
• ep /∈ {Enterp, CSp, Exitp}; (32)
• Fin(H) is a valid RF-set of H ◦ Lp; (33)
• ep is a critical event by p in H ◦ Lp ◦ 〈ep〉. (34)

The following lemma is used to roll processes forward. It states that as long as there exist promoted processes,
we can extend the computation with one more critical event of some promoted process, and at most one invisible
process must be erased due to the resulting information flow.

Lemma 6 Consider a computation H and set of processes RFS. Assume the following:

• H ∈ C; (35)
• RFS is a valid RF-set of H; (36)
• Fin(H) � RFS (i.e., Fin(H) is a proper subset of RFS). (37)

Then, there exists a computation G satisfying the following.

• G ∈ C; (38)
• RFS is a valid RF-set of G; (39)

17

• G can be written as H | (Y ∪RFS)◦L◦〈ep〉, for some choice of Y , L, and ep, satisfying the following:
− Y is a subset of Inv(H) such that |Inv(H)| − 1 ≤ |Y | ≤ |Inv(H)|, (40)
− Inv(G) = Y , (41)
− L is a Pmt(H)-computation, (42)
− L has no critical events in G, (43)
− p ∈ Pmt(H), and (44)
− ep is critical in G; (45)

• Pmt(G) ⊆ Pmt(H); (46)
• An event in H | (Y ∪ RFS) is critical if and only if it is also critical in H. (47)

The following theorem is due to Turán [17].

Theorem 1 (Turán) Let G = (V, E) be an undirected graph, with vertex set V and edge set E. If the average
degree of G is d, then an independent set9 exists with at least �|V |/(d + 1)� vertices. �

The remaining lemma is unique to the lower bound established here and thus is presented with a full proof.
This lemma provides the induction step that leads to the lower bound in Theorem 2.

Lemma 7 Let k be a positive integer, and H be a computation. Assume the following:

• H ∈ C, and (48)
• H is regular (i.e., Fin(H) is a valid RF-set of H). (49)

Define n = |Act(H)|. Also assume that

• n > 1, and (50)
• each process in Act(H) executes exactly c critical events in H. (51)

Then, one of the following propositions is true.

Pr1: There exist a process p in Act(H) and a computation F in C such that

• F ◦ 〈Exitp〉 ∈ C;
• F does not contain 〈Exitp〉;
• at most |Fin(H) + 2| processes participate in F ;
• p executes at least k critical events in F .

Pr2: There exists a regular computation G in C such that

• Act(G) ⊆ Act(H); (52)
• |Fin(G)| ≤ |Fin(H) + 2|; (53)
• |Act(G)| ≥ min(

√
n/(2c + 3),

√
n − 2k − 3); (54)

• each process in Act(G) executes exactly (c + 1) critical events in G. (55)

Proof: We first apply Lemma 5. Assumptions (28) and (29) stated in Lemma 5 follow from (48) and (49),
respectively. It follows that there exists a set of processes Y such that

• Y ⊆ Act(H), and (56)
• n − 1 ≤ |Y | ≤ n, (57)

9An independent set of a graph G = (V, E) is a subset V ′ ⊆ V such that no edge in E is incident to two vertices in V ′.

18

and for each process p ∈ Y , there exist a computation Lp and an event ep by p, such that

• H ◦ Lp ◦ 〈ep〉 ∈ C; (58)
• Lp is a p-computation; (59)
• Lp contains no critical events in H ◦ Lp; (60)
• ep /∈ {Enterp, CSp, Exitp}; (61)
• Fin(H) is a valid RF-set of H ◦ Lp; (62)
• ep is a critical event by p in H ◦ Lp ◦ 〈ep〉. (63)

For each p ∈ Y , by (59), (60), and p ∈ Y ⊆ Act(H), we have

Act(H ◦ Lp) = Act(H) ∧ Fin(H ◦ Lp) = Fin(H). (64)

By (50) and (57), Y is nonempty.

If Proposition Pr1 is satisfied by any process in Y , then the theorem is clearly true. Thus, we will assume,
throughout the remainder of the proof, that there is no process in Y that satisfies Pr1. Define EH as the set of
critical events in H of processes in Y .

EH = {fq in H | fq is critical in H and q ∈ Y }. (65)

Define E = EH ∪ {ep | p ∈ Y }, i.e., the set of all “past” and “next” critical events of processes in Y . From
(51), (56), and (57), it follows that

|E| = (c + 1)|Y | ≤ (c + 1)n. (66)

Define Vnext as the set of variables remotely accessed by some “next” critical events:

Vnext = {v ∈ V | there exists p ∈ Y such that ep remotely accesses v}. (67)

We consider two cases, depending on the size of Vnext.

Case 1: |Vnext| ≥ √
n (erasing strategy)

— In this case, we construct a subset Y ′ of Y by selecting one process for each variable in Vnext. Clearly, |Y ′| = |Vnext|.
We then construct a “conflict graph” G, where each vertex is a process in Y ′. By applying Theorem 1, we can find

a subset Z of Y ′ such that their critical events do not conflict with each other. By applying Lemma 1 to H and

Z ∪ Fin(H), and extending the resulting computation H ′ with next critical events, we construct a computation G that

satisfies Proposition Pr2.

By definition, for each variable v in Vnext, there exists a process p in Y such that ep remotely accesses v.
Therefore, we can arbitrarily select one such process for each variable v in Vnext and construct a set Y ′ of
processes such that

• Y ′ ⊆ Y , (68)
• if p ∈ Y ′, q ∈ Y ′ and p �= q, then ep and eq access different remote variables, and (69)
• |Y ′| = |Vnext| ≥

√
n. (70)

We now construct an undirected graph G = (Y ′, EG), where each vertex is a process in Y ′. To each process
y in Y ′ and each variable v ∈ var(ey) that is remote to y, we apply the following rules.

• R1: If v is local to a process z in Y ′, then introduce edge {y, z}.

