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Abstract—Architectures in which multicore chips are
augmented with graphics processing units (GPUs) have
great potential in many domains in which computationally
intensive real-time workloads must be supported. How-
ever, unlike standard CPUs, GPUs are treated as I/O
devices and require the use of interrupts to facilitate
communication with CPUs. Given their disruptive nature,
interrupts must be dealt with carefully in real-time systems.
With GPU-driven interrupts, such disruptiveness is further
compounded by the closed-source nature of GPU drivers.
In this paper, such problems are considered and a solution
is presented in the form of an extension to LITMUSRT

called klmirqd. The design of klmirqd targets systems
with multiple CPUs and GPUs. In such settings, interrupt-
related issues arise that have not been previously addressed.

I. INTRODUCTION

Graphics processing units (GPUs) are capable of per-
forming parallel computations at rates orders of mag-
nitude greater than traditional CPUs. Driven both by
this and by increased GPU programmability and single-
precision floating-point support, the use of GPUs to solve
non-graphical (general purpose) computational problems
began gaining wide-spread popularity about ten years
ago [1], [2], [3]. However, at that time, non-graphical
algorithms had to be mapped to graphics-specific lan-
guages. GPU manufactures realized they could reach
new markets by supporting general purpose computa-
tions on GPUs (GPGPU) and released flexible language
extensions and runtime environments.1 Since the release
of these second-generation GPGPU technologies, both
graphics hardware and runtime environments have grown
in generality, enabling GPGPU across many domains.
Today, GPUs can be found integrated on-chip in mobile
devices and laptops [4], [5], [6], as discrete cards in
higher-end consumer computers and workstations, and
within many of the world’s fastest supercomputers [7].

GPUs have applications in many real-time domains.
For example, GPUs can efficiently perform multidi-
mensional FFTs and convolutions, as used in signal
processing, as well as matrix operations such as fac-
torization on large data sets. Such operations are used
in medical imaging and video processing, where real-
time constraints are common. A particularly compelling
use case is driver-assisted and autonomous automobiles,
where multiple streams of video and sensor data must
be processed and correlated in real time [8]. GPUs are
well suited for this purpose.

1Notable platforms include the Compute Unified Device Architec-
ture (CUDA) from Nvidia, Stream from AMD/ATI, OpenCL from
Apple and the Khronos Group, and DirectCompute from Microsoft.

Prior Work. GPUs have received serious consideration
in the real-time community only recently. Both theo-
retical work ([9], [10]) on partitioning and scheduling
algorithms and applied work ([11], [12], [13]) on quality-
of-service techniques and improved responsiveness has
been done. Outside the real-time community, others have
proposed operating system designs where GPUs are
scheduled in much the same way as CPUs [14].

In our own work, we have investigated the challenges
faced when augmenting multicore platforms with GPUs
that have non-real-time, throughput-oriented, closed-
source device drivers [15]. These drivers exhibit prob-
lematic behaviors for real-time systems. For example,
tasks non-preemptively execute on a GPU in first-in-first-
out order.2 Also, GPU access is arbitrated by non-real-
time spinlocks that lack priority-inheritance mechanisms.
CPU time lost to spinning can be significant: GPU ac-
cesses commonly take tens of milliseconds up to several
seconds [15]. Further, blocked tasks may experience
unbounded priority inversions due to the lack of priority
inheritance.3

The primary solution we presented in [15] to address
these issues is to treat a GPU as a shared resource,
protected by a real-time suspension-based semaphore.
This removes the GPU driver from resource arbitration
decisions and enables bounds on blocking time to be
determined. We validated this approach in experiments
on LITMUSRT [16], UNC’s real-time extension to Linux,
and demonstrated that our methods reduced both CPU
utilization and deadline tardiness.

Contributions. One issue not addressed in our prior
work is the effect GPU interrupts have on real-time
execution. Interrupts cause complications in the design
and analysis of real-time systems. Ideally, interrupt han-
dling should respect the priorities of executing real-time
tasks. However, this is a non-trivial issue, especially for
systems with shared I/O resources. In this paper, we
examine the effects interrupt servicing techniques have
on real-time execution on a multiprocessor, with GPU-
related interrupts particularly in mind.

Our major contributions are threefold. First, we de-
velop techniques that enable interrupts due to asyn-
chronous I/O to be handled without violating the single-

2Newer GPUs allow some degree of concurrency, at the expense
of introducing non-determinism due to conflicts within co-scheduled
work. Further, execution remains non-preemptive in any case.

