
Supporting Nested Locking in Multiprocessor Real-Time Systems∗

Bryan C. Ward and James H. Anderson
Department of Computer Science, University of North Carolina at Chapel Hill

Abstract
This paper presents the first real-time multiprocessor lock-
ing protocol that supports fine-grained nested resource re-
quests. This locking protocol relies on a novel technique for
ordering the satisfaction of resource requests to ensure a
bounded duration of priority inversions for nested requests.
This technique can be applied on partitioned, clustered, and
globally scheduled systems in which waiting is realized by
either spinning or suspending. Furthermore, this technique
can be used to construct fine-grained nested locking proto-
cols that are efficient under spin-based, suspension-oblivious
or suspension-aware analysis of priority inversions. Lock-
ing protocols built upon this technique perform no worse
than coarse-grained locking mechanisms, while allowing for
increased parallelism in the average case (and, depending
upon the task set, better worst-case performance).

1 Introduction
To support real-time applications on multiprocessor plat-
forms, real-time scheduling and synchronization algorithms
are required that enable timing constraints to be met. While
prior scheduling-related work has produced many viable
scheduling options, serious limitations remain pertaining to
synchronization. Perhaps most significantly, all current state-
of-the-art real-time multiprocessor locking protocols (see [2,
11] for relevant citations) directly support only non-nested
shared resource requests; nested requests, which are com-
monly employed in practice, are only indirectly supported
through the use of coarse-grained locking techniques such as
group locks. A group lock treats a set of shared resources as
a single resource, and arbitrates access to the group using a
single-resource locking protocol [1].

Unfortunately, group locks are inflexible because re-
sources must be statically grouped before execution. They
also result in pessimistic analysis because a job waiting on
one resource in a group must block while a job holds another
resource in the group. This pessimism limits the degree of
concurrency, which is particularly concerning in today’s in-
creasingly parallel system architectures.

Alternatively, resource groups can be broken into smaller
elements that are acquired individually. This is called fine-
grained locking, and it is useful in a variety of settings. For
example, in a shared linked list, each element can be con-
trolled with a single lock, instead of locking the whole list.

∗Work supported by NSF grants CNS 1016954 and CNS 1115284; ARO
grant W911NF-09-1-0535; AFOSR grant FA9550-09-1-0549; and AFRL
grant FA8750-11-1-0033.

This allows different jobs to access separate sections of the
list concurrently. Nested locking protocols can also be used
in applications such as real-time database systems.

To enable fine-grained locking in multiprocessor real-time
systems, we discuss a family of efficient locking protocols
for partitioned, clustered, and globally scheduled job-level
static priority (JLSP) task systems, i.e., systems in which
a job’s priority is constant (e.g., as in earliest-deadline-first
(EDF) or static-priority scheduling). Tasks can either wait by
spinning (busy-waiting) or by suspending. We analyze lock-
ing protocols on the basis of priority inversion blocking (pi-
blocking), i.e., the duration of time a job is blocked while
a lower-priority job is running. In schedulability analysis, the
execution time of a task must be inflated by the duration of pi-
blocking to ensure timing constraints are met. Under analysis
assumptions used previously [4, 2, 5], most of the locking
protocols we develop are asymptotically optimal.
Prior work. The uniprocessor priority ceiling protocol
(PCP) has been extended to multiple processors in a num-
ber of locking protocols, for example, the multiprocessor
PCP (PCP) [11], distributed PCP (DPCP) [11], multipro-
cessor dynamic PCP (MDPCP) [6] and the parallel PCP
(PPCP) [7]. Of these, only the MDPCP claims to sup-
port nested resource requests, albeit in a somewhat limited
fashion—the MDPCP is limited to periodic tasks scheduled
by partitioned EDF, has somewhat high worst-case blocking
bounds, and enables higher concurrency than group locking
(with respect to nested resource accesses) only in certain cor-
ner cases. Recently, several other protocols have been devel-
oped that are asymptotically optimal for multiprocessor JLSP
systems. These protocols and their blocking bounds, which
are summarized in Table 1, are discussed next.

In work on optimal suspension-oriented multiprocessor
locks, Brandenburg and Anderson [4] presented two defi-
nitions of pi-blocking for suspension-oriented multiproces-
sor locking protocols: suspension-oblivious (s-oblivious),
in which suspensions are modeled as computation, and
suspension-aware (s-aware), in which suspensions are ac-
counted for. They also established a per-request lower bound
on pi-blocking of Ω(n) in the s-aware case, and Ω(m) in the
s-oblivious case, where n is the number of tasks and m is the
number of processors [4].

Block et al. [1] developed the flexible multiprocessor lock-
ing protocol (FMLP), in which waiting can be realized as ei-
ther spinning or suspending. Under the FMLP, a spinning or
resource-holding job runs non-preemptively. Later, Branden-
burg extended the FMLP to obtain the FIFO mutex locking
protocol (FMLP+), which is more flexible because it lifts this
requirement [2]. Under s-aware analysis, for a large category



Analysis Scheduler Locking Protocol Every Job Pi-blocking Per-Request Pi-blocking
spin Any FMLP/FMLP+ mLmax (m− 1)Lmax

s-aware
Partitioned FMLP+ nLmax (n− 1)Lmax

Clustered FMLP+ O(φ · n)† (n− 1)Lmax

Global‡ FMLP O(n) (n− 1)Lmax

s-oblivious
Partitioned P-OMLP mLmax (m− 1)Lmax

Clustered C-OMLP mLmax (m− 1)Lmax

Global OMLP 0 (2m− 1)Lmax

† φ is the ratio of the maximum to minimum period as discussed in Sec. 5.4. The issue of optimality is still
open for the s-aware clustered case.
‡ Applicable only under certain schedulers as discussed in Sec. 5.4.

Table 1: Summary of existing single-resource locking protocols and their blocking complexity. The column
“Every Job Pi-Blocking” indicates how long any job in the system (whether it accesses shared resources or
not) can be pi-blocked when it is not currently utilizing the locking protocol to access a shared resource. The
column “Per-Request Pi-Blocking” indicates how long a job can be pi-blocked per request. Lmax denotes the
maximum critical section length. All listed protocols are asymptotically optimal, except as noted.

of global schedulers and all partitioned schedulers, the FMLP
and/or the FMLP+ are asymptotically optimal;1 their spin-
based counterparts are also optimal. Brandenburg and An-
derson also developed the O(m) locking protocol (OMLP)
family of suspension-based protocols, which are asymptoti-
cally optimal under s-oblivious analysis [4, 5]. The OMLP
can be used on partitioned, clustered, and globally scheduled
systems. None of these previous multiprocessor locking pro-
tocols support fine-grained lock nesting.
Contributions. In this paper, we present the first multipro-
cessor real-time locking protocol that supports fine-grained
nested resource requests. This locking protocol, called the
real-time nested locking protocol (RNLP), employs a k-
exclusion lock,2 which can be implemented in different ways,
giving rise to a family of mutual exclusion (mutex) locking
protocols. We show that the RNLP can be used on global,
clustered, and partitioned JLSP systems and when waiting
is realized through spinning or suspensions. We conduct s-
aware, s-oblivious, and spin-based analysis of pi-blocking
under the RNLP.

