
Is Semi-Partitioned Scheduling Practical?∗

Andrea Bastoni, Björn B. Brandenburg, and James H. Anderson
Department of Computer Science, University of North Carolina at Chapel Hill

Abstract
Semi-partitioned schedulers are—in theory—a particularly
promising category of multiprocessor real-time scheduling al-
gorithms. Unfortunately, issues pertaining to their implemen-
tation have not been investigated in detail, so their practical
viability remains unclear. In this paper, the practical merit
of three EDF-based semi-partitioned algorithms is assessed
via an experimental comparison based on real-time schedula-
bility under consideration of real, measured overheads. The
presented results indicate that semi-partitioning is indeed a
sound and practical idea. However, several problematic design
choices are identified as well. These shortcomings and other
implementation concerns are discussed in detail.

1 Introduction
The advent of multicore technologies has led to a surge of new
research on multiprocessor real-time scheduling algorithms.
When devising such algorithms and associated analysis, the
goal is to enable schedulable systems to be produced. In a
hard real-time (HRT) system, the term “schedulable” means
that deadlines can never be missed. In contrast, in a soft real-
time (SRT) system, occasional misses are tolerable, provided
deadline tardiness is bounded.1

Most prior work on multiprocessor real-time scheduling
has focused on partitioned and global approaches. Under par-
titioning, each task is statically assigned to a processor and
per-processor schedulers are used. Under global scheduling, a
system-wide run queue is used and task migration is allowed.
Partitioned approaches incur lower runtime overheads (e.g., no
migrations and less run-queue contention), but require that a
bin-packing-like problem be solved to assign tasks to proces-
sors; because of this, caps on total system utilization must be
enforced to ensure that all tasks are schedulable (HRT or SRT).
Such loss can be avoided by using global approaches, for both
HRT [29] and SRT [26] systems. However, such approaches
entail higher runtime costs.

Semi-partitioned scheduling was proposed by Anderson et
al. [1] as a compromise between pure partitioned and global
scheduling. Semi-partitioning extends partitioned scheduling
by allowing a small number of tasks to migrate, thereby im-
proving schedulability. Such tasks are called migratory, in

∗Work supported by AT&T and IBM Corps.; NSF grants CNS 0834270
and CNS 0834132; ARO grant W911NF-09-1-0535; and AFOSR grant FA
9550-09-1-0549.

1Other notions of SRT correctness exist but are not considered herein.

contrast to fixed tasks that do not migrate. The original work
on semi-partitioning [1, 2] was directed at SRT systems. Subse-
quently, other authors developed semi-partitioned algorithms
for HRT systems [3, 4, 11, 23, 25]. The common goal in
all of this work is to circumvent the algorithmic limitations
and resulting capacity loss of partitioning while avoiding the
overhead of global scheduling by limiting migrations.

At first glance, semi-partitioned algorithms seem rather chal-
lenging to implement, as they require separate per-processor
run queues, but still require frequent migrations. The resulting
cross-processor coordination could yield high scheduling costs.
Worse, recent experimental evidence suggests that on some
recent multicore platforms, (worst-case) preemption and mi-
gration costs do not differ substantially [8, 9], which calls into
question the value of favoring preemptions over migrations.

The premise of semi-partitioned scheduling is fundamen-
tally driven by practical concerns, yet its practical viability is
virtually unexplored. Are complex semi-partitioned algorithms
still preferable over straightforward partitioning when over-
heads are factored in? Do semi-partitioned schedulers actually
incur significantly less overhead than global ones? In short, are
the scheduling-theoretic gains of semi-partitioned scheduling
worth the added implementation complexity?

Contributions. This paper presents the first in-depth study
to address this issue of practicality by evaluating three semi-
partitioned algorithms, EDF-fm, EDF-WM, and NPS-F (and
its “clustered” variant C-NPS-F—see Sec. 3), under consid-
eration of real, measured overheads. Our findings show that
semi-partitioned scheduling is indeed a sound and practical
approach for both HRT and SRT systems (Sec. 4). However,
we also identify several shortcomings in the evaluated algo-
rithms, in particular with regard to when and how migrations
occur, and how tasks are assigned to processors. Based on
these observations, we distill several design principles to aid
in the future development of practical schedulers (Sec. 4.5).

Before describing our experimental setup and presenting
our findings in detail, we first discuss relevant background.

2 Background
We focus herein on the scheduling of a system τ of spo-
radic tasks, T1, . . . , Tn, onm identical processors P1, . . . , Pm.
Each task Ti is specified by its worst-case execution time ei, its
period pi, and its (relative) deadline di. The jth job (instance)
of task Ti is denoted T ji . Such a job T ji becomes available
for execution at its release time rji and should complete by its

1

deadline rji +di; otherwise it is tardy. The spacing between rji
and rj+1

i must satisfy rj+1
i ≥ rji +pi. A tardy job T ji does not

alter rj+1
i , but T j+1

i cannot execute until T ji completes. For
conciseness, we use Ti = (ei, pi) to denote the parameters of a
task. A task Ti is called an implicit deadline (resp., constrained
deadline) task if di = pi (resp., di ≤ pi). If neither of these
conditions applies, then Ti is called an arbitrary deadline task.

Task Ti’s utilization, ui = ei/pi, reflects the total processor
share that it requires; the total utilization of the system is
given by U =

∑n
i=1 ui. In the semi-partitioned algorithms

we consider, a task’s utilization may be split among multiple
processors. We let si,j denote the fraction (or share) that a task
Ti requires on processor Pj , where

∑
1≤j≤m si,j = ui.

Letting τj be the set of tasks assigned to processor Pj , the
assigned capacity on Pj is cj =

∑
Ti∈τj si,j . The available

capacity on Pj is thus 1− cj .

2.1 Related Work
EDF-fm, EDF-WM, and NPS-F (and its clustered variant,
C-NPS-F) are described in Sec. 3. Other EDF-based semi-
partitioned algorithms that have been proposed include precur-
sors to NPS-F [3, 4, 5, 10] and to EDF-WM [22, 23] and al-
gorithms that share commonalities with these precursors [27].

To our knowledge, detailed runtime overheads affecting
semi-partitioned algorithms have never been measured before
within a real operating system (OS) and the impact of such
overheads on the schedulability of these algorithms has never
been assessed. Nonetheless, some simulation-based studies
(without consideration of overheads) have been done. In [25],
EDF-SS [4], which is a precursor of NPS-F, is compared to
EDF-WM: EDF-SS exhibited less schedulability-related ca-
pacity loss than EDF-WM in the majority of the tested cases, at
the cost of many more context switches. Given the lower num-
ber of context switches, we believe that EDF-WM is a better
candidate than EDF-SS for an implementation-oriented study.
EDF-WMR, which is a variant of EDF-WM that supports
reservations, has been implemented within the AIRS frame-
work [21], but detailed scheduling overheads or schedulability
results were not reported. A proof-of-concept implementation
of an algorithm called EKG-sporadic [3], which is also a pre-
cursor of NPS-F, has been discussed in a technical report [6].

Fixed-priority semi-partitioned algorithms have also been
proposed (e.g. [19, 24]). From a schedulability perspective,
such algorithms are generally inferior to EDF-based ones, so
we defer their evaluation to future work.