19

• R2: If there exists an event fp ∈ E that remotely accesses v, and if p ∈ Y ′, then introduce edge {y, p}.
Because each variable is local to at most one process, and since (by the Atomicity property) an event can

access at most one remote variable, Rule R1 can introduce at most one edge per process. Since, by (51), y

executes exactly c critical events in H, by (69), Rule R2 can introduce at most c edges per process.

Combining Rules R1 and R2, at most c + 1 edges are introduced per process. Since each edge is counted
twice (for each of its endpoints), the average degree of G is at most 2(c + 1). Hence, by Theorem 1, there exists
an independent set Z such that

Z ⊆ Y ′, and (71)

|Z| ≥ |Y ′|/(2c + 3) ≥ √
n/(2c + 3), (72)

where the latter inequality follows from (70).

Next, we construct a computation G, satisfying Proposition Pr2, such that Act(G) = |Z|.
Define H ′ as

H ′ = H | (Z ∪ Fin(H)). (73)

By (56), (68), and (71), we have
Z ⊆ Y ′ ⊆ Y ⊆ Act(H), (74)

and hence,
Act(H ′) = Z ⊆ Act(H) ∧ Fin(H ′) = Fin(H). (75)

We now apply Lemma 1, with ‘RFS ’ ← Fin(H) and ‘Y ’ ← Z ∪ Fin(H). Among the assumptions stated in
Lemma 1, (1) and (2) follow from (48) and (49), respectively; (3) is trivial. It follows that

• H ′ ∈ C, (76)
• Fin(H) is a valid RF-set of H ′, and (77)
• an event in H ′ is critical if and only if it is also critical in H. (78)

Our goal now is to show that H ′ can be extended so that each process in Z has one more critical event. By
(75), (77), and by the definition of a finished process,

InvFin(H)(H ′) = Act(H ′) = Z. (79)

For each z ∈ Z, define Fz as
Fz = (H ◦ Lz) | (Z ∪ Fin(H)). (80)

By (74), we have z ∈ Y . Thus, applying (58), (59), (60), and (62) with ‘p’ ← z, it follows that

• H ◦ Lz ◦ 〈ez〉 ∈ C; (81)
• Lz is a z-computation; (82)
• Lz contains no critical events in H ◦ Lz; (83)
• Fin(H) is a valid RF-set of H ◦ Lz. (84)

By P1 (given in Section 2.1), (81) implies

H ◦ Lz ∈ C. (85)

We now apply Lemma 1, with ‘H’ ← H ◦ Lz, ‘RFS ’ ← Fin(H), and ‘Y ’ ← Z ∪ Fin(H). Among the

20

assumptions stated in Lemma 1, (1) and (2) follow from (85) and (84), respectively; (3) is trivial. It follows
that

• Fz ∈ C, and (86)
• an event in Fz is critical if and only if it is also critical in H ◦ Lz. (87)

Since z ∈ Z, by (73), (80), and (82), we have

Fz = H ′ ◦ Lz.

Hence, by (83) and (87),

• Lz contains no critical events in Fz = H ′ ◦ Lz. (88)

Let m = |Z| and index the processes in Z as Z = {z1, z2, . . . , zm}. Define L = Lz1 ◦ Lz2 ◦ · · · ◦ Lzm
. We

now use Lemma 4, with ‘H’ ← H ′, ‘RFS ’ ← Fin(H), ‘Y ’ ← Z, and ‘pj ’ ← zj for each j = 1, . . . , m. Among
the assumptions stated in Lemma 4, (22)–(24) follow from (76), (77), and (79), respectively; (25)–(27) follow
from (82), (86), and (88), respectively, with ‘z’ ← zj for each j = 1, . . . , m. This gives us the following.

• H ′ ◦ L ∈ C; (89)
• Fin(H) is a valid RF-set of H ′ ◦ L; (90)
• L contains no critical events in H ′ ◦ L. (91)

To this point, we have successfully appended a (possibly empty) sequence of noncritical events for each
process in Z. It remains to append a “next” critical event for each such process. Note that, by (82) and the
definition of L,

• L is a Z-computation. (92)

Thus, by (75) and (91), we have

Act(H ′ ◦ L) = Act(H ′) = Z ∧ Fin(H ′ ◦ L) = Fin(H ′) = Fin(H). (93)

By (73) and the definition of L, it follows that

• for each z ∈ Z, (H ◦ Lz) | ({z} ∪ Fin(H)) = (H ′ ◦ L) | ({z} ∪ Fin(H)). (94)

In particular, H ◦ Lz and H ′ ◦ L are equivalent with respect to z. Therefore, by (81), (89), and repeatedly
applying P3, it follows that, for each zj ∈ Z, there exists an event e′zj

, such that

• G ∈ C, where G = H ′ ◦ L ◦ E and E = 〈e′z1
, e′z2

, . . . , e′zm
〉; (95)

• e′zj
∼ ezj

. (96)

By the definition of E,

• E is a Z-computation. (97)

By (61), (93), and (96), we have

Act(G) = Act(H ′ ◦ L) = Z ∧ Fin(G) = Fin(H ′ ◦ L) = Fin(H). (98)

By (61), (63), and (96), it follows that for each zj ∈ Z, both ezj
and e′zj

access a common remote variable,
say, vj . Since Z is an independent set of G, by Rules R1 and R2, we have the following:

21

• for each zj ∈ Z, vj is not local to any process in Z; (99)
• vj �= vk, if j �= k.

Combining these two facts, we also have:

• for each zj ∈ Z, no event in E other than e′zj
accesses vj (either locally or remotely). (100)

We now establish two claims.

Claim 1: For each zj ∈ Z, if we let q = writer(vj , H ′ ◦ L), then one of the following holds: q = ⊥,
q = zj , or q ∈ Fin(H).