Unlike group locks, the RNLP does not require resources
to be statically grouped before execution. All that is required
is a partial order on resource acquisitions, which is a common
assumption in practice to ensure that deadlock is impossible.
Organization. In Sec. 2, we formally describe our system
model and assumptions. In Sec. 3 we describe the basic archi-
tecture of the RNLP, which is composed of two components.
In Secs. 4 and 5, we describe and analyze each of these com-
ponents. We then give provide a brief discussion of the bene-
fits of fine-grained locking in Sec. 6 and conclude in Sec. 7.

2 Background and Definitions
We consider a system of n sporadic tasks τ = {T1, . . . , Tn}
that execute on m processors. Each task Ti is composed of
a sequence of jobs; we let Ji,j denote the jth job of the ith
task. We omit the job index j if it is insignificant. Each task is

1S-aware optimality in clustered systems is still an open issue, as dis-
cussed in Sec. 5.

2k-exclusion generalizes mutual exclusion by allowing up to k simulta-
neous lock holders.

characterized by a worst-case execution time ei, a minimum
job separation pi, and a relative deadline di. For simplicity,
we assume for each Ti that pi = di and that each job of Ti
must complete before its deadline (no tardiness); these as-
sumptions have no bearing on any optimality claims made
in this paper. A job is said to be released, when it is made
available for execution, and it is pending until it finishes its
execution.

Resources. We assume a similar resource model to that pre-
sented by Brandenburg and Anderson [4]. The system con-
tains q shared resources L = {`1, . . . , `q} such as shared
data objects or I/O devices. In this paper, we consider only
mutex locks (though we employ a k-exclusion lock to realize
the locks that we construct), and as such, at most one job can
hold each resource `a at any time. Access to shared resources
is controlled by a locking protocol. When a job Ji requires
a resource `a, it makes a request for `a to the locking proto-
col. Ji’s request is said to be satisfied when Ji acquires `a,
and completes when Ji releases `a. A job that has issued a
resource request that has not yet been satisfied is said to have
an outstanding resource request. A job that has issued a re-
source request that is not complete is said to have an incom-
plete resource request. We let wait(Ji, t) denote the resource
for which Ji is waiting at time t if any. The segment of a job
between one of its requests being satisfied and completed is
called a critical section. A job can either spin (i.e., busy-wait)
or suspend while waiting for one of its requests to be satis-
fied. A ready job is one that can be scheduled; thus, a job that
is suspended and waiting for a shared resource is not ready.

If Ji holds no resources when it makes a request, then the
request is said to be an outermost request. We denote Ji’s
kth outermost request asRi,k and the corresponding resource
Fi,k. Once Ji acquires a resource, it may make a nested re-
quest for another resource. If Ji acquires a resource at time t
via an outermost request, and t′ is the earliest subsequent time
when Ji holds no resources, then (t, t′] is called an outermost
critical section. Note that resource requests do not have to be
properly nested, as seen in Fig. 1 (here, `a is acquired first,
but `b is released last). The maximum number of outermost
requests Ji makes is given by Ni. The maximum duration
of Ji’s kth outermost critical section is Li,k. We say that Ji



Figure 1: Illustration of a job Ji’s outermost critical section. At time
t1, Ji acquires resource `a. At time t2, Ji issues a nested resource
request for `b, and is blocked during the interval [t2, t3). At time
t4, Ji releases `a. Ji’s outermost critical section spans from t1 to t5
when Ji no longer holds any shared resources.

makes progress if a job that holds a resource for which Ji is
waiting is scheduled and executing its critical section.

The RNLP requires a strict (irreflexive) partial order, ≺,
on the set of resources such that a job holding resource `b
cannot make a resource request for `a if `a ≺ `b. In ad-
dition to preventing deadlock, this ordering is used by the
RNLP to improve pi-blocking bounds. There can be a few
exceptions to this requirement3 that allow for increased con-
currency, however none of these exceptions are required to
derive worst-case results.
Scheduling. We consider partitioned, clustered, and glob-
ally scheduled systems. Under clustered scheduling, the m
processors are partitioned into m

c non-overlapping sets of c
processors.4 Each task is statically assigned to a cluster, and
may migrate freely among the processors in the cluster. Par-
titioned and global scheduling are special cases of clustered
scheduling with c = 1 and c = m, respectively.

Within each cluster, jobs are scheduled from a single ready
queue using a JLSP scheduling algorithm. In such an algo-
rithm, each job has a base priority. The locking protocols
we develop allow a job’s base priority to be elevated such
that it has a higher effective priority. We denote a job Ji’s ef-
fective priority at time t as p(Ji, t). Within each cluster, the
(at most) c jobs with the highest effective priority are sched-
uled at any point in time. Three techniques can be used (sep-
arately) to elevate a job’s effective priority: priority boosting,
priority inheritance, and priority donation. A job that is pri-
ority boosted has its priority unconditionally raised to ensure
it is scheduled. Under priority inheritance, a job executes with
an effective priority equal to that of a suspended job. Under
priority donation, a higher-priority job Ji that, upon release,
should preempt some lower-priority job Jk with an incom-
plete resource request instead suspends and donates its pri-
ority to Jk to ensure that Jk makes progress [5]. Upon the
completion of Jk’s outermost critical section, Ji ceases to be
a priority donor, and will never be a priority donor again.
Blocking. We adopt the following definition of s-oblivious
and s-aware pi-blocking and spin-blocking defined by Bran-
denburg and Anderson [4, 5, 2]; the first two definitions only
apply to suspension-based locks while the third only applies
to spin-based locks.
Definition 1. Under s-aware schedulability analysis, a job
Ji incurs s-aware pi-blocking at time t if Ji is pending but

3Described in more detail in an online appendix available at
http://www.cs.unc.edu/˜anderson/papers.html.

4Non-uniform cluster sizes could be integrated into our analysis at the
expense of more verbose notation.