2.2 Operating System and Hardware Capabilities
To better understand the design of the investigated algorithms,
some knowledge of the services provided by the OS and by
the hardware platform is required.

We implemented the algorithms evaluated in this study
within LITMUSRT [30], a real-time extension of the Linux
kernel that allows schedulers to be developed as plugin compo-
nents. We used LITMUSRT 2010.2, which is based on Linux

2.6.34. The evaluated plugins are publicly available at [30].

Run queues. Many modern operating systems (including
Linux) provide a scheduling framework that employs per-
processor run queues. Holding a run-queue lock gives the
owner the right to modify not only the run-queue state, but also
the state of all tasks in the run queue.

Migrating a task under this locking rule requires local and
remote run-queue locks to be acquired. Under scheduling algo-
rithms that allow concurrent migrations, complex coordination
is required to ensure that deadlocks do not occur and that mi-
gratory tasks will be executed by a single processor only (i.e.,
only one processor may use a task’s process stack). Algorithms
where the likelihood of simultaneous scheduling decisions is
high may thus entail rather high scheduling overheads.

Inter-processor interrupts (IPIs). IPIs are the only way to
programmatically notify a remote processor of a local event
(such as a job release) and are used to invoke the scheduler.
Despite their small latencies, IPIs are not “instantaneous” and
task preemptions based on IPIs incur an additional delay.

Timers and time resolution. Modern hardware platforms
feature several clock devices and timers that can be used to
enforce real-time requirements. While such devices typically
offer high resolutions (≤ 1µs), hardware latencies and the
OS’s timer management overheads considerably decrease the
timer resolutions available both within the kernel and at the
application level [20]. Furthermore, in Linux (for the x86 ar-
chitecture), high-resolution timers are commonly implemented
based on per-processor devices. As some of the evaluated algo-
rithms require timers to be programmed on remote processors,
LITMUSRT uses a two-step timer transfer operation: an IPI is
sent to the remote CPU where the timer should be armed; after
receiving the IPI, the remote CPU programs an appropriate
local timer. Therefore, as two operations are needed to set up
remote timers, scheduling algorithms that make frequent use
of such timers incur higher overheads.

3 Theory, Practice, and Overheads
We now describe some of the key properties of the considered
algorithms, challenges that arose when we implemented them
in LITMUSRT, and how overheads can be accounted for.

Being EDF derivatives, each semi-partitioned algorithm
analyzed in this paper was designed to overcome limitations
of partitioned EDF (P-EDF) and global EDF (G-EDF). In
each algorithm, a few tasks are allowed to migrate (like in
G-EDF) and the rest are statically assigned to processors (like
in P-EDF). The classification of tasks (fixed vs. migratory)
and the assignment of per-processor task shares (see Sec. 2)
are performed during an initial assignment phase.

An alternate compromise between P-EDF and G-EDF is
clustered EDF (C-EDF), which partitions tasks onto clusters
of cores and allows migration within a cluster. In previous
studies [9, 13, 14], P-EDF proved to be very effective for HRT

2

s3,1 = 0.1

s2 =
9

20

s1 =
9

20

s5,2 =
5

20

s4 =
2

5

s3,2 =
7

20
s5,3 =

3

20

s6 =
2

5

s7 =
1

3

P1 P2 P3

Figure 1: Example task assignment under EDF-fm.

workloads, whereas C-EDF excelled at SRT workloads. Thus,
we use P-EDF and C-EDF as a basis for comparison.

3.1 EDF-fm

EDF-fm [2] was designed for SRT implicit-deadline sporadic
task systems. In EDF-fm, there are at most m− 1 migratory
tasks. Each such task migrates between two specific processors,
and only at job boundaries. The total utilization of migratory
tasks assigned to a processor cannot exceed one, but there
are no restrictions on the total system utilization. Tasks are
sequentially assigned to processors using a next-fit heuristic.
Suppose that Ti is the next task to be mapped and Pj is the
current processor under consideration (i.e., P1, . . . , Pj−1 have
no remaining capacity). If ui ≤ (1−cj) (the capacity available
on Pj), then Ti is assigned as a fixed task to Pj with a share
of si,j = ui. Otherwise, if ui > (1 − cj), then Ti becomes
a migratory task and receives a share of si,j = 1 − cj on
processor Pj and si,j+1 = ui − si,j on processor Pj+1. With
this mapping strategy, at most two migratory tasks have non-
zero shares on any processor. Each job of a migratory task Ti
is mapped to one of Ti’s assigned processors (Pj and Pj+1)
such that, in the long run, the number of jobs of Ti that execute
on Pj and Pj+1 is proportional to the shares si,j and si,j+1.
Migratory tasks are statically prioritized over fixed tasks and
jobs within each class are scheduled using EDF. With this
strategy, migratory tasks cannot miss any deadlines.

Example 1. To better understand EDF-fm’s task assignment
phase, consider a task set τ comprised of seven tasks: T1 =
T2 = T3 = (9, 20), T4 = T5 = T6 = (2, 5), and T7 =
(1, 3). The total utilization of τ is U ≈ 2.88. An assignment
for τ under EDF-fm is shown in Fig. 1. In this assignment,
T3 and T5 are the only migratory tasks. T3 receives a share
s3,1 = 2/20 on processor P1 and s3,2 = 7/20 on processor
P2, while T5 receives a share s5,2 = 5/20 on processor P2

and s5,3 = 3/20 on processor P3. In the long run, out of every
nine consecutive jobs of T3, two execute on P1 and seven
execute on P2. This is because T3’s shares are 2/20 and 7/20,
respectively. Job releases of T5 are handled similarly.

3.2 EDF-WM

EDF-WM [25] was designed to support HRT sporadic task
systems in which arbitrary deadlines are allowed. However,
for consistency in comparing to other algorithms, we will limit

s2 =
9

20

s1 =
9

20

s4 =
2

5

s3 =
9

20 s5 =
2

5

s6 =
2

5

s7,3 = 0.167

P1 P2 P3

S7 =
1

3

S7,2 = 0.144

123

S7,1 = 0.02

Figure 2: Example task assignment under EDF-WM.

attention to implicit-deadline systems. During the assignment
phase of EDF-WM, tasks are partitioned among processors
using a bin-packing heuristic (any reasonable heuristic can be
used). When attempting to assign a given task Ti, if no single
processor has sufficient available capacity to accommodate Ti,
then it becomes a migratory task. Unlike in EDF-fm, such a
migratory task Ti may migrate among several processors (not
just two). However, EDF-WM aims at minimizing the number
of such migratory tasks.