Proof of Claim: It suffices to consider the case when q �= ⊥ and q �= zj hold, in which case there
exists an event fq by q in H ′ ◦ L that writes to vj . By (73) and (92), we have q ∈ Z ∪ Fin(H). We
claim that q ∈ Fin(H) holds in this case. Assume, to the contrary,

q ∈ Z. (101)

We consider two cases. First, if fq is a critical event in H ′ ◦ L, then by (91), fq is an event of H ′,
and hence, by (78), fq is also a critical event in H. By (74) and (101), we have q ∈ Y . Thus, by
(65), we have fq ∈ EH , and hence fq ∈ E holds by definition. By (99) and (101), vj is remote to q.
Thus, fq remotely writes vj . By (101) and zj ∈ Z, we have

{q, zj} ⊆ Z, (102)

which implies {q, zj} ⊆ Y ′ by (71). From this, our assumption of q �= zj , and by applying Rule R2
with ‘y’ ← zj and ‘fp’ ← fq, it follows that edge {q, zj} exists in G. However, (102) then implies
that Z is not an independent set of G, a contradiction.

Second, assume that fq is a noncritical event in H ′ ◦ L. Note that, by (99) and (101), vj is remote
to q. Hence, by the definition of a critical event, there exists a critical event f̄q by q in H ′ ◦ L that
remotely writes to vj . However, this leads to contradiction as shown above. �

Claim 2: Every event in E is critical in G. Also, G satisfies RF5 with ‘RFS ’ ← Fin(H).

Proof of Claim: Define E0 = 〈〉; for each positive j, define Ej to be 〈e′z1
, e′z2

, . . . , e′zj
〉, a prefix of

E. We prove the claim by induction on j, applying Lemma 2 at each step. Note that, by (95) and
P1, we have the following:

H ′ ◦ L ◦ Ej ◦ 〈e′zj+1
〉 = H ′ ◦ L ◦ Ej+1 ∈ C, for each j. (103)

Also, by the definition of Ej , we have

Ej | zj+1 = 〈〉, for each j. (104)

At each step, we assume

• H ′ ◦ L ◦ Ej satisfies RF5 with ‘RFS ’ ← Fin(H). (105)

The induction base (j = 0) follows easily from (90), since E0 = 〈〉.

22

Assume that (105) holds for a particular value of j. Since zj+1 ∈ Z, by (74), we have

zj+1 ∈ Y, (106)

and zj+1 ∈ Act(H). By applying (64) with ‘p’ ← zj+1, and using (106), we also have Act(H◦Lzj+1) =
Act(H), and hence

zj+1 ∈ Act(H ◦ Lzj+1). (107)

By (104), if any event e′zk
in Ej accesses a local variable v of zj+1, then e′zk

accesses v remotely, and
hence v = vk by definition. However, by (99), vk cannot be local to zj+1. It follows that

• no events in Ej access any of zj+1’s local variables. (108)

We now apply Lemma 2, with ‘H’ ← H ◦ Lzj+1 , ‘H ′’ ← H ′ ◦ L, ‘G’ ← Ej , ‘RFS ’ ← Fin(H), ‘ep’ ←
ezj+1 , and ‘e′p’ ← e′zj+1

. Among the assumptions stated in Lemma 2, (5), (7), (9), (11), and (12)
follow from (103), (90), (107), (104), and (108), respectively; (8) follows by applying (96) with
‘zj ’ ← zj+1; (6) and (10) follow by applying (84) and (94), respectively, with ‘z’ ← zj+1; and (4)
and (13) follow by applying (58) and (63), respectively, with ‘p’ ← zj+1, and using (106). Moreover,
Assumption (A) follows from (105), and Assumption (B) is satisfied vacuously (with ‘v’ ← vj+1) by
(100).

It follows that e′zj+1
is critical in H ′ ◦L◦Ej ◦ 〈e′zj+1

〉 = H ′ ◦L◦Ej+1, and that H ′ ◦L◦Ej+1 satisfies
RF5 with ‘RFS ’ ← Fin(H). �

We now claim that Fin(H) is a valid RF-set of G. Condition RF5 was already proved in Claim 2.

• RF1 and RF2: Define Ej as in Claim 2. We establish RF1 and RF2 by induction on j, applying Lemma 3
at each step. At each step, we assume

• H ′ ◦ L ◦ Ej satisfies RF1 and RF2 with ‘RFS ’ ← Fin(H). (109)

The induction base (j = 0) follows easily from (90), since E0 = 〈〉.
Assume that (109) holds for a particular value of j. Note that, by (100), we have writer(vj+1, H

′◦L◦Ej) =
writer(vj+1, H ′ ◦ L). Thus, by (93) and Claim 1,

• if we let q = writer(vj+1, H
′ ◦L◦Ej), then one of the following holds: q = ⊥, q = zj+1, or q ∈ Fin(H) =

Fin(H ′ ◦ L). (110)

We now apply Lemma 3, with ‘H’ ← H ′ ◦L, ‘G’ ← Ej , ‘RFS ’ ← Fin(H), ‘ep’ ← e′zj+1
, and ‘vrem’ ← vj+1.

Among the assumptions stated in Lemma 3, (14), (15), (17), (19), and (21) follow from (103), (90), (109),
(104), and (110), respectively; (16) follows from (93) and zj+1 ∈ Z; (18) follows from (93) and (97); (20)
follows from (99) and (93). It follows that H ′ ◦ L ◦ Ej+1 satisfies RF1 and RF2 with ‘RFS ’ ← Fin(H).

• RF3: Consider a variable v ∈ V and two different events fq and gr in G. Assume that both q and r are
in Act(G), q �= r, and that there exists a variable v such that v ∈ var(fq) ∩ var(gr). (Note that, by (98),
{q, r} ⊆ Z.) We claim that these conditions can actually never arise simultaneously, which implies that
G vacuously satisfies RF3.