Figure 2: Illustration adapted from [4] of the difference between
s-oblivious and s-aware analysis. In this example, three EDF-
scheduled jobs share a single resource `a on two processors. Dur-
ing [2, 4), J3 is blocked, but there are m jobs with higher priority,
thus J3 is not s-oblivious pi-blocked. However, because J1 is also
suspended, J3 is s-aware pi-blocked. Intuitively, under s-oblivious
analysis, the suspension time of higher-priority jobs is modeled as
computation, but under s-aware analysis, it is not. Note the legend
applies to all subsequent figures.

not scheduled and fewer than c higher-priority jobs are ready
in Ti’s cluster.

Definition 2. Under s-oblivious schedulability analysis, a
job Ji incurs s-oblivious pi-blocking at time t if Ji is pending
but not scheduled and fewer than c higher-priority jobs are
pending in Ti’s cluster.

Definition 3. A job Ji incurs spin-based blocking at time t if
Ji is spinning (and thus scheduled) waiting for a resource.

The difference between s-oblivious and s-aware pi-
blocking is demonstrated in Fig. 2.

Note that if a job spins non-preemptively then it may cause
pi-blocking for jobs that otherwise would have been sched-
uled. The duration of pi-blocking caused by non-preemptivity
must be analyzed in this case as well. Similarly, priority do-
nation and priority boosting may cause jobs that are not cur-
rently utilizing a locking protocol to be pi-blocked, and this
blocking must be analyzed as well (as we do later).

Similar to [4, 5], we measure the blocking behavior of
the RNLP using the maximum duration of pi-blocking. How-
ever, when supporting nested resource requests, a job can be
pi-blocked while holding a resource, as seen in Fig. 1. This
“inner” pi-blocking must be included in the analysis of the
total duration of pi-blocking. Furthermore, existing analysis
of locking protocols is conducted in terms of the maximum
critical section length. In our analysis, we instead consider
the maximum execution time of a critical section, since the
maximum critical section length can depend on the duration
of “inner” pi-blocking caused by the locking protocol. The
maximum critical section length and the maximum execution
time are the same when the RNLP is compared with single-
resource locking protocols.
Assumptions. Tight blocking bounds are a function of a
number of variables such as the frequency of resource re-
quests, duration of each critical section, and the number of
nested requests made. In our asymptotic analysis, we con-

http://www.cs.unc.edu/~anderson/papers.html


Figure 3: Components of the RNLP.

sider the number of outermost requests per job Ni, as well
as the maximum critical section length Lmax = maxLi,k

to be constant. We consider both n and m to be variables,
and assume n ≥ m. All other parameters are considered to
be constant. Note that we do not impose any restrictions on
the number of tasks sharing each resource, the ratio of largest
to smallest task period or relative deadline, or the maximum
depth of nested requests.

3 The RNLP
The RNLP is composed of two components, a k-exclusion 
token lock, and a request satisfaction mechanism (RSM). The 
token lock restricts the number of jobs that can have an in-
complete resource request while the RSM determines when 
requests are satisfied. In order for a job to issue a resource re-
quest, it must first acquire a token through the token lock. The 
k token-holding jobs can then compete for shared resources 
according to the rules of the RSM. Depending upon the sys-
tem (partitioned, clustered, or global), how waiting is realized 
(suspension or spinning), and the type of analysis being con-
ducted (s-oblivious, s-aware, or spin-based), different token 
locks, number of tokens (most often k is n or m), and RSMs 
can be paired to yield an asymptotically optimal locking pro-
tocol supporting nested requests. This architecture is shown 
in Fig. 3.

We specify the RSM via a set of rules. Without loss of
generality, these rules are presented assuming a uniform clus-
ter size of c. We assume a few basic properties of the token
lock defined as follows (specific token locks are considered
in Sec. 5).

T1 There are at most k token-holding jobs at any time, of
which there are no more than c from each cluster.

T2 If a job is pi-blocked waiting for a token, then it makes
progress. This can be accomplished by elevating the pri-
ority of a token-holding job through priority boosting,
inheritance, or donation.

Once a job acquires a token, it is allowed to compete for a
shared resource under the rules of the RSM. There are several
rules and key ideas common to all RSMs. For each shared re-
source `a, there is a resource queue RQa of length at most
k. The timestamp of token acquisition is stored for each job
Ji, and denoted ts(Ji).5 Each resource queue is priority or-
dered by increasing timestamp. In the absence of any nested
resource requests, this ordering is the same as FIFO order-
ing. This queue ordering allows a job performing a nested
resource request to effectively “cut in line” to where it would
have been had it requested the nested resource at the time of

5ts(Ji) is really a function of time because it is updated for every out-
ermost critical section. However, because we analyze the RNLP on a per-
request basis, we omit the time parameter for notional simplicity.

Figure 4: Illustration of Example 1 where m = 4 and q = 3.

its outermost resource request. We denote the job at the head
of RQa as hd(a). The rules below (illustrated below in Ex-
ample 1) are common to all RSMs.

Q1 When Ji acquires a token at time t, its timestamp is
recorded: ts(Ji) := t. We assume a total order on such
timestamps.

Q2 All jobs in RQa are waiting with the possible exception
of hd(a).

Q3 A job Ji acquires resource `b when it is the head of the
RQb, i.e., Ji = hd(b), and there is no resource `a such
that `a ≺ `b and ts(hd(a)) < ts(Ji).6

Q4 When a job Ji issues a request for resource `a it is en-
queued in RQa in increasing timestamp order.7

Q5 When a job releases resource `a it is dequeued from
RQa and the new head of RQa can gain access to `a,
subject to Rule Q3.

Q6 When Ji completes its outermost critical section, it re-
leases its token.

These rules do not specify how waiting is realized. A spe-
cific RSM may employ either spinning or suspending.
Example 1. To illustrate these rules, we present an example,
which is depicted in Fig. 4. Consider a global-EDF (G-EDF)
scheduled system with three shared resources, `a, `b, and `c
(so q = 3), and m = 4, and a total order on resources by
index (i.e., `a ≺ `b ≺ `c). As shown in Fig. 4, each job Ji ac-
quires a token at time t = i, and thus by Rule Q1, ts(Ji) = i.
Furthermore, Ni = 1, and F1,1 = `a, F2,1 = `b, F3,1 = `c,
andF4,1 = `a. At times t = 2.5 and t = 4.5, J1 issues nested
requests for `b and `c, respectively. These requests are satis-
fied immediately, because J1 has an earlier timestamp than
any job in either RQb and RQc. Note that at time t = 3, J3
has the earliest timestamp of the jobs in RQc. However, by
Rule Q3, J3 must wait until J1 completes its outermost crit-
ical section before it can acquire `c. Thus, when J1 requests
`c at time t = 4.5, J3 has not acquired `c and hence J1’s
request is satisfied immediately. At time t = 7, J1 finishes
its outermost critical section, and J4 acquires `a. Because J2
has an earlier timestamp than J4, J2 can also acquire `b at
time t = 7. However, J3 must wait until t = 10 for J2 to
finish its outermost critical section before its request for `c
is satisfied. Note that during the interval [7, 10), both J2 and

6As shown in the online appendix, if more information is known about
the task set, this rule can be relaxed to allow for more concurrency.