A migratory task Ti’s per-processor shares are determined
by progressively splitting its per-job execution cost ei into
“slices,” effectively creating a sequence of “sub-tasks” that are
assigned to distinct processors. Even though these processors
may not be contiguous, for simplicity, let us denote these sub-
tasks as Ti,k, where 1 ≤ k ≤ m′, and their corresponding
processors as P1, . . . , Pm′ . Each sub-task Ti,k is assigned a
(relative) deadline using the rule di,k = di/m

′. Each sub-task
execution cost (or slice) ei,k, where 1 ≤ k ≤ m′, is determined
in a way that minimizes the number of processors m′ across
which Ti is split, while ensuring that

∑m′

k=1 ei,k ≥ ei holds.
Furthermore, assigning each Ti,k to its processor Pk must not
invalidate any deadline guarantees for tasks already assigned to
Pk. Contrary to EDF-fm, the jobs of both fixed tasks and sub-
tasks on each processor are scheduled using EDF (no static
prioritization). The “job” of a sub-task Ti,k cannot execute
before the corresponding “job” of the previous sub-task Ti,k−1
has finished execution. To enforce this precedence constraint,
EDF-WM assigns release times such that rji,k = rji,k−1 +

dji,k−1, where rji,k (rji,k−1) is the release time of the j-th job
of Ti,k (Ti,k−1), and dji,k−1 is the relative deadline of Ti,k−1.

Example 2. Fig. 2 shows an example task assignment (using
the first-fit bin-packing heuristic) for EDF-WM for the same
task set of Example 1. In EDF-WM, only task T7 = (1, 3) is
migratory. Each job of T7 executes on processors P3, P2, and
P1 in sequence. For each sub-task T7,k of T7 (k ∈ {3, 2, 1}),
d7,k = d7/3 = 1.0. Assuming that the first job of the first
sub-task of T7, T7,3, is released on processor P3 at time 0, the
first job of the sub-task T7,2 would be released on P2 at time 1,
and that of T7,1 at time 2 on P1. The shares assigned to each
sub-task are shown in the figure and correspond to execution
times e7,3 = 0.5, e7,2 = 0.43, and e7,1 = 0.07.

3

3.3 NPS-F
NPS-F [11] was designed to schedule HRT implicit-deadline
sporadic task systems. The algorithm employs a parameter
δ that allows its utilization bound to be increased at the cost
of more-frequent preemptions. In comparison to earlier al-
gorithms [3, 10], NPS-F achieves a higher utilization bound,
with a lower or comparable preemption frequency. The assign-
ment phase for NPS-F is a two-step process. In the first step,
the set of all n tasks is partitioned (using the first-fit heuristic)
among as many unit-capacity servers as needed. (A server in
this context can be viewed as a virtual uniprocessor.) Since n
is finite and no tasks are split, the first step results in the cre-
ation of m̃ servers (for some m̃ ∈ {1, . . . , n}). In the second
step, the capacity ci of each server Ni is increased by means
of an inflation function I(δ, ci) to ensure schedulability, i.e., a
certain amount of over-provisioning is required to avoid dead-
line misses. The m̃ servers of inflated capacity I(δ, ci) (called
notional processors of fractional capacity—NPS-F—in [11])
are mapped onto the m physical processors of the platform.
Such a mapping is feasible iff

∑m̃
i=1 I(δ, ci) ≤ m.

The mapping of servers to physical processors is similar to
the sequential assignment performed by EDF-fm: a server Ni
is assigned to a processor Pj as long as the capacity of Pj is
not exhausted. The fraction of the capacity of Ni that does not
fit on Pj is assigned to Pj+1.2

During execution, each server Ni is selected to run every
S time units, where S is a time slot length that is inversely
proportional to δ and dependent on the minimum period of
the task set. Whenever a server is selected for execution, it
schedules (using uniprocessor EDF) the tasks assigned to it.
Thus, abstractly, NPS-F is a two-level hierarchical scheduler.

As noted earlier, there exists a clustered variant of NPS-F,
denoted C-NPS-F, that was designed to entirely eliminate
off-chip server (and task) migrations. Contrary to NPS-F, in
C-NPS-F the physical layout of the platform is already consid-
ered during the first step of the assignment phase, and therefore,
off-chip server (and task) migrations can be explicitly forbid-
den. Compared to NPS-F, the bin-packing-related problem to
be solved in C-NPS-F during the assignment phase is harder
(there are additional constraints at the server and cluster level),
and therefore the schedulable utilization of C-NPS-F is infe-
rior to that of NPS-F.

Example 3. Fig. 3 illustrates the two steps of the NPS-F
assignment process using the task system τ from Example 1.
Inset (a) depicts the assignment of tasks to servers. m̃ = 4
servers are sufficient to partition τ without splitting any task.
Before mapping the servers to physical processors, the capacity
ci of each server Ni is inflated using the function I . Then, the
servers are sequentially mapped (using their inflated capacities)
onto the three physical processors P1–P3. As seen in the
resulting mapping inset (b), N2 is split between P1 and P2,

2A second mapping strategy is described in [11] as well, but both yield
identical schedulability bounds and, on our platform, the one considered here
reduces the number of cross-socket server and task migrations (see Sec. 4).

N4

s5 =
2

5

s6 =
2

5

s7 =
1

3

s2 =
9

20

s1 =
9

20
s3 =

9

20

s4 =
2

5

N1 N2 N3

(a)

Inflated N1

Inflated N2

Inflated N3 Inf.N4

Inflated N1

Inflated N2

Inflated N3

P1

P2

P3 Inf.N4

S = 0.6 t
(b)

Figure 3: Example task assignment under NPS-F. The arrows in inset
(b) denote that, in the first slot, N2 first executes on P2, then migrates
to P1; at the end of the slot, it migrates back to P2 (similarly for N3).

while N3 is split between P2 and P3.
Inset (b) also shows how servers periodically execute. In

this example, S = 0.6 (and δ = 4), so every 0.6 time units, the
depicted server execution pattern repeats. At time t = S = 0.6,
server N2 migrates from processor P1 to processor P2, while
serverN3 migrates to processor P3. Tasks T3 and T4 (assigned
to N2), and T5 and T6 (assigned to N3) also migrate with their
respective servers. NPS-F’s mapping of servers to processors
leaves only the last processor (P3) with unallocated capacity
after all servers have been mapped.

3.4 Implementation Concerns
Timing and migration-related problems are the major is-
sues that need to be addressed when implementing the semi-
partitioned scheduling algorithms mentioned above.

Timing concerns. In each of the algorithms above, timers are
needed in order to perform various scheduling-related activi-
ties. For example, in EDF-WM, timers must be programmed
to precisely enforce sub-task execution costs, and in NPS-F,
timers are needed to execute servers periodically and to en-
force their execution budgets. Furthermore, in both EDF-fm
and EDF-WM, timers must be programmed on remote CPUs
in order to guarantee that future job releases will occur on
the correct processors. As noted in Sec. 2.2, programming a
timer on a remote CPU entails additional costs that must be
considered when checking schedulability.

A second timing concern is related to timer precision and
the resolution of time available within the OS. In theory, algo-
rithms like EDF-WM and NPS-F may reschedule tasks very
frequently. For example, assuming 1 ms corresponds to one
time unit, T7,1 needs to execute for 0.07ms in Fig. 2, while,
in Fig. 3, the unused capacity (idle time) after N4 on processor
P3 is 0.007ms. In reality, policing such small time intervals
is not possible without incurring prohibitive overheads, and
reasonable minimum interval lengths must be assumed.