3A priority inversion occurs when a task has sufficient priority to
be scheduled but it is not. Priority inversions can be introduced by a
variety of sources, including locking protocols and interrupt services.
These inversions must be bounded to ensure real-time guarantees.



threaded sporadic task model, improving schedulability
analysis. Prior interrupt-related work has not directly
addressed asynchronous I/O on multiprocessors. Second,
we propose a technique to override the interrupt process-
ing of closed-source drivers and apply this technique to
a GPU driver. This required significant challenges to be
overcome to alter the interrupt handling of the closed-
source GPU driver. Third, we discuss an implementation
of the proposed techniques and present an associated
experimental evaluation. This implementation is given in
the form of an extension to LITMUSRT called klmirqd.

The rest of this paper is organized as follows. In
Sec. II, we provide necessary background. In Sec. III,
we review prior work on real-time interrupt handling
and describe our solution, klmirqd. In Sec. IV, we show
how GPU interrupt processing can be intercepted and
rerouted, despite the use of a closed-source GPU driver.
In Secs. V–VII, we present an experimental evaluation
of klmirqd. We conclude in Sec. VIII.

Due to space limitations, we henceforth limit attention
to GPU technologies from the manufacture NVIDIA,
whose CUDA [17] platform is widely accepted as the
leading GPGPU solution.

II. INTERRUPT HANDLING

An interrupt is a hardware signal issued from a system
device to a system CPU. Upon receipt of an interrupt,
a CPU halts its currently-executing task and invokes an
interrupt handler, which is a segment of code responsible
for taking the appropriate actions to process the interrupt.
Each device driver registers a set of driver-specific
interrupt handlers for all interrupts its associated device
may raise. An interrupted task can only resume execution
after the interrupt handler has completed.

Interrupts require careful implementation and analysis
in real-time systems. In uniprocessor and partitioned
multiprocessor systems, an interrupt handler can be
modeled as the highest-priority real-time task [18], [19],
though the unpredictable nature of interrupts in some
applications may require conservative analysis. Such
approaches can be extended to multiprocessor systems
where tasks may migrate between CPUs [20]. However,
in such systems, the subtle difference between an inter-
ruption and preemption creates an additional concern: an
interrupted task cannot migrate to another CPU since the
interrupt handler temporarily uses the interrupted task’s
program stack. As a result, conservative analysis must
also be used when accounting for interrupts in these
systems too. A real-time system, both in analysis and
in practice, benefits greatly by minimizing interruption
durations. Split interrupt handling is a common way of
achieving this, even in non-real-time systems.

Under split interrupt handling, an interrupt handler
performs the minimum amount of processing necessary
to ensure proper functioning of hardware; additional
work to be carried out in response to an interrupt is
deferred. This deferred work may then be scheduled in a
separate thread of execution with an appropriate priority.

The duration of interruption is minimized and deferred
work competes fairly with other tasks for CPU time.

GPU interrupt management is important to real-time
systems for two reasons. First, we want to minimize
the interference of GPU interrupts on all system tasks,
including those that do not use a GPU. Second, we
want a system that can be modeled analytically, so that
schedulability can be assessed. Such analysis could be
useful for systems such as driver-assisted automobiles.
For example, response time bounds of GPU-based sensor
processing may be required by an automatic collision
avoidance component since response time equates di-
rectly to distance-travelled in a moving vehicle. Through
analysis, we can determine the minimum system pro-
visioning that meets the requirements of the collision
avoidance component, as well as any other timing re-
quirements of other components.
Interrupt Handling In Linux. We now review how
Linux performs split interrupt handling. We focus on
Linux for two reasons. First, despite its general-purpose
origins, variants of Linux are widely used in supporting
real-time workloads. Second, GPGPU is well supported
on Linux and it is the only OS where we can make use of
GPGPU and have the ability to modify OS source code.
Other operating systems with reasonably robust GPGPU
support (Windows and Mac OS X) are closed-source.
Virtualization techniques that enable GPGPU in guest
operating systems (ex. [21]) cannot be used because the
GPGPU software, including the GPU driver, must still be
hosted in a traditional OS environment, such as Linux.