7We assume the acquisition of a token and subsequent enqueueing into
some RQa occur atomically.



Figure 5: Illustration of Example 2 where m = 4 and q = 3.

J4 hold shared resources to which a group lock would have
required serial access.

To analyze the behavior of an RSM, we first develop ter-
minology and notation to describe when and how jobs can be
blocked. Job Ji in some resource queue RQa is said to be di-
rectly blocked by every job before it in RQa. In our previous
example, at time t = 4, J4 is directly blocked by J1 while J1
holds resource `a. The set of jobs that Ji is directly blocked
by is denoted

DB(Ji, t) = {Jk ∈ RQwait(Ji,t) | ts(Jk) < ts(Ji)}.

Note that Ji can be directly blocked by at most one resource-
holding job Jh. This is because only one job can hold
wait(Ji, t) at time t. It is possible that Jh itself is directly
blocked by another resource holding job. In this case, all jobs
that are blocking Jh also block Ji. We call this transitive
blocking. Transitive blocking is the transitive closure of di-
rect blocking. The set of jobs that transitively block Ji at time
t is given by

TB(Ji, t) =
⋃

Jk∈DB(Ji,t)

DB(Jk, t).

Note that DB(Ji, t) ⊆ TB(Ji, t).

Example 2. To illustrate transitive blocking we consider the
schedule shown in Fig. 5, which pertains to the same task
system as in Example 1. At time t = 1, job J1 acquires `c, at
time t = 2, J2 acquires `b, and at time t = 3, J3 acquires `a.
Also, at time t = 3, J2 issues a nested resource request for `c,
and at time t = 5, J3 issues a nested request for `b. At time
t = 5, J3 is directly blocked by J2, and J2 is directly blocked
by J1. Thus, J3 is transitively blocked by both J1 and J2.

Reconsidering Example 1, at time t ∈ [3, 4.5) in Fig. 4, J3
waits by Rule Q3 even though it is at the head of its resource
queue. This gives rise to a different form of blocking that we
must also quantify in our analysis. We say that a job that is
blocked by a job with an earlier timestamp in another queue is
indirectly blocked. The set of jobs that Ji is indirectly blocked
by at time t is given by

IB(Ji, t) = {Jk ∈ RQa | `a ≺ wait(Ji, t) ∧
ts(Jk) < ts(Ji)}.

We use the general term blocked to refer to either transitive
or indirect blocking. We denote the set of jobs that block Ji
as

B(Ji, t) = TB(Ji, t) ∪ IB(Ji, t).

Figure 6: Phases of a resource request in the RNLP.

From the definition of B(Ji, t), we have the following.
Lemma 1. For any job Ji and any time t, ∀Jk ∈
B(Ji, t), ts(Jk) < ts(Ji).

To ensure a bounded duration of pi-blocking, every RSM
must satisfy the following property.
P1 If Ji is pi-blocked (s-oblivious, s-aware, or spin-based)

by the RSM, then Ji makes progress.
Properties P1 and T2 combine to ensure that a job that is pi-
blocked waiting for a token makes progress towards acquir-
ing the shared resource it needs. Property P1 will be proved
in Sec. 4 for a number of individual RSMs.
Analysis. We now prove a bound on the maximum duration
of pi-blocking experienced by a token-holding job Ji. In the
following analysis, let t1 denote the time that Ji makes a re-
quest for a token and t2 be the time that Ji receives a token.
Also, let t3 be the time that Ji’s outermost request is satisfied
and t4 be the time that its outermost critical section com-
pletes. These times are depicted in Fig. 6.

A job’s worst-case duration of pi-blocking is equal to the
sum of the maximum duration of pi-blocking caused by the
token lock during [t1, t2) and by the RSM during [t2, t3) be-
fore the Ji’s outermost request is satisfied, as well as during
[t3, t4) if Ji issues a nested request. We now consider the pi-
blocking caused by the RSM. Later, in Sec. 5 we consider
worst-case pi-blocking under various token locks.
Theorem 1. The maximum duration of pi-blocking
(regardless of whether waiting is realized by spinning or
suspending, or in the latter case if analysis is s-oblivious or
s-aware), during [t2, t4) for any RSM is (k − 1)Lmax.
Proof. Property P1 ensures that if a job is pi-blocked, it makes
progress. By Lemma 1, a job can never be pi-blocked by a job
with a later timestamp. By Property T1, there are at most k−1
jobs with earlier timestamps. Thus, a job can be pi-blocked in
any RSM for at most k − 1 outermost critical sections, each
of length at most Lmax.

4 Specific Request Satisfaction Mechanisms
In this section, we describe four request satisfaction mecha-
nisms, the spin RSM (S-RSM), boost RSM (B-RSM), inher-
itance RSM (I-RSM), and donation RSM (D-RSM).

4.1 S-RSM
The S-RSM is the RSM used when waiting is realized by
spinning instead of suspending. Spinning is advantageous
when critical section lengths are short in comparison to the
overhead of a context switch [1, 2]. To construct an RSM in
which waiting is realized by spinning, we add an additional
rule to those common to all RSMs.



S1 All token-holding jobs execute non-preemptively. A job
that is waiting in a resource queue spins.

This rule can be used on partitioned, clustered, or glob-
ally scheduled systems. However, there can be no more than c
spinning jobs per cluster, and thus there can be at most k = m
tokens, c from each cluster. Additionally, non-preemptivity
can cause jobs that are not currently utilizing the locking pro-
tocol to be pi-blocked. Thus, the execution time of every job
must be inflated to account for this possibility.
Lemma 2. The S-RSM for partitioned, clustered, and glob-
ally scheduled systems in which waiting is realized by spin-
ning ensures Property P1.
Proof. By Rule S1, every token-holding job is scheduled (and
is spinning if it is waiting). Thus, every resource-holding
job is scheduled, which ensures that progress is made for all
token-holding jobs.

4.2 B-RSM
The B-RSM can be applied in partitioned, clustered, or glob-
ally scheduled systems in which waiting is realized by sus-
pending instead of spinning. Under the B-RSM, progress
is ensured by boosting the priority of a resource-holding
job, similar to the FMLP+[2]. Priority boosting, like non-
preemptive spinning, can cause jobs that are not utilizing the
locking protocol to be pi-blocked. The following rule defines
the B-RSM.
B1 The (at most) m jobs with the earliest timestamps

among the resource-holding jobs without outstanding
resource requests (i.e., that are not waiting) are boosted
above the priority of all non-resource-requesting jobs.