Migration-related concerns. In theoretical analysis, it is
common to assume that job migrations take zero time. In
practice, several activities (acquiring locks, making a schedul-
ing decision, performing a context switch, etc.) need to be per-
formed before a job that is currently executing on one CPU can
be scheduled and executed on a different CPU. Such activities

4

P1

P2

0 5 10 15

csr

csr

csr

csr cst

rT1,1

T4

T3

T1,2T2

IPI latencytimer transfer

context switchrelease schedule

Figure 4: Example EDF-fm schedule with overheads for five jobs
T x
1,1 = T x+1

1,2 = (2.7, 7), T y
2 = (5, 10), T z

3 = (6, 11), and
Tw
4 = (3, 5) on two processors (P1, P2). T x

1,1 and T x+1
1,2 belong

to a migratory task T1 whose shares are assigned on P1 and P2.
Large up-arrows denote interrupts, small up-arrows denote job re-
leases, down-arrows denote job deadlines, T-shaped arrows denote job
completions, and wedged boxes denote overheads (which are magni-
fied for clarity). Job releases occur at rx1,1 = 0, rx+1

1,2 = rx1,1 + p1 =
7, ry2 = 0.5, rz3 = 4.2, and rw4 = 11.

have a cost. Furthermore, given the coarse-grained protection
mechanism of tasks and run queues explained in Sec. 2.2, when
tasks may migrate as part of the scheduling process, extra care
must be taken in order to avoid inconsistent scheduling deci-
sions. This problem is exacerbated in scheduling algorithms
such as NPS-F, where—by design—concurrent scheduling
decisions are likely to happen. For example, in Fig. 3 at time
S = 0.6, P2 races with P1 to schedule tasks of N2, and (at the
same time) P3 races with P2 to schedule tasks of N3.

3.5 Kernel Overheads and Cache Affinity
In actual implementations, tasks are delayed by seven major
sources of system overhead, five of which are illustrated in
Fig 4, which depicts a schedule for EDF-fm. When a job is re-
leased, release overhead is incurred, which is the time needed
to service the interrupt routine that is responsible for releasing
jobs at the correct times. Whenever a scheduling decision is
made, scheduling overhead is incurred while selecting the next
process to execute and re-queuing the previously-scheduled
process. Context-switch overhead is incurred while switching
the execution stack and processor registers. These overhead
sources occur in sequence in Fig. 4, on processor P2 at times 0
and 4.2 when T x1,1 and T z3 are released, and again on processor
P2 at times 0.5 and 7 when T y2 and T x+1

1,2 are released. IPI la-
tency is a source of overhead that occurs when a job is released
on a processor that differs from the one that will schedule it.
This situation is depicted in Fig. 4, where at time 11, Tw4 is
released on P1, which triggers a preemption on P2 by sending
an IPI. Timer-transfer overhead is the overhead incurred when
programming a timer on a remote CPU (see Sec. 2.2). In Fig. 4,
this overhead is incurred on processor P2 at time 4.5 when the
completion of the job T x1,1 (on processor P1) of the migratory
task T1 triggers a request to program a timer on processor P2

to enable the release of the next job T x+1
1,2 .3 Tick overhead is

3In NPS-F, each task always executes within its server and therefore, no
timer-transfer overheads are incurred.

the time needed to manage periodic scheduler-tick timer inter-
rupts; such interrupts have limited impact under event-driven
scheduling (such as EDF) and, for clarity, they are not not
shown in Fig. 4. Finally, cache-related preemption and migra-
tion delay (CPMD) accounts for additional cache misses that
a job incurs when resuming execution after a preemption or
migration. The temporary increase in cache misses is caused
by the perturbation of caches while the job was not scheduled.

Overhead accounting. Schedulability analysis that assumes
ideal (i.e., without overheads) event-driven scheduling can
be extended to account for kernel overheads and CPMD by
inflating task execution costs. For many of the overheads con-
sidered in this paper, standard accounting techniques exist4

that can be applied to semi-partitioned algorithms by account-
ing for specific properties of these algorithms. For example,
as semi-partitioned approaches distinguish between migratory
and fixed tasks, migration and preemption overheads always
need to be separately considered. Further, additional IPI laten-
cies have to be accounted for in EDF-WM to reflect the opera-
tions performed to guarantee sub-task precedence constraints,
and in NPS-F to ensure consistent scheduling decisions when
switching between servers (which occurs when the fraction
of a timeslot allocated to one server is exhausted and another
server continues). In addition, NPS-F’s server-switching im-
poses an additional overhead on all tasks executed within a
server. These overheads can be accounted for by reducing the
effective server capacity available to tasks.

Bin-packing. In all of the evaluated algorithms, problematic
issues (that have not been addressed before) arise when ac-
counting for overheads during the assignment phase. Standard
bin-packing heuristics assume that item sizes (i.e., task utiliza-
tions) are constant. However, when overheads are accounted
for, the effective utilization of already-assigned tasks may in-
flate when an additional task is added to their partition (i.e.,
bin) due to an increase in overheads. Thus, ignoring overheads
when assigning tasks may cause over-utilization. To deal with
this, we accounted for overheads after each task assignment
and extended prior bin-packing heuristics to allow “rolling
back” to the last task assignment if the current one causes over-
utilization. Without these extensions, any task set exceeding
the capacity of one processor would be unschedulable by the
commonly-used next-fit, best-fit, and first-fit heuristics (which
try to fully utilize one processor before considering others). In
contrast, the worst-fit heuristic (used in [9, 13, 14, 21]) par-
tially hides this problem since it tends to distribute unallocated
capacity evenly among processors.

Considering overheads in the assignment phase of NPS-F
exposes an additional issue that was not considered by the
designers of that algorithm. If overheads are only accounted
for after the mapping of servers to physical processors, then a
server’s allocation may grow beyond the slot length S. This
would render the mapping unschedulable, as it would essen-

4Omitted due to space constraints, e.g., see [9, 13, 14, 15, 18] for details.

5

tially require servers and tasks to be simultaneously scheduled
on two processors. However, if overheads are already ac-
counted for during the first bin-packing phase, i.e., before the
mapping to physical processors, then it is unknown which
servers (and hence tasks) will be migratory. We resolve this
circular dependency by making worst-case assumptions with
regard to the magnitude of overheads during the the first bin-
packing phase. This approach adds pessimism, but it is re-
quired to prevent servers from becoming overloaded.

3.6 Measuring Kernel Overheads and Cache Effects
Later, in Sec. 4, we present a study conducted to compare the
algorithms considered in this paper on the basis of schedulabil-
ity with real overheads considered. In this section, we explain
how such overheads were experimentally determined.

Our experimental platform is an Intel Xeon L7455 system,
which is a 24-core 64-bit uniform memory access (UMA)
machine with four physical sockets. Each socket contains
six cores running at 2.13 GHz. All cores in a socket share a
12 MB L3 cache, while groups of two cores share a 3 MB L2
cache. Each core also includes two separate data/instruction L1
caches (32 KB each). Under C-EDF, we opted to group cores
around L3 caches. This cluster size was selected based on
guidelines given in prior studies [9, 16]. The same cluster size
was also used for C-NPS-F, as it yields the highest possible
utilization bound given the topology of our platform [11].