During the initialization of the Linux kernel, device
drivers (even closed-source ones) register interrupt han-
dlers with the kernel’s interrupt services layer, mapping
interrupt signals to interrupt service routines (ISRs).
Upon receipt of an interrupt on a CPU, Linux imme-
diately invokes the registered ISR. The ISR is the top-
half of the split interrupt handler. If an interrupt requires
additional processing beyond what can be implemented
in a minimal top-half, a deferrable bottom-half may be
issued to the Linux kernel in the form of a softirq.
There are several types of softirqs, but in this paper,
we consider only tasklets, which are the type of softirq
used by most I/O devices, including GPUs; we use the
terms “softirq” and “tasklet” synonymously.

The Linux kernel executes tasklets using a heuris-
tic. Immediately after executing a top-half, but before
resuming execution of the interrupted task, the kernel
executes up to ten tasklets. Any remaining tasklets are
dispatched to one of several (per-CPU) kernel threads
dedicated to tasklet processing; these are the “ksoftirq”
daemons. The ksoftirq daemons are scheduled with high
priority, but are preemptible. The described heuristic can
introduce long interrupt latencies, causing one to wonder
if this can even be considered a split interrupt system.
In all likelihood, in a system experiencing few interrupts
(though it may still be heavily utilized), for every top-
half that yields a tasklet (bottom-half), that tasklet will
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Figure 1. Priority inversion: TL should be scheduled on processor
P1 at time t0 since it is one of the top two highest-priority tasks.

subsequently be executed before the interrupted task is
restored to the CPU. If a tasklet is deferred to a ksoftirq
daemon, it is generally not possible to analytically bound
the length of the deferral since these daemons are not
scheduled with real-time priorities.

The PREEMPT_RT Linux kernel patch addresses this
issue by using real-time schedulable worker threads to
process all tasklets. Ideally, the scheduling priority of a
worker thread should match that of the client task using
the interrupt-raising device. However, these threads have
a single fixed priority, even if an associated device is
shared by multiple client tasks of differing priorities.
This can easily lead to harmful priority inversions, as
demonstrated in Sec. VI.

Priority inversions may also arise when asynchronous
I/O is used. In asynchronous I/O, a task may issue a
batch of I/O requests while continuing on to other pro-
cessing. The task defers receipt of I/O results to a later
time. This technique helps improve overall performance
and is commonly used in GPU applications to mask bus
latencies. Since synchronization with the I/O device is
deferred, it is possible for interrupts to be received, and
the corresponding bottom-halves to be executed, while
a client task is scheduled. In such a case, the client task
essentially becomes temporarily multithreaded, breaking
the assumption of single-threaded execution common in
real-time task models such as the sporadic model. A
co-scheduled bottom-half can be interpreted as causing
a priority inversion. This is illustrated in Fig. 1 for a
two-processor system with tasks TH and TL, where TH
has higher priority. At time t0, a bottom-half for TH ,
BHH , preempts TL and is co-scheduled with TH . Under
a single-threaded task model, TL should be scheduled at
t0, so a priority inversion occurs.

Priority inversions caused by asynchronous I/O in non-
partitioned multiprocessors are not merely limited to
Linux variants. Most methods in the real-time literature
also have these shortcomings, and only a few techniques
can avoid inversions in special cases.4 To our knowl-
edge, priority inversions caused by asynchronous I/O in
non-partitioned multiprocessors have not been directly

4 These priority inversions may be avoided when bottom-halves
are scheduled exclusively by bandwidth servers ([22], [23]), provided
that real-time tasks are not dependent upon the completion of these
bottom-halves. This is because bottom-halves are scheduled with a
dedicated server’s priority, not that of a task using the interrupt-raising
device, and tasks in this case never block waiting for a bottom-halves
to complete. Unique priorities among servers and tasks ensure that
co-scheduling does not result in inversions. Further, inversions due to
blocking are avoided since tasks never block.

addressed in the real-time literature.
Neither standard Linux interrupt handling (SLIH) nor

the PREEMPT_RT method implement split interrupt
handling in a way amenable to real-time schedulability
analysis. This is especially unfortunate since Linux-
based systems are currently the only reasonable option
for developing GPU-enabled real-time systems. In the
next section, we propose a Linux-based solution that is
amenable to analysis.

III. INTERRUPT HANDLING IN LITMUSRT

LITMUSRT, a real-time extension of Linux, has been
under continual development at UNC for over five
years. To date, LITMUSRT has largely been limited to
workloads that are not I/O intensive, since LITMUSRT

has provided no mechanisms for real-time I/O. The
implementation of real-time I/O is a considerable effort,
and proper implementation of split interrupt handling is
one critical aspect of this work. We begin this work here.