This rule allows for any value of k, as it ensures that no
more than m jobs can be priority boosted concurrently. The
following lemma follows immediately.
Lemma 3. The B-RSM for partitioned, clustered, or globally
scheduled systems in which waiting is realized by suspending
ensures Property P1.

Note that the B-RSM ensures progress under any JLSP
scheduler, but does not always lead to an asymptotically op-
timal locking protocol due to the pi-blocking boosting can
cause on jobs that are not currently utilizing the locking pro-
tocol, as described by Brandenburg [2].

4.3 I-RSM
The I-RSM is only applicable on globally scheduled sys-
tems because it requires that the priorities of all resource-
requesting jobs can be compared. It also requires waiting to
be realized by suspending instead of spinning. The I-RSM
uses priority inheritance instead of priority boosting as a
progress mechanism, which is advantageous because it does
not induce pi-blocking on non-resource-requesting jobs.

To motivate the design of the I-RSM, consider again Ex-
ample 1. Suppose at time t = 6 there exist m jobs (not
shown) that do not utilize the locking protocol that have dead-
lines just after t = 12 but before J1’s deadline. Then J3 is
the only token-holding job that has a sufficient priority to be
scheduled. However, J3 is blocked by J1, which holds `c, and

J1 does not have sufficient priority to be scheduled, and thus
is also suspended. J3 therefore does not make progress and it
can thus have an unbounded duration of pi-blocking. Priority
inheritance can be applied to limit such pi-blocking.

We call the job with the earliest timestamp that blocks Ji
the inheritance candidate of Ji. The inheritance candidate is
thus given by

ic(Ji, t) = arg min
Jk∈B(Ji,t)

ts(Jk).

A job Jc may be the inheritance candidate of several jobs. We
define the inheritance candidate set (ICS ) of Jc to be the set
of jobs for which Jc is the inheritance candidate.

ICS(Jc, t) = {Ji | ∃Ti ∈ τ, ic(Ji, t) = Jc}.

In Example 1, at time t = 6, J2, J3, and J4 are all blocked
by J1. J1 is therefore the inheritance candidate of J2, J3, and
J4. J1 is also the earliest job by timestamp that blocks each
of J2, J3 and J4. Thus, ic(J2, 6) = J1 and ICS (J1, 6) =
{J2, J3, J4}.

The I-RSM builds upon these ideas. If a job is pi-blocked,
then the resource-holding job that blocks it, its inheritance
candidate, should be scheduled.

I1 A ready job Ji holding resource `k inherits the highest
priority of the jobs for which it is an inheritance candi-
date:

p(Ji, t) = max
Jk∈{Ji}∪ICS(Ji,t)

p(Jk, t).

In Example 1, at time t = 6, ICS (J1, 6) = {J2, J3, J4}.
Of these jobs J3 has the highest priority, and thus J1 inherits
the priority of J3.

Lemma 4. A job Ji’s priority can be inherited by at most
one job at a time.

Proof. By construction, Ji has at most one inheritance candi-
date at any time t, and thus there is only one job Jc for which
Ji ∈ ICS (Jc, t). Thus, Ji’s priority will be inherited by Jc
or by no job at all.

Lemma 4 ensures that there are no two jobs executing
with the same identity, which is effectively equivalent to a
task having two threads. This would break the sporadic task
model, and thus the resulting system would not be analyzable
using existing schedulability tests.

Lemma 5. For any job Ji, ic(Ji, t) is ready.

Proof. By contradiction. Assume that Jc = ic(Ji, t). If Jc
is not ready, then it is suspended by either Rule Q2 or Q3.
In either case, by Lemma 1, Jc is blocked by a job Jb with
an earlier timestamp. Thus, Ji is also blocked by Jb. This
contradicts the fact that Jc is Ji’s inheritance candidate.

Lemma 6. The I-RSM for globally scheduled systems in
which waiting is realized by suspending ensures Property P1.

Proof. If a job Ji is pi-blocked (s-oblivious or s-aware) at time
t, then Ji has sufficient priority to be scheduled under either
definition of pi-blocking. By Lemma 5, ic(Ji, t) is ready. By



Rule I1, ic(Ji, t) has priority p(ic(Ji, t), t) ≥ p(Ji, t), and
thus ic(Ji, t) is scheduled.

The I-RSM does not place any restrictions on the number
of tokens in the system, i.e., the value of k. Depending upon
the scheduler, analysis type, and token lock, k can be chosen
to allow for increased parallelism or decreased worst-case pi-
blocking. This issue is considered in Sec. 5.

4.4 D-RSM
The D-RSM is designed for clustered (and hence global and
partitioned) systems in which waiting is realized by suspend-
ing. In these systems, the I-RSM is not sufficient to ensure
progress because priorities cannot be compared across clus-
ters. A job in one cluster therefore cannot inherit the priority
of a job in another cluster. In clustered systems, progress can
be ensured through priority donation, which prevents prob-
lematic preemptions of resource-requesting jobs [5]. For in-
stance, in Example 1, if an additional job J5 were released
at time t = 7 with a deadline of t = 11, then it would do-
nate its priority to J4, the lowest priority job, which has an
incomplete resource request. There are no new rules for the
D-RSM, however the D-RSM does require an additional con-
straint on the token lock.
C1 A token-holding job has one of the highest c effective

priorities in its cluster.
Because there are at most m jobs that have one of the highest
c effective priorities in their cluster, there can be at most m
token holding jobs and thus k ≤ m.
Lemma 7. Property C1 implies Properties P1 on partitioned,
clustered, and globally scheduled systems in which waiting is
realized by suspending.
Proof. Property C1 ensures that a token holding job has a
sufficient effective priority to be scheduled. Thus, a ready
resource-holding job (which necessarily holds a token) is
scheduled, and progress is ensured.

The D-RSM itself does not cause pi-blocking for non-
resource-requesting jobs. However, as we shall see, a to-
ken lock that satisfies Property C1 can cause non-resource-
requesting jobs to be pi-blocked.

5 Token Locks
In this section, we describe how existing k-exclusion locking
protocols can be used as token locks. For each token lock, we
describe the best choice of k, how to pair the token lock with
an RSM, and the analytical worst-case pi-blocking complex-
ity of the complete resulting locking protocol. The results of
this section are summarized in Table 2.

5.1 Spin k-exclusion
When waiting is realized by non-preemptive spinning as in
the S-RSM, the best choice of token lock is essentially no to-
ken lock at all, because the S-RSM alone upholds the proper-
ties of both an RSM as well as a token lock. We call this token
lock the trivial token lock (TTL) because a job acquires a to-
ken immediately upon request. Because there can be at most
m jobs running non-preemptively on m processors, k = m

under the TTL. For the remainder of this subsection, we as-
sume k = m.