Since v is remote to at least one of q or r, without loss of generality, assume that v is remote to q. We
claim that there exists an event f̄q in E that accesses the same variable v. If fq is an event of E, we have

23

fq = e′zj
for some zj ∈ Z, and ezj

∈ E holds by definition; define f̄q = ezj
in this case. If fq is a noncritical

event in H ′ ◦ L, then by the definition of a critical event, there exists a critical event f̄q in H ′ ◦ L that
remotely accesses v. If fq is a critical event in H ′ ◦ L, then define f̄q = fq. (Note that, if f̄q is a critical
event in H ′ ◦L, then by (78) and (91), f̄q is also a critical event in H, and hence, by q ∈ Z, (74), and the
definition of E , we have f̄q ∈ E .)

It follows that, in each case, there exists an event f̄q ∈ E that remotely accesses v. If v is local to r, then
by Rule R1, G contains the edge {q, r}. On the other hand, if v is remote to r, then we can choose an
event ḡr ∈ E that remotely accesses v, in the same way as shown above. Hence, by Rule R2, G contains
the edge {q, r}. Thus, in either case, p and q cannot simultaneously belong to Z, a contradiction.

• RF4: By (90) and (98), it easily follows that G satisfies RF4 with respect to Fin(H).

Finally, we claim that G satisfies Proposition Pr2. By (98), which implies Act(G) = Z ⊆ Act(H), G satisfies
(52) and (53). By (72), we have (54). By (51), (78), and (91), each process in Z executes exactly c critical
events in H ′ ◦ L. Thus, by Claim 2, G satisfies (55).

Case 2: |Vnext| ≤ √
n (roll-forward strategy)

— In this case, there exists a variable v that is remotely accessed by next critical events of at least
√

n−1 processes. Let

Yv be the set of these processes. We retain Yv and erase all other active processes. Let the resulting computation be H ′.

We then roll forward processes pLW and pSC of Yv to generate a regular computation G. If either pLW or pSC executes

k or more critical events before finishing its execution, the resulting computation satisfies Proposition Pr1. Otherwise,

fewer than 2k processes are erased during the procedure, which makes G satisfy Proposition Pr2, with at least
√

n − 2k

active processes.

For each variable vj in Vnext, define Yvj
= {p ∈ Y | ep remotely accesses vj}. By (57) and (67), |Vnext| ≤

√
n

implies that there exists a variable v in Vnext such that |Yv| ≥ (n − 1)/
√

n holds. (In the rest of Case 2, we
consider v to be a fixed variable.) Then, the following holds:

|Yv| ≥ (n − 1)/
√

n >
√

n − 1. (111)

Define
H ′ = H | (Yv ∪ Fin(H)). (112)

Using Yv ⊆ Y ⊆ Act(H), we also have

Act(H ′) = Yv ⊆ Act(H) ∧ Fin(H ′) = Fin(H). (113)

We now apply Lemma 1, with ‘RFS ’ ← Fin(H) and ‘Y ’ ← Yv ∪ Fin(H). Among the assumptions stated in
Lemma 1, (1) and (2) follow from (48) and (49), respectively; (3) is trivial. It follows that

• H ′ ∈ C, (114)
• Fin(H) is a valid RF-set of H ′, and (115)
• an event in H ′ is critical if and only if it is also critical in H. (116)

Our goal now is to show that H ′ can be extended to a computation G (defined later), so that each process
in Yv has one more critical event. By (113), (115), and by the definition of a finished process,

InvFin(H)(H ′) = Act(H ′) = Yv. (117)

24

For each s ∈ Yv, define Fs as
Fs = (H ◦ Ls) | (Yv ∪ Fin(H)). (118)

Since Yv ⊆ Y , we have s ∈ Y . Thus, applying (58), (59), (60), and (62) with ‘p’ ← s, it follows that

• H ◦ Ls ◦ 〈es〉 ∈ C; (119)
• Ls is an s-computation; (120)
• Ls contains no critical events in H ◦ Ls; (121)
• Fin(H) is a valid RF-set of H ◦ Ls. (122)

By P1, (119) implies
H ◦ Ls ∈ C. (123)

We now apply Lemma 1, with ‘H’ ← H ◦ Ls, ‘RFS ’ ← Fin(H), and ‘Y ’ ← Yv ∪ Fin(H). Among the
assumptions stated in Lemma 1, (1) and (2) follow from (123) and (122), respectively; (3) is trivial. It follows
that

• Fs ∈ C, and (124)
• an event in Fs is critical if and only if it is also critical in H ◦ Ls. (125)

Since s ∈ Yv, by (112), (118), (120), and (124), we have

• Fs = H ′ ◦ Ls ∈ C. (126)

Hence, by (121) and (125),

• Ls contains no critical events in Fs = H ′ ◦ Ls. (127)

We now show that the events in {Ls | s ∈ Yv} can be “merged” by applying Lemma 4. We arbitrarily
index Yv as {s1, s2, . . . , sm}, where m = |Yv|. (Later, we construct a specific indexing of Yv to reduce
information flow.) Let L = Ls1 ◦Ls2 ◦ · · · ◦Lsm

. Apply Lemma 4, with ‘H’ ← H ′, ‘RFS ’ ← Fin(H), ‘Y ’ ← Yv,
and ‘pj ’ ← sj for each j = 1, . . . , m. Among the assumptions stated in Lemma 4, (22)–(24) follow from (114),
(115), and (117), respectively; (25)–(27) follow from (120), (126), and (127), respectively, with ‘s’ ← sj for each
j = 1, . . . , m. This gives us the following.