Kernel overheads. Runtime overheads were experimentally
measured (with Feather-Trace [12]) using the same methodol-
ogy previously employed in [9, 13, 14]. We traced workloads
consisting of implicit-deadline periodic tasks under each of
the six evaluated algorithms. Task set sizes ranged over [10,
350] with a granularity of 10 in the range [10, 200], and 50 in
the range (200, 350].5 For each task set size, we measured ten
randomly generated task sets (with uniform light utilizations
and moderate periods; see Sec. 4). Each task set was traced for
60 seconds. Due to the timing concerns mentioned in Sec. 3.4,
we enforced a minimum sub-task execution cost of 50 µs un-
der EDF-WM, and imposed a minimum server size of 150 µs
under NPS-F. We further used task sets with S ≥ 2.5ms (and
δ = 2) to limit the number of server-switches.

In total, more than 1,300 task sets were traced, and more
than 200 GB of overhead samples were collected. Average-
and worst-case overheads as a function of task set size were
computed for each algorithm after removing possible outliers
(due to sources of unpredictability in the Linux kernel) by
applying a 1.5 interquartile range (IQR) outlier filter.6 In the
full version of this paper [7], this overhead data is given in
14 graphs; due to space constraints, only worst-case release
overhead, plotted in Fig. 5, is discussed here.

The most notable trends in Fig. 5 are the very high overheads

5These granularities allow for a higher resolution when the number of
tasks is less than 200 (which is the prevalent range of task set sizes for the
distributions presented in Sec. 4).

6[28] suggests IQR as a standard technique to remove outliers.

 0

 5

 10

 15

 20

 25

 30

 0 50 100 150 200 250 300 350

o
v
e

rh
e

a
d

 (
u

s
)

number of tasks

worst-case scheduling overhead

C-EDF C-NPS-F EDF-fm EDF-WM NPS-F P-EDF

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 50 100 150 200 250 300 350

o
v
e
rh

e
a
d
 (

u
s
)

number of tasks

worst-case release overhead

Figure 5: Sample worst-case release overheads (in µs) as function of
task set size.

of C-EDF in comparison with the other algorithms, and the low
overheads (within 5 µs from P-EDF) of all semi-partitioned
algorithms. Under semi-partitioned approaches, migrations are
push-based: semi-partitioned algorithms statically determine
the next processor that should schedule a job (i.e., the job is
“pushed” to the processor where it should execute next when it
finishes execution on the previous processor). Instead, under
C-EDF (and under global approaches), migrations are pull-
based: the next processor is dynamically determined at runtime
(the job is “pulled” by the processor that dequeues it first from
the run queue). Pull-migrations imply much higher overheads
as they require global state and shared run queues that foster
lock contention, which is reflected in Fig. 5.

As in [9], we used monotonic piecewise linear interpolation
to determine upper bounds for each overhead (as a function
of the task set size); these upper bounds were used in the
schedulability experiments described in Sec. 4.

Cache effects. While kernel overheads depend on the task set
size, CPMD depends on the working set size (WSS) of a job,
and on the cache interference caused by other (possibly best-
effort) jobs. In [8], we employed two empirical methodologies
to assess CPMD incurred on the same Intel Xeon platform
used in this study. Experiments were carried out in two config-
urations: an otherwise idle system and a system loaded with
cache-polluting background tasks.

A sample of our results is shown in Fig. 6, which depicts
worst-case CPMD values in a system under load (upper curves)
and in an otherwise idle system (lower curves) for preemptions
and each kind of migration (via L2, via L3, and via memory)
as a function of WSS. In a system under load there are no
substantial differences among preemption and migration costs.
In contrast, in an idle system, preemptions always cause less
delay than migrations, whereas L3 and memory migrations
have comparable costs. In particular, if the working set fits
into the L1 cache (32 KB), then preemptions are negligible
(around 1µs), while they have a cost that is comparable with
that of an L2 migration when the WSS approaches the size of
the L2 cache. L3 and memory migrations have comparable
costs, with a maximum of 3 ms for WSS = 3072 KB.

6

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 60 80 100 120 140 160 180 200 220 240 260

ov
er

he
ad

 (u
s)

number of tasks

measured maximum overhead (25.00% writes)

a preemption
a migration through a shared L2 cache

a migration through a shared L3 cache
a migration through main memory

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 60 80 100 120 140 160 180 200 220 240 260

ov
er

he
ad

 (u
s)

number of tasks

measured maximum overhead (25.00% writes)

a preemption
a migration through a shared L2 cache

a migration through a shared L3 cache
a migration through main memory

 0.1

 1

 10

 100

 1000

 10000

 100000

 4 8 16 32 64 128 256 512 1024 2048 4096

c
a
c
h
e
-r

e
la

te
d
 d

e
la

y
s
 (

u
s
)

working set size (kilobytes)

measured maximum overhead (25.00% writes)

[load]

[idle]

Figure 6: Worst-case CPMD (in µs) for preemptions and different
types of migrations as a function of WSS (in KB). The four lower
curves with point markers were measured in an idle system; the four
coinciding upper curves without point markers reflect the lack of
substantial differences in a system under a heavy background load.

4 Schedulability Experiments
We compared EDF-fm, EDF-WM, NPS-F, C-NPS-F, P-
EDF, and C-EDF (with cores clustered at the L3 cache level)
on the basis of schedulability, using an experimental setup
similar to previous studies [13, 14, 17]. An algorithm’s schedu-
lability (HRT or SRT) is defined as the fraction of generated
task sets that are schedulable (HRT or SRT) under it.

We generated implicit-deadline periodic tasks by first gener-
ating task utilizations using three uniform, three bimodal, and
three exponential distributions. The ranges for the uniform
distributions were [0.001, 0.1] (light), [0.1, 0.4] (medium), and
[0.5, 0.9] (heavy). For the bimodal distributions, utilizations
uniformly ranged over [0.001, 0.5) or [0.5, 0.9] with respec-
tive probabilities of 8/9 and 1/9 (light), 6/9 and 3/9 (medium),
and 4/9 and 5/9 (heavy). For the exponential distributions,
utilizations were generated with a mean of 0.10 (light), 0.25
(medium), and 0.50 (heavy). With exponential distributions,
we discarded any points that fell outside the allowed range of
[0, 1]. Integral task periods were then generated using three
uniform distributions with ranges [3ms, 33ms] (short), [10ms,
100ms] (moderate), and [50ms, 250ms] (long). The number
of tasks n was determined by creating tasks until total uti-
lization exceeded a specified cap (varied between 1 and 24,
the total number of cores on our test platform) and by then
discarding the last-added task.

4.1 Performance Metric
The setup described above allows schedulability to be studied
as a function of an assumed utilization cap. However, when
overheads are considered, the situation becomes more complex.
In particular, while system overheads can be reasonably dealt
with by assuming maximum (average-case) values in the HRT
(SRT) case, CPMD is clearly dependent on WSS. This raises
the question: which WSS should be assumed?

While previous studies [13, 14, 17] have focused on selected
WSS values, in [9] we employed a methodology where CPMD

becomes a parameter of the task generation procedure, thus
rendering schedulability a function of two variables: an as-
sumed cap U on total utilization and an assumed CPMD value
D. This allows schedulability to be studied for a broad range
of values for D, thus avoiding any bias towards a particular
WSS selection. A reasonable range of values to consider for
D can be determined by measuring CMPDs for various WSSs.