Lemma 8. Properties T1 and T2 are ensured by Rule S1.

Proof. By Rule S1, once a job issues a resource request, it
runs non-preemptively until it finishes its outermost critical
section. No more than m jobs can therefore have incomplete
resource requests at a time. This ensures Property T1. Prop-
erty T2 is ensured because all jobs with incomplete resource
requests are scheduled, and thus make progress.

The non-preemptive nature of spin-locks, just like prior-
ity boosting and priority donation, can cause a job to be pi-
blocked even when it has no incomplete resource request.

Theorem 2. Any job in the system can be pi-blocked by a job
spinning non-preemptively for a duration of at most mLmax.

Proof. In the worst case, there can be m jobs that are not cur-
rently utilizing the locking protocol that have sufficient prior-
ity to be scheduled but are not, due to m other jobs spinning
non-preemptively. Allm of the token holding jobs must com-
plete their outermost critical sections before the mth blocked
job can be scheduled.

Theorem 3. The maximum duration of s-blocking per-
request in the S-RSM is (m− 1)Lmax.

Proof. Follows from Theorem 1 and k = m.

5.2 CK-OMLP for Clustered Systems
The most versatile of existing k-exclusion locking protocols
is the clustered k-exclusion OMLP (CK-OMLP) developed
by Brandenburg and Anderson [5]. The CK-OMLP can be
employed on partitioned, clustered, and globally scheduled
systems in which waiting is realized by suspending, and it
has asymptotically optimal s-oblivious pi-blocking behavior
on all such systems. The CK-OMLP relies upon priority do-
nation to ensure progress, and thus every job with an incom-
plete resource request has one of the c highest priorities in
its cluster. In the remainder of this section, we assume that
k = m, which ensures that a job is not pi-blocked waiting for
a token (while priority donors pi-block, the donation mecha-
nism ensures that the [up to]m token holders have the highest
effective priorities in the system).

Lemma 9. The CK-OMLP ensures Properties T1, T2,
and C1.

Proof. The CK-OMLP is a k-exclusion locking protocol, and
thus satisfies Property T1. Lemma 1 of [5] proves that a
token-holding job (i.e., a job that is “within its critical sec-
tion” from the CK-OMLP’s perspective) has sufficient prior-
ity to be scheduled, which yields Property C1. By Lemma 7,
a token holding job makes progress. Thus, a job waiting for a
token makes progress, satisfying Property T2.

Under priority donation any job can be forced to donate
its priority on job release for a period of time. If a job issues
many resource requests, the amortized cost per request is re-
duced. However, because any job can be pi-blocked while it
is a priority donor, every job must inflate its execution cost.
Because priorities cannot be compared across clusters, we be-
lieve this donation cost for all jobs is fundamental on clus-



Analysis Scheduler Token Lock k RSM Every Job Pi-blocking Per-Request Pi-blocking
spin Any TTL m S-RSM mLmax (m− 1)Lmax

s-aware
Partitioned TTL n B-RSM nLmax (n− 1)Lmax

Clustered TTL n B-RSM O(φ · n) (n− 1)Lmax

Global† TTL n I-RSM O(n) (n− 1)Lmax

s-oblivious

Partitioned CK-OMLP m D-RSM mLmax (m− 1)Lmax

Clustered CK-OMLP m D-RSM mLmax (m− 1)Lmax

Global
CK-OMLP m D-RSM mLmax (m− 1)Lmax

O-KGLP m I-RSM 0 (5m− 1)Lmax

I-KGLP m I-RSM 0 (2m− 1)Lmax

† Applicable only under certain schedulers as discussed in Sec. 5.4.

Table 2: Configuration and worst-case pi-blocking of the RNLP on various platforms. The columns “Token Lock”
and “RSM” describe an instantiation of the RNLP that pairs a token lock with an RSM. The remaining columns
show the blocking complexity of the resulting locking protocol under the given assumptions just as in Table 1. All
listed protocols are asymptotically optimal except the case of clustered schedulers under s-aware analysis for which
no asymptotically optimal locking protocol is known.

tered systems.

Theorem 4. The maximum duration of s-oblivious pi-
blocking per job (regardless of whether the job ever issues
a resource request) caused by the donation mechanism of the
CK-OMLP is mLmax.

Proof. By Lemma 1 of [5], a token-holding job has sufficient
priority to be scheduled. By Lemma 2 of [5] and the assump-
tion that k = m, the maximum duration of s-oblivious pi-
blocking caused by priority donation is bounded by the max-
imum amount of time a job (the donee) can hold a token. A
job can hold a token for Lmax time while it holds shared re-
source(s), plus (k − 1)Lmax time by Theorem 1. Since we
assume k = m, the maximum duration of pi-blocking caused
by priority donation is thus mLmax.

Theorem 5. The maximum duration of s-oblivious pi-
blocking per outermost resource request is (m− 1)Lmax un-
der the D-RSM and CK-OMLP.

Proof. Follows from Theorem 1 and k = m.
Theorems 4 and 5 show that the RNLP with the D-RSM

and CK-OMLP has the same s-oblivious pi-blocking bound
as a mutex lock in the clustered OMLP, as seen in Table 1.
However, the RNLP supports nested locking while the OMLP
does not. Also note that while the D-RSM and the CK-OMLP
produce the same blocking bounds as the TTL and the S-
RSM, the former produces a suspension-based lock while the
latter produces a spin-based lock. A system designer may
choose one over the other depending upon critical section
lengths and system overheads.

5.3 O-KGLP for Globally Scheduled Systems

The CK-OMLP can be used on any system with non-
overlapping clusters. However, any job can be forced to sus-
pend on release to donate its priority by Theorem 4. An appli-
cation with a mix of non-resource-requesting jobs with small
periods and jobs with long periods and long critical sections
may therefore be unschedulable as a short-period job may be
forced to donate its priority for longer than its period.

Elliott and Anderson developed a k-exclusion locking pro-
tocol specifically for globally scheduled systems called the

O-KGLP [8]. In the O-KGLP, non-resource-requesting jobs
are not affected by the behavior of the locking protocol. The
O-KGLP has O(m/k) worst-case s-oblivious pi-blocking,
which is asymptotically optimal.
Lemma 10. The O-KGLP ensures Properties T1 and T2.
Proof. The O-KGLP is a k-exclusion lock, and thus satisfies
Property T1. By Theorem 1 of [8], the O-KGLP is asymptoti-
cally optimal, and progress is ensured because of the bounded
duration of pi-block in each component of the O-KGLP by
Lemmas 2-5 and 7 of [8]. Thus Property T2 holds under the
O-KGLP.