As discussed in Sec. II, current Linux-based operat-
ing systems use fixed-priority softirq daemons. In this
paper, we introduce a new class of LITMUSRT-aware
daemons called klmirqd.5 This name is an abbreviation
for “Litmus softirq daemon” and is prefixed with a “k”
to indicate that the daemon executes in kernel space.
klmirqd daemons may function under any LITMUSRT-
supported job-level static-priority (JLSP) scheduling al-
gorithm, including partitioned-, clustered-, and global-
earliest-deadline-first and -fixed-priority schedulers.

klmirqd is designed to be extensible. Unlike the
ksoftirq daemons, the system designer may create an
arbitrary number of klmirqd threads to process tasklets
from a single device, or a single klmirqd thread may
be shared among many devices. A klmirqd thread may
be configured in either a dependent or independent
mode. In dependent mode, a klmirqd thread executes
on behalf of a tasklet owner (the real-time client task
using the interrupt-raising device), and in independent
mode, a klmirqd thread runs as a bandwidth server. The
latter mode is useful for constraining the utilization of
anonymous tasklets (those with no owners), which is
common to network traffic [22], [23].

Instead of using the standard Linux
tasklet_schedule() function call to issue
a tasklet to the kernel, an alternative function
litmus_tasklet_schedule() is provided to
issue a tasklet to klmirqd. Owner and klmirqd thread
identifier parameters must be supplied by the caller
of litmus_tasklet_schedule(), to dispatch
work to a dependent-mode klmirqd thread. No owner
parameter is needed for independent mode. Idle
klmirqd threads suspend, waiting for tasklets to process.
Dependent-mode klmirqd threads adopt the scheduling
priority, including any inherited priority, of the tasklet
owner when it executes. The LITMUSRT scheduler
also ensures that a dependent-mode klmirqd thread is

5Source code available at http://www.litmus-rt.org.

http://www.litmus-rt.org


Owner-Based Bandwidth Threaded Non-Partitioned Async I/O JSLP
Bottom-Half Server Interrupts Multiprocessor Without Support
Scheduling Support Schedulers Inversions

Linux (SLIH) X
PREEMPT_RT X X
LynxOS [24] X X X

Steinberg et al. [25], [26] X X
Lewandowski et al. [23] X X X

Manica et al. [22] X X X X
Zhang et al. (PAI) [27] X

klmirqd X X X X X X

Table I
SUMMARY OF SYSTEM INTERRUPT FEATURES, COMPARING KLMIRQD AGAINST NOTABLE PRIOR WORK.

never co-scheduled with its tasklet owner. This allows
asynchronous I/O to be supported without violating the
single-threaded task models commonly assumed.

klmirqd may be used for all system tasklets, both
owned and anonymous. Unfortunately, applying klmirqd
to all tasklets in LITMUSRT (and by extension, Linux)
is a very significant task. As such, we limit our focus to
GPU applications in this paper.

Comparisons to prior work. We recognize that similar
architectures for split interrupt handling have been pro-
posed and implemented before. However, each approach
does not support a full array of desired features.

Priority inheritance mechanisms for threaded inter-
rupt handling have been used in LynxOS [24], the L4
microkernel [25], and the NOVA microhypervisor [26].
Bandwidth server techniques have also been used in
Linux-based solutions [23], [22]. With the exception of
LynxOS, all of these methods were originally developed
for uniprocessor or partitioned multiprocessor platforms,
and only [22] supports earliest-deadline-first scheduling.
The use of partitioned solutions may constrain the allo-
cation of shared resources, such as GPUs, between par-
titions. Schedulability analysis can also become overly
pessimistic when these methods are extended to non-
partitioned JLSP-scheduled multiprocessors.

The benefits of threaded interrupt handling comes at
the cost of additional thread context-switch overheads.
To address these concerns, Zhang et al. [27] developed
a “process-aware interrupt” (PAI) method where arriv-
ing tasklets that do not have sufficient priority to be
immediately scheduled are deferred, but not executed
by dedicated interrupt threads. This is accomplished
in the system’s thread context switch code path. Prior
to a context switch, the priority of the highest-priority
deferred tasklet is compared against that of the next
thread to be scheduled on the processor. The context
switch is skipped if the tasklet has greater priority, and
the tasklet is scheduled instead. The tasklet temporarily
uses the program stack of the task that was scheduled
prior to the aborted context switch. The resumption of
this task can be delayed since it may not be rescheduled
until the tasklet has completed, so the risk of prior-
ity inversions is not completely avoided. As shown in
Sec. VII, this turns out to be a major analytical liabil-
ity under non-partitioned multiprocessor scheduling. We

have implemented a multiprocessor variant of Zhang’s
method that supports JLSP scheduling and compare it
against klmirqd in later sections.6

A comparative summary of real-time interrupt han-
dling alternatives is given in Table I.7 klmirqd supports
the greatest range of features.