When this approach was applied in [9], a single CPMD value
was assumed for both preemptions and the various kinds of
migrations that can occur (through L2, L3, and main memory,
respectively) when assessing the schedulability of a task set.
Such an approach is problematic for our purposes here, as
semi-partitioned algorithms are designed to lessen the impact
of migrations. Thus, in this study, we express the different
D values measured on our platform as a function of WSS.
For example, considering WSS = 64 KB in an idle system,
Fig. 6 tells us that a preemption has a delay D = 1µs, a
migration through an L2 cache has D = 17µs, and L3 and
memory migrations have D = 60µs. With such a mapping,
schedulability becomes a function of the assumed utilization
cap U and the assumed WSS W . In essence, one can think
of W as a parameter that is used to determine an appropriate
CPMD value D by indexing into either the graph in Fig. 6 or
its average-case-delay counterpart.

To avoid 3D graphs for schedulability (which depends on
both U and W), we adopt the weighted schedulability ap-
proach used in [9]. Let S(U,W) ∈ [0, 1] denote an algo-
rithm’s schedulability for a given U and W , and let Q denote
a range of utilization caps (as defined by the experimental
setup). Then weighted schedulability, S(W), is defined as
S(W) = (

∑
U∈Q U · S(U,W))/(

∑
U∈Q U). A complete dis-

cussion of weighted schedulability can be found in [9].

4.2 Schedulability Tests
For each algorithm and each pair (U,W), we determined
S(W) by checking 100 task sets. We varied U from one to 24
in steps of 0.25, andW over [0, 3072] KB in steps of 16 KB for
W ≤ 256 KB, in steps of 64 KB for 256 KB< W ≤ 1024 KB,
and in steps of 256 KB for higher values. This allows for a
higher resolution in the rage of WSSs that have low CPMD
(D ≤ 1ms in a system under load—Fig. 6). The upper
bound of 3072 KB for W was selected because measurements
taken on our test platform revealed that CPMD becomes un-
predictable (over many measurements, standard deviations
are large) for WSSs exceeding this bound. We used maxi-
mum (resp., average) overhead and CPMD values to determine
weighted schedulability in the HRT (resp., SRT) case. For
CPMD, both loaded and idle systems were considered.

The schedulability of a single task set was checked as fol-
lows. For P-EDF and C-EDF, we determined whether each
task could be partitioned using the worst-fit decreasing heuris-
tic. For P-EDF (C-EDF), HRT (SRT) schedulability on each
processor (within each cluster) merely requires that that pro-
cessor (cluster) is not over-utilized. For EDF-fm, EDF-WM,

7

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 32 64 96 128 160 192 224 256

w
e

ig
h
te

d
 s

c
h
e

d
u

la
b

ili
ty

 [
h

a
rd

]

working set size (WSS)

util. exponentially in [0, 1] with mean 0.25; period uniformly in [10, 100]

NPS-F (idle, delta=1)
C-NPS-F (idle, delta=1)

NPS-F (idle, delta=4)
NPS-F (load, delta=1)

C-NPS-F (idle, delta=4)
C-NPS-F (load, delta=1)

NPS-F (load, delta=4)
C-NPS-F (load, delta=4)

Figure 7: Comparison of NPS-F and C-NPS-F schedulability for
various δ values in loaded and idle systems. (Labels ordered as the
curves appear for WSS = 96.)

NPS-F, and C-NPS-F, we determined schedulability by using
tests (SRT for EDF-fm, HRT for the others) presented by the
developers of those algorithms; these tests were augmented to
account for overheads, as discussed earlier.

The considered scenarios resulted in 54 graphs of weighted
schedulability data arising from testing the schedulability of
approximately 7 million task systems under each algorithm;
when expanded to produce actual (not weighted) schedulability
plots, over 1,500 graphs are required. Due to space constraints,
we only discuss a few representative weighted schedulability
graphs here. We further restrict our attention to W ≤ 1024 KB
because all major trends manifest in this range. All graphs
(both weighted and actual schedulability, and for the full WSS
range) can be found in the full version of this paper [7].

4.3 NPS-F, C-NPS-F, and Choosing δ
NPS-F and C-NPS-F actually represent a “family” of differ-
ent design choices, as the behavior of each algorithm depends
on the parameter δ. We begin with two observations concern-
ing these algorithms that allow us to reasonably constrain the
considered design choices for these algorithms in later graphs.

Observation 1. δ = 1 leads to higher schedulability than
δ = 4. Under NPS-F (Sec. 3.3), increasing δ leads to a higher
utilization bound at the cost of increased preemption frequency.
In [11], Bletsas and Andersson presented a comparison of
NPS-F’s schedulable utilization bounds with δ ranging over
[1, 4]. δ = 4 was shown to yield a higher bound than δ = 1, at
the cost of increased preemptions. In contrast to this, we found
that when overheads are considered, NPS-F schedulability
is almost always better with δ = 1 than with δ = 4 in both
loaded and idle systems. In particular, we found δ = 4 to
be competitive with δ = 1 only when bin-packing issues and
CPMD are negligible (for uniform light distributions, with
small WSSs, and an idle system; see [7]). The difference can
be observed in Fig. 7, which plots S(W) for NPS-F for both
idle systems and systems under load, for both δ = 1 and δ = 4.
Here, NPS-F schedulability is always better with δ = 1 than
with δ = 4. This indicates that preemption-related overheads
negatively impact schedulability when δ = 4. Given Obs. 1,
we only consider the choice of δ = 1 in the graphs that follow.

Observation 2. C-NPS-F is almost never preferable to NPS-
F. Fig. 7 shows that C-NPS-F is never preferable to NPS-F
in idle systems or in systems under load when δ = 1. Eliminat-
ing off-chip migrations in C-NPS-F exacerbates bin-packing-
related issues that arise when assigning servers to processors
and heavily constrains C-NPS-F schedulability. Because of its
poor performance in comparison to NPS-F, we do not consider
C-NPS-F in the graphs that follow.

We note that in the full version of the paper [7], C-NPS-F
and the choice of δ = 4 are considered in all graphs.

4.4 HRT and SRT Schedulability Results
Fig. 8 gives a subset of the weighted schedulability results
obtained in this study (again, all results can be found in [7]).
The left column of the figure gives HRT schedulability results
for the exponential medium (inset (a)) and bimodal heavy
(inset (c)) distributions, while the right column reports SRT
results for the exponential medium (insets (b)) and uniform
heavy (inset (d)) distributions. Note that the curves for loaded
and idle systems virtually coincide for every algorithm in the
SRT case (insets (b,d)), whereas large differences are apparent
in the HRT case (insets (a,c)). This is due to the relative
magnitude of CPMD values: worst-case CPMD values are
much higher in a system under load than in an idle system
(Fig. 6), while the difference for average-case values is much
less pronounced [8]. The following observations are supported
by the data we collected in the context of this study.

Observation 3. EDF-WM is the best performing algorithm
in the HRT case. In the HRT case, EDF-WM overcomes bin-
packing-related limitations that impact P-EDF when many
high-utilization tasks exist (Fig. 8(c)). More generally, EDF-
WM always exhibits schedulability in this case that is superior,
or at worst comparable (e.g., Fig. 8(a)), to that of P-EDF.