Theorem 6. When the O-KGLP is used in tandem with the
I-RSM, the maximum s-oblivious pi-blocking per resource
request is given by (2m+ 3k − 1)Lmax.
Proof. From Lemmas 2-5 and 7 of [8], the maximum pi-
blocking per token request is 2m/k + 2 times the maximum
duration of time a job can hold a token (i.e., the “maximum
critical section length” from the perspective of the O-KGLP).
By Lemma 1 (of this paper), a token-holding job can be
blocked by k − 1 requests, and thus the maximum duration
of time a job can hold a token is kLmax. Thus, the total time
a job can be pi-blocked waiting for a token per request is
(2m + 2k)Lmax. By Theorem 1, a job can be pi-blocked by
the RSM for (k − 1)Lmax time per request. Thus, the total
pi-blocking per request is (2m+ 3k − 1)Lmax.

The CK-OMLP has a smaller constant factor for the max-
imum per-request pi-blocking, but the O-KGLP does not re-
quire a non-resource-requesting job to inflate its execution
time.8

5.4 Trivial Token Lock for S-Aware Analysis
The token locks discussed above lead to asymptotically op-
timal implementations under spin-based or s-oblivious anal-
ysis. However, these locking protocols do not perform well
under s-aware analysis. Under s-aware analysis, it is best to
choose k = n to allow for maximal concurrency, thus the

8In an online appendix, we present a new k-exclusion locking protocol
(the I-KGLP in Table 2) for globally scheduled systems, that has a better
s-oblivious pi-blocking bound under s-oblivious analysis than the O-KGLP.



TTL is used. Note that increased concurrency results in fewer
suspensions, which are accounted for under s-aware analysis.
From the TTL, we have the following lemma.

Lemma 11. The TTL satisfies Properties T1 and T2.

Depending upon the scheduler, the TTL can be paired with
different RSMs. We pair the TTL with the B-RSM under par-
titioned scheduling.

Theorem 7. On a partitioned system, the maximum duration
of s-aware pi-blocking per outermost resource request is (n−
1)Lmax under the B-RSM and TTL.

Proof. Follows from Theorem 1 and k = n.
Under s-aware analysis we must carefully consider the pi-

blocking boosting itself may cause.

Theorem 8. Let c = 1 and nc be the number of tasks as-
signed to Ji’s partition. The worst-case s-aware pi-blocking
of job Ji caused by the boosting of other jobs in the B-RSM
(regardless of whether Ji ever issues a resource request) is
(nc − 1)Lmax.

Proof. In the worst case, all requests are serialized by the
B-RSM, as any concurrency would decrease s-aware pi-
blocking. In this case, the blocking behavior is the same as
the FMLP+ because the B-RSM employs the same progress
mechanism as the FMLP+. Thus, the bound follows directly
from the bound for the FMLP+ in Theorem 6.4 of [2].

Note that the per-job and per-request pi-blocking are both
O(n) and thus the pairing of the TTL and the B-RSM is
asymptotically optimal for partitioned systems (given the pre-
viously established Ω(n) lower bound [4]).

The B-RSM can be employed in systems in which c > 1
(including c = m) and progress is ensured. However, the B-
RSM can cause a job that is not currently utilizing the locking
protocol to be pi-blocked for longer than O(n). Brandenburg
showed a lower bound of Ω(φ) on s-aware pi-blocking caused
by priority boosting where φ is the ratio of the maximum
period to the minimum period in the system [2]. This bound
is not proven to be tight. In an online appendix, we establish
a coarse upper bound on s-aware pi-blocking under the B-
RSM where c > 1 to be O(φ · n). This bound is based on
the number of other jobs that can execute during one job’s
period.

Priority donation and priority inheritance are the only re-
maining progress mechanisms to consider. Priority donation
is not particularly effective under s-aware analysis [2]. Prior-
ity inheritance is only applicable on globally scheduled sys-
tems and in general it has the same Ω(φ) s-aware pi-blocking
bound as priority boosting [2]. However, under rate mono-
tonic (RM) scheduling, as well as constrained, fixed priority-
point schedulers (e.g., FIFO, and G-EDF with relative dead-
lines at most periods), a special class of JLSP schedulers in
which each task’s relative priority point does not exceed its
period, priority inheritance yields an asymptotically optimal
locking protocol.

Theorem 9. The worst-case s-aware pi-blocking per job
(regardless of whether the job ever issues a resource request)
caused by the TTL and I-RSM under either RM or any con-
strained, fixed priority-point global scheduler is O(n).

Proof. In the worst case, all requests are serialized by
the I-RSM as any concurrency would decrease s-aware pi-
blocking. In this case, the I-RSM is equivalent to the FMLP.
From [2], the maximum s-aware pi-blocking caused by pri-
ority inheritance is O(n) for RM and constrained, fixed
priority-point global schedulers.

Theorem 10. The maximum duration of s-aware pi-blocking
per outermost resource request is (n−1)Lmax under the TTL
and I-RSM.
Proof. Follows from Theorem 1 and k = n.

Note that asymptotically, the RNLP performs no worse
than any existing locking protocols under s-aware analysis.
However, the increased concurrency afforded by the RSM
leads to improved s-aware pi-blocking in practice.

6 Benefits of Fine-Grained Locking
The worst-case blocking behavior of the RNLP family of
locking protocols is no worse than the FMLP or the OMLP
family of locking protocols under the analysis assumptions
we have made. However, the RNLP can allow multiple jobs
to access resources within a group concurrently. In many ap-
plications, nested resource requests, which force resources to
be grouped, though possible, are relatively infrequent [3]. In
such cases, the RNLP often allows jobs to hold individual
resources in a resource group concurrently. This improves
average-case pi-blocking. Additionally, if more information
is known a priori about a task set, then it may be possible to
achieve tighter blocking bounds.

As an example, consider an unmanned aerial vehicle that
employs planning algorithms to compute a route through en-
emy territory to avoid danger while carrying out its mission.
Some such algorithms employ imprecise computations [9],
in which results improve given more computation time [10].
In such applications, imprecise computation may be used to
compute navigation plans for segments of the vehicle’s flight
path. Later, any spare computational resources can be used to
optimize the plans for dangerous segments of the flight path.

To support such an application, we can envision naviga-
tion plans being computed by producer task(s), and enqueued
into a circular buffer as seen in Fig. 7. When the time comes
for a plan to be executed, a consumer task dequeues the plan
from the circular buffer. Other tasks can further optimize
plans that are already in the circular buffer.