• H ′ ◦ L ∈ C; (128)
• Fin(H) is a valid RF-set of H ′ ◦ L; (129)
• L contains no critical events in H ′ ◦ L. (130)

By (112) and the definition of L, we also have,

• for each s ∈ Yv, (H ◦ Ls) | ({s} ∪ Fin(H)) = (H ′ ◦ L) | ({s} ∪ Fin(H)); (131)
• for each s ∈ Yv, (H ′ ◦ L) | s = (H ◦ Ls) | s. (132)

We now re-index the processes in Yv so that information flow among them is minimized. We place next
critical events of Yv by placing write, comparison, and read events in that order. Furthermore, we can arrange
comparison events such that at most one of them succeeds, as explained in Section 3. Let (s1, s2, . . . , sm) be
the indexing of Yv thus constructed, and E be the appended computation that consists of next critical events
by processes in Y . Then, we have the following:

• G ∈ C, where G = H ′ ◦ L ◦ E and E = 〈e′s1 , e′s2 , . . . , e′sm〉; (133)
• e′sj ∼ esj . (134)

By the definition of E,

25

• E is an Yv-computation. (135)

By (61), (130), and (134), L ◦ E does not contain any transition events. Moreover, by the definition of L

and E, (L ◦ E) | p �= 〈〉 implies p ∈ Yv, for each process p. Combining these assertions with (113), we have

Act(G) = Act(H ′ ◦ L) = Act(H ′) = Yv ∧
Fin(G) = Fin(H ′ ◦ L) = Fin(H ′) = Fin(H).

(136)

We now state and prove two claims regarding G. Claim 3 follows easily from the re-indexing of Yv and
construction of E, described above.

Claim 3: Events in E appear in the following order, where α is a fixed value in the range of v and
W (v), C1(v), C2(v), and R(v) are sets of events.

• events in W (v): each event e′s in W (v) satisfies op(e′s) = write(v);
• events in C1(v): each event e′s in C1(v) satisfies op(e′s) = compare(v, βs) for some βs �= α;
• events in C2(v): each event e′s in C2(v) satisfies op(e′s) = compare(v, α);
• events in R(v): each event e′s in R(v) satisfies op(e′s) = read(v).

Moreover, in the computation G, after all events in W (v) are executed, and before any event in C2(v)
is executed, v has the value α. All events in C1(v) (if any) are unsuccessful comparisons. At most one
event in C2(v) is a successful comparison. (Note that a successful comparison event writes a value
other than α, by definition. Thus, if there is a successful comparison, then all subsequent comparison
events must fail.) Define LW (v), the “last write,” and SC (v), the “successful comparison,” as follows:

LW (v) =

{
the last event in W (v), if W (v) �= {},
writer event(v, H ′ ◦ L), if W (v) = {};

SC (v) =

{
the successful comparison in C2(v), if C2(v) contains one,
⊥, otherwise.

Then, the last process to write to v (if any) is either SC (v) (if SC (v) is defined) or LW (v) (other-
wise). �

Before establishing our next claim, Claim 4, we define pLW and pSC as owner(LW (v)) and owner(SC (v)),
respectively. If LW (v) (respectively, SC (v)) equals ⊥, then pLW (respectively, pSC) also equals ⊥. We also
define RFS as

RFS = Fin(H) ∪ {p | p ∈ {pLW, pSC} and p �= ⊥}. (137)

By the definition of Yv, for each p ∈ Yv, ep remotely accesses v. In particular,

• for each p ∈ Yv, v is remote to p. (138)

Note that “expanding” a valid RF-set does not falsify any of RF1–RF5. Therefore, using (129), (136), and
Fin(H) ⊆ RFS ⊆ Fin(H) ∪ Yv, it follows that

• RFS is a valid RF-set of H ′ ◦ L. (139)

We now establish Claim 4, stated below.

Claim 4: Every event in E is critical in G. Also, G satisfies RF5.

26

Proof of Claim: Define E0 = 〈〉; for each positive j, define Ej to be 〈e′s1 , e′s2 , . . . , e′sj 〉, a prefix
of E. We prove the claim by induction on j, applying Lemma 2 at each step. Note that, by (133)
and P1, we have the following:

H ′ ◦ L ◦ Ej ◦ 〈e′sj+1〉 = H ′ ◦ L ◦ Ej+1 ∈ C, for each j. (140)

Also, by the definition of Ej , we have

Ej | sj+1 = 〈〉, for each j. (141)

At each step, we assume

• H ′ ◦ L ◦ Ej satisfies RF5. (142)

The induction base (j = 0) follows easily from (139), since E0 = 〈〉.
Assume that (142) holds for a particular value of j. Since sj+1 ∈ Yv ⊆ Y , we have

sj+1 ∈ Y, (143)

and sj+1 ∈ Act(H). By applying (64) with ‘p’ ← sj+1, and using (143), we also have Act(H◦Lsj+1) =
Act(H), and hence

sj+1 ∈ Act(H ◦ Lsj+1). (144)

Also, by (138),

• no events in Ej access any of sj+1’s local variables. (145)

We use Lemma 2 twice in sequence in order to prove Claim 4. First, by P3, and applying (119),
(128), and (132) with ‘s’ ← sj+1, it follows that there exists an event e′′sj+1 , such that

• H ′ ◦ L ◦ 〈e′′sj+1〉 ∈ C, and (146)
• e′′sj+1 ∼ esj+1 . (147)

We now apply Lemma 2, with ‘H’ ← H ◦ Lsj+1 , ‘H ′’ ← H ′ ◦ L, ‘G’ ← 〈〉, ‘RFS ’ ← Fin(H), ‘ep’ ←
esj+1 , and ‘e′p’ ← e′′sj+1 . Among the assumptions stated in Lemma 2, (5) and (7)–(9) follow from
(146), (129), (147), and (144), respectively; (11) and (12) hold vacuously by ‘G’ ← 〈〉; (4), (6),
and (10) follow by applying (119), (122), and (131), respectively, with ‘s’ ← sj+1; (13) follows by
applying (63) with ‘p’ ← sj+1, and using (143). It follows that

• e′′sj+1 is critical in H ′ ◦ L ◦ 〈e′′sj+1〉. (148)

Before applying Lemma 2 again, we establish the following preliminary assertions. Since Fin(H) ⊆
RFS , by applying (122) with ‘s’ ← sj+1, it follows that

• RFS is a valid RF-set of H ◦ Lsj+1 . (149)

We now establish a simple claim.