Observation 4. EDF-WM outperforms C-EDF in the SRT
case. Fig. 8(b) shows that, for C-EDF, schedulability de-
creases quickly as WSS increases due to bin-packing limi-
tations, which are exacerbated by high(er) overheads due to
higher run-queue contention. In contrast, EDF-WM exhibits
good schedulability over the whole range of tested WSS values.

Observation 5. EDF-fm usually outperforms C-EDF in the
SRT case. Like EDF-WM, EDF-fm achieves higher schedula-
bility than C-EDF when most tasks have low utilization (e.g.,
Fig. 8(b)). However, due to the utilization constraint EDF-fm
imposes on migratory tasks, it is unable to schedule task sets
where most tasks have high utilization (Fig. 8(d)).

Observation 6. NPS-F is inferior to the other scheduling ap-
proaches in most of the analyzed scenarios. In Fig. 8, schedula-
bility under NPS-F is lower than that of all the other evaluated
scheduling policies in all depicted scenarios (HRT and SRT).
NPS-F schedulability is heavily constrained by the pessimistic
assumptions made in the bin-packing heuristics of NPS-F’s
assignment phase, and by higher preemption and migration
delays. NPS-F achieves slightly better schedulability results

8

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024

w
e
ig

h
te

d
 s

c
h
e
d
u

la
b

ili
ty

 [
h
a
rd

]

working set size (WSS)

utilization uniformly in [0.001, 0.1]; period uniformly in [10, 100]

P-EDF (load)
P-EDF (idle)

EDF-WM (load)

EDF-WM (idle)
NPS-F (idle, delta=1)

NPS-F (load, delta=1)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024

w
e
ig

h
te

d
 s

c
h
e
d
u
la

b
ili

ty
 [
s
o
ft
]

working set size (WSS)

util. exponentially in [0, 1] with mean 0.25; period uniformly in [10, 100]

C-EDF (load)
C-EDF (idle)

EDF-WM (load)
EDF-WM (idle)

NPS-F (idle, delta=1)
NPS-F (load, delta=1)

EDF-fm (load)
EDF-fm (idle)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024

w
e
ig

h
te

d
 s

c
h
e
d
u
la

b
ili

ty
 [
h
a
rd

]

working set size (WSS)

util. exponentially in [0, 1] with mean 0.25; period uniformly in [10, 100]

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024

w
e
ig

h
te

d
 s

c
h
e
d
u
la

b
ili

ty
 [
s
o
ft

]

working set size (WSS)

util. exponentially in [0, 1] with mean 0.25; period uniformly in [10, 100]

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024

w
e
ig

h
te

d
 s

c
h
e
d
u
la

b
ili

ty
 [

h
a
rd

]

working set size (WSS)

util. bimodally in [0.001, 0.5] (4/9) and [0.5, 0.9] (5/9); period uniformly in [10, 100]

(c)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024

w
e
ig

h
te

d
 s

c
h
e
d
u
la

b
ili

ty
 [
s
o
ft
]

working set size (WSS)

utilization uniformly in [0.5, 0.9]; period uniformly in [3, 33]

(d)

Figure 8: Weighted schedulability as a function of WSS. (a) HRT results for medium exponential utilizations and moderate periods. (b) SRT
results for medium exponential utilizations and moderate periods. (c) HRT results for heavy bimodal utilizations and moderate periods. (d) SRT
results for heavy uniform utilizations and short periods.

than the other algorithms only when bin-packing issues are
negligible and CPMD has a limited impact (i.e., in the uniform
light utilization scenario, with small WSSs; see [7])

4.5 Design Principles

The observations above support the conclusion that semi-
partitioning can offer benefits over conventional partitioned,
global, and clustered scheduling approaches, but not all design
choices in realizing a semi-partitioned approach will give good
results in practice. In the following, we summarize a number
of design principles that we suggest should be followed in
further work on semi-partitioned scheduling. These principles
are derived from the observations above and our experiences in
implementing the various algorithms considered in this paper.

Avoid unneeded migrations. EDF-WM reduces to pure par-
titioning when task utilizations are low (no task needs to mi-
grate). In contrast, EDF-fm and NPS-F migrate tasks even in
low-utilization contexts where partitioning would have been
sufficient. This increases overheads and contributes to their
lower schedulability (Obs. 5 and 6).

Minimize the number of preemptions. Avoiding migrations
by increasing preemption frequency can negatively impact
schedulability. This was one of the issues considered in
Obs. 1, where increased preemption frequency was seen to
lower schedulability under NPS-F. Also, in many cases, the
difference in the cost of a preemption and that of a migration
through L2, L3, or memory is not significant (particularly, in a
system under load, as seen in Fig. 6). Thus, favoring preemp-

tions over migrations generally, L2 over L3 migrations, etc.,
may not lead to improved schedulability (Obs. 2).

Minimize the number of tasks that may migrate. Migrating
servers with tens of tasks—any of which could incur CPMD—
increases analysis pessimism and leads to lower schedulability
(Obs. 6). Higher schedulability is achieved by bounding the
number of migrating tasks (Obs. 3, 4, and 5).

Avoid pull-migrations in favor of push-migrations. Push-
migrations entail lower overheads than pull-migrations
(Sec. 3.6). This is because push-migrations can be planned for
in advance, while pull-migrations occur in a reactive way. Due
to this difference, push-migrations require only mostly-local
state within per-CPU run queues, while pull-migrations require
global state and shared run queues. High overhead due to run-
queue contention is one reason why schedulability is lower
under C-EDF than under EDF-WM and EDF-fm (Obs. 4 and
5). One of the key virtues of (most) semi-partitioned algo-
rithms is that they enact migrations by following a pre-planned
strategy; this is unlike how migrations occur under most con-
ventional global and clusterd algorithms.

Migration rules should be process-stack-aware. Migrations
and context switches are not “instantaneous”; situations where
migrating tasks are immediately eligible on another CPU (e.g.,
at an NPS-F slot boundary) need careful process-stack man-
agement (so that each task executes on a single CPU only) that
is tricky to implement and entails analysis pessimism.

Use simple migration logic. Migrating tasks at job bound-
aries (task migration) is preferable to migrating during job
execution (job migration). Migrations of the former type en-

9

tail less overhead, are easier to implement, and are more pre-
dictable. This results in a much simpler admission test (e.g.,
EDF-fm’s), particularly when overheads must be considered.

Be cognizant of overheads when designing task assignment
heuristics. Such heuristics are crucial for an algorithm’s per-
formance and should have an overhead-aware design to avoid
excessive pessimism (Obs. 2 and 6).

Avoid two-step task assignments. With double bin-pack-
ing, pessimistic analysis assumptions concerning the second
phase must be applied when analyzing the first phase. For
example, when analyzing the first assignment phase of NPS-F,
pessimistic accounting is needed for migrating servers, because
the second phase determines which servers actually migrate.

5 Conclusion
We have presented the first empirical study of semi-partitioned
real-time scheduling algorithms under consideration of real-
world overheads. Our results indicate that, from a schedula-
bility perspective, semi-partitioned scheduling is often better
than other alternatives. Most importantly, semi-partitioned
schedulers can benefit from the pre-planned nature of push-
migrations: because it is known ahead of time which task will
migrate, and also among which processors, CPMD accounting
is task-specific and hence less pessimistic. Perhaps surpris-
ingly, we found that this advantage extends even to scenarios
in which cache-related costs of migrations are not substantially
worse than those of preemptions: since push-migrations can
be implemented with mostly-local state, kernel overheads are
much lower in schedulers that avoid pull-migrations.