To support this application under group locks, access to
any part of the circular buffer would necessarily be arbitrated
by a single group lock. Using fine-grained locking with the
RNLP, jobs can concurrently modify different parts of the
buffer. In this locking scheme, the head and tail pointers are
each considered individual shared resources to ensure jobs
cannot either produce or consume concurrently. Each element
in the buffer is also controlled by a mutex lock to ensure that a
plan is not modified concurrently. In this example, to enqueue
(dequeue) a plan to (from) the queue, a job must acquire the
head (tail) pointer as well as the lock for the element to which
the head or tail pointer points.

Under the RNLP, if the buffer is neither empty nor full,
then a producer task can never be blocked by a consumer



Figure 7: Illustration of a circular buffer for imprecise computation.
The head (tail) resource as well as the element at the head (tail) of
the queue are locked by one task, while another task has an element
in the middle of the queue locked.

task or vice versa. This application-specific knowledge can
be incorporated into finer-grained analysis to achieve tighter
blocking bounds. In this case, the blocking bound for the
RNLP would be less than that of a similar group lock.

Even in applications in which a priori fine-grained lock-
ing properties are not known, it can still be advantageous to
use the RNLP over a single-resource locking protocol. For
example, in a soft real-time system, the increased parallelism
afforded by the RNLP may enable more jobs to meet their
deadlines. In systems supporting a mix of hard and soft real-
time tasks as well as best-effort work, the increased paral-
lelism may allow more best effort work to get done. Even in
a hard real-time setting, the RNLP has a benefit; by reducing
the duration of pi-blocking, safety margins are made wider to
help ensure anomalous behavior does not cause a job to miss
its deadline.

7 Conclusions
Existing locking protocols for multiprocessor real-time sys-
tems only support a single resource. Nested resource re-
quests are therefore only supported through the use of coarse-
grained locking techniques such as group locks. In this pa-
per, we have presented the RNLP, a modular locking pro-
tocol composed of a k-exclusion token lock and an RSM.
Token locks and RSMs are paired depending upon the sched-
uler, type of analysis, and how waiting is realized to achieve
asymptotically optimal locking protocols in most cases (and
all cases in which asymptotically optimal single-resource
locking protocols are known). Furthermore, the modular na-
ture of the RNLP allows for future progress mechanisms or
k-exclusion locks to be incorporated into the RNLP to im-
prove performance in particular cases.

The variants of the RNLP we have presented have s-
oblivious, s-aware, and spin-based blocking behavior no
worse than existing multiprocessor locking protocols under
the analysis assumptions we have employed. The RNLP,
however, supports nested resource requests, and it is possi-
ble for multiple jobs to concurrently hold separate resources
in a resource group. This increased parallelism can be advan-
tageous in many settings. The RNLP is also advantageous in
that groups do not have to be statically assigned before exe-
cution. Resources can be dynamically added or removed so
long as the relative order of all other resources is not modi-

fied. This property adds flexibility to the RNLP.
This work forms a strong platform on which we intend

to continue to build. For example, while this paper only ad-
dresses mutex locks, we would like to extend the RNLP to
support k-exclusion and reader-writer resources, and allow
nested requests between all of these types of resources. Ad-
ditionally, we intend to explore the possibility of dynamic
group locks, in which a job can request an arbitrary set of
shared resources at once (under the RNLP, a job would have
to request each resource in the set individually).

Under the RNLP, all resources are controlled by a single
token lock. However, this can cause a job to be blocked wait-
ing for a token held by a job waiting for another resource,
possibly one in which critical section lengths are longer. We
intend to investigate the possibility of allowing multiple in-
stances of the RNLP to be instantiated to control fine-grained
nested requests within individual resource groups, to elim-
inate the possibility of such an occurrence. Such a scheme
would be a hybrid of coarse-grained group locking and fine-
grained locking.

Also, we want to conduct a more rigorous analysis of the
blocking behavior of the RNLP using additional information
about a system, such as the semantics of the operations on
shared data structures, maximum depth of nested resource
requests, the length of each task’s critical sections, and the
request order. Finally, we plan to implement the RNLP in
LITMUSRT and conduct an empirical evaluation.

Acknowledgements. We thank Glenn Elliott for his helpful discus-
sions pertaining to k-exclusion locking protocols.

References
[1] A. Block, H. Leontyev, B.B. Brandenburg, and J.H. Anderson. A flex-

ible real-time locking protocol for multiprocessors. In RTCSA ’07,
pages 47–56, Aug. 2007.

[2] B.B. Brandenburg. Scheduling and Locking in Multiprocessor Real-
Time Operating Systems. PhD thesis, The University of North Carolina
at Chapel Hill, 2011.

[3] B.B. Brandenburg and J.H. Anderson. Feather-trace: A light-weight
event tracing toolkit. In OSPERT ’07, pages 61–70, 2007.

[4] B.B. Brandenburg and J.H. Anderson. Optimality results for multipro-
cessor real-time locking. In RTSS ’10, pages 49–60, 2010.

[5] B.B. Brandenburg and J.H. Anderson. Real-time resource-sharing un-
der clustered scheduling: Mutex, reader-writer, and k-exclusion locks.
In EMSOFT ’11, pages 69–78, Sep. 2011.

[6] C.-M Chen and S.K. Tripathi. Multiprocessor priority ceiling based
protocols. Technical Report CS-TR-3252, Univ. of Maryland, College
Park, 1994.

[7] A Easwaran and B. Andersson. Resource sharing in global fixed-
priority preemptive multiprocessor scheduling. In RTSS ’09, pages
377–386, 2009.

[8] G.A. Elliott and J.H. Anderson. An optimal k-exclusion real-time lock-
ing protocol motivated by multi-GPU systems. In RTNS ’11, pages
15–24, Sep. 2011.

[9] J.W.S. Liu, K.-J. Lin, W.-K. Shih, A.C.-S. Yu, J.-Y. Chung, and
W. Zhao. Algorithms for scheduling imprecise computations. Com-
puter, 24(5):58–68, May 1991.

[10] M.S. Mollison, J.P. Erickson, J.H. Anderson, S.K. Baruah, and J.A.
Scoredos. Mixed-criticality real-time scheduling for multicore sys-
tems. In CIT ’10, pages 1864–1871, Jul. 2010.

[11] R. Rajkumar. Synchronization In Real-Time Systems – A Priority In-
heritance Approach. Kluwer Academic Publishers, Boston, 1991.


	Introduction
	Background and Definitions
	The RNLP
	Specific Request Satisfaction Mechanisms
	S-RSM
	B-RSM
	I-RSM
	D-RSM

	Token Locks
	Spin k-exclusion
	CK-OMLP for Clustered Systems
	O-KGLP for Globally Scheduled Systems
	Trivial Token Lock for S-Aware Analysis

	Benefits of Fine-Grained Locking
	Conclusions