IV. GPU INTEGRATION

In order to integrate GPU interrupt handling with
klmirqd, we must first decide whether GPU klmirqd
threads should run in dependent or independent mode. In
the case of GPUs, the source device and ownership of ev-
ery GPU tasklet can be determined by leveraging mech-
anisms already in place for real-time GPU management
with additional reverse engineering of the closed-source
GPU driver. Thus, we use dependent-mode klmirqd
threads to avoid delays caused by budget exhaustion
and analytical utilization loss due to budgetary over-
provisioning, which can be introduced by bandwidth
servers under independent mode.

In order to use klmirqd in dependent mode, for each
tasklet we must identify: (1) the tasklet owner and (2)
a target klmirqd thread to execute the tasklet. While an
open source device driver could be modified to provide
these parameters, how shall we accomplish this with a
closed-source GPU driver that cannot be modified to
call litmus_tasklet_schedule()? We addressed
this issue by focusing separately on tasklet interception,
device identification, owner identification, and dispatch.
The approach taken to integrate GPUs into klmirqd is
summarized in Fig. 2.
Tasklet Interception. The closed-source GPU driver
must interface with the open source Linux kernel. We
exploit this fact to intercept tasklets dispatched by the
driver. This is done by modifying the standard internal
Linux tasklet_schedule() function.

When tasklet_schedule() is called by a kernel
component, the callback entry point of the deferred work
is specified by a function pointer. We identify a tasklet as
belonging to the closed-source GPU driver if this func-
tion pointer points to a memory region allocated to the
driver. Luckily, it is possible to make this determination

6PAI was originally designed for uniprocessor systems.
7The scheduling of interrupts can also be addressed orthogonally at

the hardware level [28] and may be used to complement these software-
based approaches.
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Figure 2. GPU tasklet redirection. (1) A tasklet from the GPU driver
is passed to tasklet_schedule(). (2) The tasklet is intercepted
if the callback points to the driver. (3) The GPU identifier is extracted
from the data attached to the tasklet using a known address offset,
and the GPU owner is found. (4) The GPU identifier is mapped
to a klmirqd thread, and (5) the GPU tasklet is dispatched through
litmus_tasklet_schedule().

since the driver is loaded as a module (or kernel plugin).
We inspect every callback function pointer of every
dispatched tasklet, online, using Linux’s module-related
routines.8 Thus, we alter to tasklet_schedule() to
intercept tasklets from the GPU driver and override their
scheduling. It should be possible to use this technique to
schedule tasklets of any closed-source driver in Linux,
not just those from GPUs.
Device Identification. Merely intercepting GPU tasklets
is not enough if a system has multiple GPUs; we must
also identify which GPU raised the initial interrupt in
order to determine tasklet ownership. While it may be
possible to perform this identification process at the
lowest levels of interrupt handling, we opt for a simpler
solution closer to tasklet scheduling. The GPU driver
attaches a memory reference to each tasklet, providing
input parameters for the tasklet callback. This reference
points to a data block that includes a device identifier
indicating which GPU raised the interrupt. However,
locating this identifier within the data block is chal-
lenging since it is packaged in a driver-specific format.
Fortunately, the driver’s links into the open source OS
code allow us to locate the device identifier.

NVIDIA does not distribute its GPU driver as an
entirely as a precompiled binary because the internal
APIs of Linux change frequently and many users use
custom configurations. To enable support for a changing
kernel in varied configurations, the distribution includes
plain source code for an OS/driver layer that bridges
the kernel interfaces with closed-source precompiled
object files. By visually inspecting this bridge code, we
gained insight into the format of the tasklet data block,
and determined the fixed address offset of the device
identifier.