In future work, we would like to consider static-priority
semi-partitioned algorithms, and evaluate the impacts of real-
time synchronization protocols on semi-partitioned schedulers.

Acknowledgement: This study took a year and a half to com-
plete and benefited from the feedback from a number of people;
of these, Chris Kenna and Alex Mills deserve special mention.

References
[1] J. Anderson, V. Bud, and U. Devi. An EDF-based scheduling algorithm

for multiprocessor soft real-time systems. In Proc. of the 17th Euromicro
Conf. on Real-Time Sys., pp. 199–208, 2005.

[2] J. Anderson, V. Bud, and U. Devi. An EDF-based restricted-migration
scheduling algorithm for multiprocessor soft real-time systems. Real-
Time Syst., 38:85–131, 2008.

[3] B. Andersson and K. Bletsas. Sporadic multiprocessor scheduling with
few preemptions. In Proc. of the 20th Euromicro Conf. on Real-Time
Sys., pp. 243–252, 2008.

[4] B. Andersson, K. Bletsas, and S. Baruah. Scheduling arbitrary-deadline
sporadic task systems on multiprocessors. In Proc. of the 29th Real-Time
Sys. Symp., pp. 385–394, 2008.

[5] B. Andersson and E. Tovar. Multiprocessor scheduling with few pre-
emptions. In Proc. of the 12th Int’l Conf. on Embedded and Real-Time
Computing Sys. and Apps., pp. 322–334, 2006.

[6] B. Andersson, E. Tovar, and P. B. Sousa. Implementing slot-based
task-splitting multiprocessor scheduling. Technical Report HURRAY-
TR-100504, IPP Hurray!, May 2010.

[7] A. Bastoni, B. Brandenburg, and J. Anderson. Is semi-partitioned
scheduling practical? Extended version of this paper. Available at
http:// www.cs.unc.edu/ ˜anderson/papers.html.

[8] A. Bastoni, B. Brandenburg, and J. Anderson. Cache-related preemption
and migration delays: Empirical approximation and impact on schedula-
bility. In Proc. of the 6th Int’l Workshop on Operating Sys. Platforms
for Embedded Real-Time Apps., pp. 33–44, 2010.

[9] A. Bastoni, B. Brandenburg, and J. Anderson. An empirical comparison
of global, partitioned, and clustered multiprocessor EDF schedulers. In
Proc. of the 31st Real-Time Sys. Symp., pp. 14–24, 2010.

[10] K. Bletsas and B. Andersson. Notional processors: An approach for
multiprocessor scheduling. In Proc. of the 15th Symp. on Real-Time and
Embedded Technology and Apps., pp. 3–12, 2009.

[11] K. Bletsas and B. Andersson. Preemption-light multiprocessor schedul-
ing of sporadic tasks with high utilisation bound. In Proc. of the 30th
Real-Time Sys. Symp., pp. 447–456, 2009.

[12] B. Brandenburg and J. Anderson. Feather-trace: A light-weight event
tracing toolkit. In In Proc. of the Third Int’l Workshop on Operating Sys.
Platforms for Embedded Real-Time Apps., pp. 61–70, 2007.

[13] B. Brandenburg and J. Anderson. On the implementation of global
real-time schedulers. In Proc. of the 30th Real-Time Sys. Symp., pp.
214–224, 2009.

[14] B. Brandenburg, J. Calandrino, and J. Anderson. On the scalability of
real-time scheduling algorithms on multicore platforms: A case study.
In Proc. of the 29th Real-Time Sys. Symp., pp. 157–169, 2008.

[15] B. Brandenburg, H. Leontyev, and J. Anderson. Accounting for interrupts
in multiprocessor real-time systems. In Proc. of the 15th Int’l Conf. on
Embedded and Real-Time Computing Sys. and Apps., pp. 273–283, 2009.

[16] J. Calandrino, J. Anderson, and D. Baumberger. A hybrid real-time
scheduling approach for large-scale multicore platforms. In Proc. of the
19th Euromicro Conf. on Real-Time Sys., pp. 247–256, 2007.

[17] J. Calandrino, H. Leontyev, A. Block, U. Devi, and J. Anderson.
LITMUSRT: A testbed for empirically comparing real-time multiproces-
sor schedulers. In Proc. of the 27th Real-Time Sys. Symp., pp. 111–123,
2006.

[18] U. Devi. Soft Real-Time Scheduling on Multiprocessors. PhD thesis,
University of North Carolina, Chapel Hill, North Carolina, 2006.

[19] N. Guan, M. Stigge, W. Yi, and G. Yu. Fixed-priority multiprocessor
scheduling with Liu and Layland’s utilization bound. In Proc. of the 16th
Real-Time and Embedded Technology and Apps. Symp., pp. 165–174,
2010.

[20] D. V. Hart and S. Rostedt. Internals of the RT Patch. In In Proc. of the
Linux Symp., pp. 161–172, 2007.

[21] S. Kato, R. Rajkumar, and Y. Ishikawa. AIRS: Supporting interactive
real-time applications on multicore platforms. In Proc. of the 22nd
Euromicro Conf. on Real-Time Sys., pp. 47–56, 2010.

[22] S. Kato and N. Yamasaki. Real-time scheduling with task splitting on
multiprocessors. In Proc. of the 13th Int’l Conf. on Embedded and
Real-Time Computing Sys. and Apps., pp. 441–450, 2007.

[23] S. Kato and N. Yamasaki. Portioned EDF-based scheduling on multipro-
cessors. In Proc. of the 8th ACM international conference on Embedded
software, pp. 139–148, 2008.

[24] S. Kato and N. Yamasaki. Portioned static-priority scheduling on multi-
processors. In Int’l Symp. on Parallel and Distributed Processing, pp.
1–12, April 2008.

[25] S. Kato, N. Yamasaki, and Y. Ishikawa. Semi-partitioned scheduling of
sporadic task systems on multiprocessors. In Proc. of the 21st Euromicro
Conf. on Real-Time Sys., pp. 249–258, 2009.

[26] H. Leontyev and J. Anderson. Generalized tardiness bounds for global
multiprocessor scheduling. Real-Time Sys., 44(1):26–71, February 2010.

[27] G. Levin, S. Funk, C. Sadowski, I. Pye, and S. Brandt. Dp-fair: A simple
model for understanding optimal multiprocessor scheduling. In Proc. of
the 2010 22nd Euromicro Conf. on Real-Time Sys., pp. 3–13, 2010.

[28] NIST/SEMATECH. e-Handbook of Statistical Methods. http://
www.itl.nist.gov/div898/handbook/, 2010.

[29] A. Srinivasan and J. Anderson. Optimal rate-based scheduling on multi-
processors. Journal of Computer and System Sciences, 72(6):1094–1117,
2006.

[30] UNC Real-Time Group. LITMUSRT homepage. http://www.cs.
unc.edu/ ˜anderson/litmus-rt.

10