Claim 4-1: If esj+1 is a comparison event on v, and if Ej contains a write to v, then
Ej | RFS also contains a write to v.

27

Proof of Claim: By (134) and Claim 3, we have e′sj+1 ∈ C1(v) ∪ C2(v). Hence, by
Claim 3, if an event e′sk (for some k ≤ j) in Ej writes to v, then we have either e′sk ∈ W (v)
or e′sk = SC (v). If e′sk = SC (v), then since sk ∈ RFS holds by (137), Claim 4-1 is satisfied.
On the other hand, if e′sk ∈ W (v), then W (v) is nonempty. Moreover, since all events in
W (v) are indexed before any events in C1(v) ∪ C2(v), Ej contains all events in W (v).
Thus, by (137), both Ej and Ej | RFS contain LW (v), an event that writes to v. �

We now apply Lemma 2 again, with ‘H’ ← H ′ ◦ L, ‘H ′’ ← H ′ ◦ L, ‘G’ ← Ej , ‘ep’ ← e′′sj+1 , and
‘e′p’ ← e′sj+1 . Among the assumptions stated in Lemma 2, (4)–(7) and (11)–(13) follow from (146),
(140), (139), (139), (141), (145), and (148), respectively; (10) is trivial; (8) follows from (147) and by
applying (134) with ‘sj ’ ← sj+1; (9) follows from (136) and sj+1 ∈ Yv. Moreover, Assumption (A)
follows from (142), and Assumption (B) follows from Claim 4-1.

It follows that e′sj+1 is critical in H ′ ◦L◦Ej ◦ 〈e′sj+1〉 = H ′ ◦L◦Ej+1, and that H ′ ◦L◦Ej+1 satisfies
RF5. �

We now show that RFS is a valid RF-set of G. Condition RF5 was already proved in Claim 4.

• RF1 and RF2: Define Ej as in Claim 4. We establish RF1 and RF2 by induction on j, applying Lemma 3
at each step. At each step, we assume

• H ′ ◦ L ◦ Ej satisfies RF1 and RF2. (150)

The induction base (j = 0) follows easily from (139), since E0 = 〈〉.
Assume that (150) holds for a particular value of j. By Claim 3, if e′sj+1 reads v, then the following holds:
e′sj+1 ∈ C1(v)∪C2(v)∪R(v); every event in W (v) is contained in Ej ; writer(v, H ′ ◦L◦Ej) is one of LW (v)
or SC (v) or ⊥. Therefore, by (137), we have the following:

• if e′sj+1 remotely reads v, and if we let q = writer(v, H ′ ◦ L ◦ Ej), then either q = ⊥ or q ∈ RFS
holds. (151)

We now apply Lemma 3, with ‘H’ ← H ′ ◦ L, ‘G’ ← Ej , ‘ep’ ← e′sj+1 , and ‘vrem’ ← v. Among the
assumptions stated in Lemma 3, (14), (15), (17), (19), and (21) follow from (140), (139), (150), (141), and
(151), respectively; (16) follows from (136) and sj+1 ∈ Yv; (18) follows from (136) and (135); (20) follows
from (136) and (138). It follows that H ′ ◦ L ◦ Ej+1 satisfies RF1 and RF2.

• RF3: Consider a variable u ∈ V and two different events fp and gq in G. Assume that both p and q are
in Act(G), p �= q, that there exists a variable u such that u ∈ var(fp) ∪ var(gq), and that there exists a
write to u in G. Define r = writer(u, G). Our proof obligation is to show that r ∈ RFS .

By (136), we have {p, q} ⊆ Yv. If u = v, then by Claim 3, writer event(u, G) is either SC (u) (if SC (u) �= ⊥)
or LW (u) (otherwise). (Since we assumed that there exists a write to u, they both cannot be ⊥.) Thus,
by (137), we have r ∈ RFS .

On the other hand, assume u �= v. We now consider three cases.

– Consider the case in which both fp and gq are in H ′ ◦ L.

If there exists an event e′s in E such that u ∈ Wvar(e′s), then since u �= v, u is local to s. Since at
least one of p or q is different from s, without loss of generality, assume p �= s. Since p ∈ Yv and
Yv ⊆ Act(H), we have p /∈ Fin(H). Thus, by (129) and by applying RF2 with ‘RFS ’ ← Fin(H) to fp

28

in H ′ ◦ L, we have s /∈ Act(H ′ ◦ L). However, by (136), Act(H ′ ◦ L) = Yv, which contradicts s ∈ Yv

(which follows from (135), since e′s is an event of E).

It follows that there exists no event e′s in E such that u ∈ Wvar(e′s) holds. Thus, we have r =
writer(u, H ′ ◦L). By (129) and applying RF3 with ‘RFS ’ ← Fin(H) to fp and gq in H ′ ◦L, we have
writer(u, H ′ ◦ L) ∈ Fin(H) ⊆ RFS .

– Consider the case in which fp is in H ′◦L and gq = e′sk , for some sk ∈ Yv. By (136) and our assumption
that p and q are both in Act(G), we have p ∈ Act(H ′ ◦ L) and q ∈ Act(H ′ ◦ L). Since u �= v, u is
local to q. However, by (129), and by applying RF2 with ‘RFS ’ ← Fin(H) to fp in H ′ ◦ L, we have
q /∈ Act(H ′ ◦ L), a contradiction.

– Consider the case in which fp = e′sj and gq = e′sk , for some sj and sk in Yv. Since u is remote to at
least one of sj or sk, we have u = v, a contradiction.

• RF4: By (61), (129), and (136), it easily follows that G satisfies RF4 with respect to RFS .