We can now intercept and identify the source of a GPU
tasklet. What remains is to identify the tasklet owner and
dispatch the tasklet to the appropriate klmirqd thread.
Owner Identification. As mentioned in Sec. I, we
may arbitrate GPU access using a real-time suspension-

8This may sound like a costly operation, but it is actually quite a
low-overhead process, as is shown in Sec. VI.

based semaphore, thus preventing the GPU driver from
exhibiting behaviors detrimental to real-time predictabil-
ity [15]. Whenever a GPU is allocated to a task by the
locking protocol, an internal lookup table, called the
GPU ownership registry, indexed by device identifier,
is updated to record device ownership.

To manage a pool of k GPUs, we may use a real-
time k-exclusion protocol to assign any available GPU
to a GPU-requesting task.9 The arbitration protocol con-
sidered herein is a k-exclusion extension of the flexible
multiprocessor locking protocol (FMLP) [29], which we
call the k-FMLP.10 The k-FMLP is particularly attrac-
tive because worst-case wait times scale inversely with
the number of GPUs. The k-FMLP was implemented in
LITMUSRT to support this work. Special consideration
had to be paid to integrate with klmirqd. Specifically,
since the k-FMLP uses priority inheritance, a priority
inherited by a GPU holder must be propagated immedi-
ately to any klmirqd thread executing on its behalf.

With the device identifier extracted from the tasklet
and device registry table generated by the locking proto-
col, determining the current owner of a GPU is straight-
forward. We now have gathered all required information
to dispatch a GPU tasklet to klmirqd; now we must deter-
mine which klmirqd thread will perform the processing.
klmirqd Dispatch. The architecture of klmirqd is gen-
eral enough to support any number of daemon instances,
all scheduled by a JLSP real-time scheduler. We create a
single klmirqd thread per GPU to ensure that all GPUs
can be used simultaneously. Each thread is assigned to
a specific GPU, and the assignment is recorded in the
klmirqd assignment registry for later lookup.

V. EVALUATION OF PRIORITY INVERSIONS

In this and the next two sections, we present a
runtime evaluation of klmirqd. We first focus attention
on the severity of priority inversions arising from var-
ious bottom-half scheduling methods. We compare the
threaded interrupt handling of klmirqd to both Zhang
et al.’s PAI [27] deferred bottom-half scheduler, as well
as the heuristic-driven method of the standard Linux
interrupt handler (SLIH).
Evaluation Platform. The platform used in all of our
experiments is a dual-socket six-cores-per-socket Intel
Xeon X5060 CPU system running at 2.67GHz that
is equipped with eight NVIDIA GTX-470 GPUs. The
platform has a NUMA architecture of two NUMA nodes,
each with six CPU cores and four GPUs apiece.

9k-exclusion locking protocols can be used to arbitrate access to
pools of similar or identical resources, such as communication channels
or I/O buffers. k-exclusion extends ordinary mutual exclusion (mutex)
by allowing up to k tasks to simultaneously hold locks (thus, mutual
exclusion is equivalent to 1-exclusion).

10 A full description of the k-FMLP is available in Appendix A of
the online version of this paper at http://www.cs.unc.edu/~anderson/
papers.html. A detailed discussion of some issues that arise when
constructing a real-time k-exclusion protocol can be found in [30].

http://www.cs.unc.edu/~anderson/papers.html
http://www.cs.unc.edu/~anderson/papers.html


In all of our experiments, we used a clustered sched-
uler, with GPUs statically assigned to clusters, and GPU
access arbitrated by a separate k-FMLP instance within
each cluster. Clustered window-constrained schedulers,
such as clustered earliest-deadline-first (C-EDF), have
been shown to be effective if bounded deadline tardiness
is the real-time requirement of interest [31]. For this
reason, we consider only C-EDF in this section since
bounded deadline tardiness applies to many common
real-time GPU applications [15]. Clustering is split along
the NUMA architecture of the system, yielding two
clusters. This configuration minimizes bus contention,
given the memory and I/O bus architectures of the
system. This is especially important for the I/O bus since
contention can significantly affect data transmission rates
between CPUs and GPUs. We used CUDA 4.0 for our
GPU runtime environment.
Experimental Setup. LITMUSRT, based upon Linux
2.6.36, was used as the testbed operating system for this
evaluation since it enables fair comparisons among inter-
rupt handling methods. We did not include unmodified
Linux or PREEMPT_RT for this reason since they have
fundamentally different scheduler architectures (though
higher-level comparisons to these are made in Sec. VI).