Therefore, we have established that

• RFS is a valid RF-set of G. (152)

By (136) and (137), we have

PmtRFS (G) = {p | p ∈ {pLW, pSC} and p �= ⊥}.

In particular,
|PmtRFS (G)| ≤ 2. (153)

We now let the processes in Pmt(G) finish their execution by inductively appending critical events of processes
in Pmt(G), thus generating a sequence of computations G0, G1, . . . , Gl (where G0 = G), satisfying the
following:

• Gj ∈ C; (154)
• RFS is a valid RF-set of Gj ; (155)
• Pmt(Gj) ⊆ Pmt(G); (156)
• each process in Inv(Gj) executes exactly c + 1 critical events in Gj ; (157)
• the processes in Pmt(G) collectively execute exactly |Pmt(G)| · (c + 1) + j critical events in Gj ; (158)
• Inv(Gj+1) ⊆ Inv(Gj) and |Inv(Gj+1)| ≥ |Inv(Gj)| − 1 if j < l; (159)
• Fin(Gj) � RFS if j < l, and Fin(Gj) = RFS if j = l. (160)

At each induction step, we apply Lemma 6 to Gj in order to construct Gj+1, until Fin(Gj) = RFS is
established, at which point the induction is completed. The induction is explained in detail below.

Induction base (j = 0): Since G0 = G, (154) and (155) follow from (133) and (152), respectively.
Condition (156) is trivial.

By (51), (116), and (130), each process in Yv executes exactly c critical events in H ′ ◦ L. Thus,
by Claim 4, it follows that each process in Yv executes exactly c + 1 critical events in G. Since
Inv(G) ⊆ Yv, G satisfies (157). Since Pmt(G) ⊆ Yv, G satisfies (158).

Induction step: At each step, we assume (154)–(158). If Fin(Gj) = RFS , then (160) is satisfied
and we finish the induction, by letting l = j.

29

Assume otherwise. We apply Lemma 6 with ‘H’ ← Gj . Assumptions (35)–(37) stated in Lemma 6
follow from (154), (155), and Fin(Gj) �= RFS . The lemma implies that a computation Gj+1 exists
satisfying (154)–(160), as shown below.

Condition (154) and (155) follow from (38) and (39), respectively. Since Gj satisfies (156), by (46),
Gj+1 also satisfies (156). Since Inv(Gj+1) ⊆ Inv(Gj) by (40) and (41), by (43) and (47), and applying
(157) to Gj , it follows that Gj+1 satisfies (157). By (43)–(47), and applying (156) and (158) to Gj ,
it follows that Gj+1 satisfies (158). Condition (159) follows from (40) and (41). Thus, the induction
is established. �

We now show that l < 2k. Assume otherwise. By (153), and by applying (158) to Gl, it follows that there
exists a process p ∈ Pmt(G) (i.e., p is either pLW or pSC) such that p executes at least c + 1 + k critical events
in Gl. From (160) and p ∈ Pmt(G) ⊆ RFS , we get p ∈ Fin(Gl). Let F = Gl |RFS . By Lemma 1, and applying
(154) and (155), we have the following:

• F ∈ C;
• RFS is a valid RF-set of F ;
• p executes at least c + 1 + k critical events in F .

Since p ∈ Fin(Gl), by applying RF4 to p in Gl, it follows that the last event of Gl | p is Exitp. Since
Gl | p = F | p, F can be written as F ◦ 〈Exitp〉 ◦ · · · , where F is a prefix of F such that p executes at least c + k

critical events in F . However, p and F then satisfy Proposition Pr1, a contradiction.

Finally, we show that Gl satisfies Proposition Pr2. The following derivation establishes (54).

|Act(Gl)| = |InvRFS (Gl)| {by (160), RFS = Fin(Gl), thus Act(Gl) = InvRFS (Gl)}
≥ |InvRFS (G0)| − l {by repeatedly applying (159)}
= |Act(G) − RFS | − l {by the definition of “Inv”; note that G = G0}
= |Yv − RFS | − l {by (136)}
= |Yv − (Pmt(G) ∪ Fin(H))| − l {because RFS = Pmt(G) ∪ Fin(G), and

Fin(G) = Fin(H) by (136)}
= |Yv − Pmt(G)| − l {because Yv ∩ Fin(H) = {} by (136)}
> |Yv| − 2 − 2k {by (153) and l < 2k}
>

√
n − 2k − 3. {by (111)}

Moreover, by (155) and (160), we have Act(Gl) = Inv(Gl). Thus, by (136) and (159), we have Act(Gl) ⊆
Inv(G) ⊆ Act(G) = Yv ⊆ Act(H), which implies (52). By (137) and (160), we have (53). Finally, (157) implies
(55). Therefore, Gl satisfies Proposition Pr2. �

Theorem 2 Let N̄(k) = (2k + 4)2(2
k−1). For any mutual exclusion system S = (C, P, V) and for any positive

number k, if |P | ≥ N̄(k), then there exists a computation H such that at most 2k − 1 processes participate in
H and some process p executes at least k critical operations in H to enter and exit its critical section.

Proof: Let H1 = 〈Enter1, Enter2, . . . , EnterN 〉, where P = {1, 2, . . . , N} and N ≥ N̄(k). By the definition
of a mutual exclusion system, H1 ∈ C. It is obvious that H1 is regular and each process in Act(H) = P has
exactly one critical event in H1. Starting with H1, we repeatedly apply Lemma 7 and construct a sequence
of computations (H1, H2, . . .), such that each process in Act(Hj) has j critical events in Hj . We repeat the
process until either Hk is constructed or some Hj satisfies Proposition Pr1 of Lemma 7.

30

If some Hj (j ≤ k − 1) satisfies Proposition Pr1, then consider the first such j. By our choice of j, each of
H1, . . . , Hj − 1 satisfies Proposition Pr2 of Lemma 7. Therefore, since |Fin(H1)| = 0, we have |Fin(Hj)| ≤
2(j − 1) ≤ 2k − 4. It follows that computation F ◦ 〈Exitp〉, generated by applying Lemma 7 to Hj , satisfies
Theorem 2.

The remaining possibility is that each of H1, . . . , Hk−1 satisfies Proposition Pr2. We claim that, for
1 ≤ j ≤ k, the following holds:

|Act(Hj)| ≥ (2k + 4)2(2
k+1−j−1). (161)

The induction basis (j = 1) directly follows from Act(H) = P and |P | ≥ N̄(k). In the induction step,
assume that (161) holds for some j (1 ≤ j < k), and let nj = |Act(Hj)|. Note that each active process in
Hj executes exactly j critical events. By (161), we also have nj > (2k + 4)2, which in turn implies that√

nj − 2k − 3 >
√

nj/(2k + 4). Therefore, by (54), we have

|Act(Hj+1)| ≥ min(
√

nj/(2j + 3),
√

nj − 2k − 3) ≥ √
nj/(2k + 4),

from which the induction easily follows.

Finally, (161) implies |Act(Hk)| ≥ 1, and Proposition Pr2 implies |Fin(Hk)| ≤ 2(k − 1). Therefore, select
any arbitrary process p from Act(Hk). Define G = Hk | (Fin(Hk) ∪ {p}). Clearly, at most 2k − 1 processes
participate in G. By applying Lemma 1 with ‘H’ ← Hk and ‘Y ’ ← Fin(Hk)∪{p}, we have the following: G ∈ C,
and an event in G is critical if and only if it is also critical in Hk. Hence, because p executes k critical events
in Hk, G is a computation that satisfies Theorem 2. �

5 Concluding Remarks

We have established a lower bound that eliminates the possibility of an adaptive mutual exclusion algorithm
based on reads, writes, or comparison primitives with O(log k) RMR time complexity.

We believe that Ω(min(k, log N)) is probably a tight lower bound for the class of algorithms considered in
this paper (which would imply that the algorithm in [5] is optimal). One relevant question is whether the results
of this paper be combined with those of [5] to come close to an Ω(min(k, log N)) bound, i.e., can we at least
conclude that Ω(min(k, log N/ log log N)) is a lower bound? Unfortunately, the answer is no. We have shown
that Ω(k) RMR time complexity is required provided N is sufficiently large. This leaves open the possibility
that an algorithm might have Θ(k) RMR time complexity for very “low” levels of contention, but o(k) RMR
time complexity for “intermediate” levels of contention. Although our lower bound does not preclude such a
possibility, we find it highly unlikely.

References

[1] Y. Afek, H. Attiya, A. Fouren, G. Stupp, and D. Touitou. Long-lived renaming made adaptive. In
Proceedings of the 18th Annual ACM Symposium on Principles of Distributed Computing, pages 91–103.
ACM, May 1999.

[2] Y. Afek, P. Boxer, and D. Touitou. Bounds on the shared memory requirements for long-lived and adaptive
objects. In Proceedings of the 19th Annual ACM Symposium on Principles of Distributed Computing, pages
81–89. ACM, July 2000.

31

[3] Y. Afek, G. Stupp, and D. Touitou. Long-lived adaptive splitter and applications. Distributed Computing,
15(2):67–86, 2002.

[4] J. Anderson and Y.-J. Kim. Adaptive mutual exclusion with local spinning. In Proceedings of the 14th
International Symposium on Distributed Computing, pages 29–43. Lecture Notes in Computer Science 1914,
Springer-Verlag, October 2000.

[5] J. Anderson and Y.-J. Kim. An improved lower bound for the time complexity of mutual exclusion.
Distributed Computing, 15(4):221–253, December 2003.

[6] J. Anderson, Y.-J. Kim, and T. Herman. Shared-memory mutual exclusion: Major research trends since
1986. Distributed Computing, 16:75–110, 2003.

[7] J. Anderson and J.-H. Yang. Time/contention tradeoffs for multiprocessor synchronization. Information
and Computation, 124(1):68–84, January 1996.

[8] H. Attiya and V. Bortnikov. Adaptive and efficient mutual exclusion. In Proceedings of the 19th Annual
ACM Symposium on Principles of Distributed Computing, pages 91–100. ACM, July 2000.

[9] J. Burns and N. Lynch. Mutual exclusion using indivisible reads and writes. In Proceedings of the 18th
Annual Allerton Conference on Communication, Control, and Computing, pages 833–842, 1980.

[10] J. Burns and N. Lynch. Bounds on shared memory for mutual exclusion. Information and Computation,
107(2):171–184, December 1993.

[11] M. Choy and A. Singh. Adaptive solutions to the mutual exclusion problem. Distributed Computing,
8(1):1–17, 1994.

[12] R. Cypher. The communication requirements of mutual exclusion. In Proceedings of the Seventh Annual
ACM Symposium on Parallel Algorithms and Architectures, pages 147–156. ACM, June 1995.

[13] Y.-J. Kim and J. Anderson. A time complexity bound for adaptive mutual exclusion. In Proceedings of the
15th International Symposium on Distributed Computing, pages 1–15. Lecture Notes in Computer Science
2180, Springer-Verlag, October 2001.

[14] M. Merritt and G. Taubenfeld. Speeding Lamport’s fast mutual exclusion algorithm. Information Processing
Letters, 45:137–142, 1993.

[15] E. Styer. Improving fast mutual exclusion. In Proceedings of the 11th Annual ACM Symposium on Principles
of Distributed Computing, pages 159–168. ACM, August 1992.

[16] E. Styer and G. Peterson. Tight bounds for shared memory symmetric mutual exclusion. In Proceedings
of the 8th Annual ACM Symposium on Principles of Distributed Computing, pages 177–191. ACM, August
1989.

[17] P. Turán. On an extremal problem in graph theory (in Hungarian). Mat. Fiz. Lapok, 48:436–452, 1941.

32