We assessed the severity of priority inversions by
generating sporadic task sets and executing them in
LITMUSRT. Each generated task set included both CPU-
only and CPU-and-GPU-using (hereafter referred to as
GPU-using) tasks. Individual task parameters were ran-
domly generated as follows. The period of every task was
randomly selected from the range [15ms, 60ms]; such a
range is common for multimedia processing and sensor
feeds such as video cameras. The utilization of each
task was generated from an exponential distribution with
mean 0.5 (tasks with utilizations greater than 1.0 were
regenerated). This yields relatively large average per-
task execution times.11 We expect GPU-using tasks to
have such execution times since current GPUs typically
cannot efficiently process short GPU requests due to
I/O bus latencies. Next, between 20% and 30% of tasks
within each task set were selected as GPU-using tasks.
Each GPU-using task had a GPU critical section length
equal to 80% of its execution time. Of the critical
section length, 20% was allocated to transmitting data
to and from a GPU. This distribution of critical section
length and data transmission time is common to many
GPU applications, including FFTs and convolutions [15].
Finally, each task set was partitioned across the two
clusters using a two-pass worst-fit partitioning algorithm
that first assigns GPU-using tasks to clusters, followed
by CPU-only tasks. This tends to evenly distribute GPU-
using tasks between clusters. We generated task sets with
high utilizations to put the system under heavy load,
increasing the likelihood of priority inversions. Task set
utilizations ranged from 7.5 to 11.5, in increments of

11A GPU-using task’s execution time includes time spent executing
on both CPUs and GPUs.
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0.1, for a total of 41 task sets.
Tasks executed numerical code (on both CPUs and

GPUs) for the configured durations. GPUs were accessed
via asynchronous I/O. Every task set was executed once
in LITMUSRT for two minutes under each interrupt
handling method. Scheduling logs were recorded, from
which we compared the behaviors of each method.
Metrics. Ideally, a system should conform to the spo-
radic task model and not suffer any priority inversions.
However, this is difficult to achieve in a real system.
We assessed deviance from the ideal by: (i) determining
the distribution of priority inversion durations and (ii)
computing cumulative priority inversions.
Results. While priority inversions cannot be totally elim-
inated, they should nevertheless be as short as possible.
Fig. 3 shows a representative example of the cumulative
distribution function of priority inversion length induced
by scheduled tasklets under the three interrupt handling
methods for the task set with utilization 11.2.12 As
seen, a typical priority inversion is much shorter under
klmirqd than under PAI or SLIH. For example, 90% of
inversions under klmirqd are shorter than 5µs, whereas
the 90th percentile is roughly 35µs under PAI and
exceeds 40µs under SLIH. The cumulative distribution
function for SLIH also has a very long tail, extending
out to 16ms (not depicted in Fig. 3 due to scale). While
the performance of SLIH is not entirely surprising, the
performance of PAI is, since PAI schedules bottom-
halves by priority. However, if a bottom-half has the
priority to be scheduled, then it is likely that the owner
of the bottom-half, making use of asynchronous I/O, also
has sufficient priority to be scheduled. In such cases, both
the bottom-half and owner are co-scheduled, resulting in
an inversion on a non-partitioned multiprocessor.

Although priority inversions should be as short as
possible, the cumulative duration of inversions is also
important because a system that suffers many short
inversions may still be disrupted by their cumulative
effect. Fig. 4 shows cumulative priority inversion length
as a function of maximum priority inversion length for

12 Graphs for all tested task sets are available in Appendix C of the
online version of this paper.
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Figure 4. Cumulative priority inversion length as a function of
maximum priority inversion length for the task set with utilization 11.2.
The total duration of priority inversion is much less under klmirqd in
comparison to PAI and SLIH. The curves for klmirqd and PAI plateau
abruptly, indicating little variance in priority inversion durations.

the same task set shown in Fig. 3. Observe in Fig. 4
that the sum duration of priority inversions is roughly
12,000µs under klmirqd, about 260,000µs under PAI,
and approximately 350,000µs under SLIH. The long
tail distribution under SLIH in Fig. 3 is also exhibited
here: the curve for SLIH in Fig. 4 increases slowly,
while the curves for klmirqd and PAI abruptly plateau.
The durations of priority inversions under klmirqd and
PAI have little variance in contrast to SLIH. Minimized
variance is desirable for predictable systems as it reduces
jitter in response times.

While we may never be able to completely bound
priority inversions caused by the closed-source GPU
driver, the observed deterministic behaviors exhibited by
klmirqd (in particular) and PAI are promising. It is clear
that heuristic-driven SLIH performs poorly in compari-
son. In addition to offering better performance, klmirqd
and PAI are also amenable to real-time analysis. The
poor performance of SLIH is not unexpected, but it is
important to note since a GPU-enabled real-time system
can only feasibly be supported on Linux platforms today.

VI. SYSTEM-WIDE EVALUATION OF INTERRUPT
HANDLING METHODS

In this section, we examine system-wide effects of
interrupt handling in terms under LITMUSRT, using
SLIH, PAI, and klmirqd methods; PREEMPT_RT; and
unmodified Linux (which also uses SLIH).
Experimental Setup. To demonstrate the real-time
weaknesses in unmodified Linux and PREEMPT_RT,
and evaluate both klmirqd and PAI, we executed a
workload of CPU-only and GPU-using tasks on the
platform described in Sec. V. In order to fairly com-
pare LITMUSRT against unmodified Linux and PRE-
EMPT_RT, the workload was scheduled using the clus-
tered rate-monotonic (C-RM) algorithm since unmodi-
fied Linux and PREEMPT_RT only support fixed real-
time priorities. Counting semaphores were used to pro-
tect each pool of GPU resources in unmodified Linux

and PREEMPT_RT, similarly to how the k-FMLP is
used under LITMUSRT. The workload consisted of 50
tasks: two GPU-using tasks that consume 2ms of CPU
time and 1ms of GPU time with a period of 19.9ms; 40
CPU-only tasks that consume 5ms of CPU time with
a period of 20ms; and finally, eight GPU-using tasks
that consume 2ms of CPU time and 1ms of GPU time
with a period of 20.1ms. The set of tasks was evenly
partitioned between the two clusters. Unique priorities
were assigned to each task within each cluster according
to task period.

This task set represents a pathological case for fixed-
priority threaded interrupt handling. Here, the highest
and lowest priority tasks share GPUs and the interrupt
handling threads, which each have a single fixed priority.
Unrelated CPU-only tasks are sandwiched between these
GPU-using tasks. If all tasks had equal priority, then
under RM scheduling, priorities could be reassigned such
that CPU-only tasks have priorities strictly greater or
strictly less than those of GPU-using tasks. However,
though task periods are close to being equal, it is not
the case here.

The workload was executed on eight platform config-
urations: (1) Unmodified Linux, using SLIH, to provide
a baseline of performance; (2) PREEMPT_RT, with
GPU-interrupt priorities set below that of any other
real-time task; (3) PREEMPT_RT with GPU-interrupt
priorities greater than the greatest GPU-using task;13 (4)
LITMUSRT using SLIH; (5) LITMUSRT with klmirqd;
(6) LITMUSRT with PAI; and finally, under C-EDF
(for the sake of comparison), both (7) LITMUSRT with
klmirqd, and (8) LITMUSRT with PAI. The unmodified
Linux and LITMUSRT configurations were based upon
Linux kernel version 2.6.36. PREEMPT_RT was based
upon the 2.6.33 Linux kernel, which was the most recent
kernel supported by PREEMPT_RT at the time of our
evaluation. This workload was executed 25 times for
each system configuration for a duration of 60 seconds
each. Measurements were recorded consistently on each
platform.
Results. Table II gives the average percentage of dead-
lines missed, as well as average response times (as
percent of period), for CPU-only and GPU-using tasks
under the various platform scenarios. The percentage of
deadlines missed is useful for comparing schedulability.
Response time measurements express the timeliness of
job completions (or severity of a deadline misses).

A deadline miss occurs if a job does not complete
within one period of its release time. We avoid penalizing
the response time of a subsequent job following a missed
deadline by shifting the job’s release point to coincide
with the tardy completion time of the prior job. However,
since these tests execute for a fixed duration, frequently
tardy tasks may not execute all their jobs within the
allotted time; any jobs that have not completed (even

13This is a rational choice when an interrupt-generating device is
shared by several tasks with differing priorities.



Scheduler: C-RM C-EDF
Operating System: PREEMPT_RT Unmod. Linux LITMUSRT

Interrupt Handling Method: Low Prio. High Prio. SLIH SLIH klmirqd PAI klmirqd PAI
Interrupts (a) Interrupts (b) (c) (d) (e) (f) (g) (h)

Avg. % Miss Per Task
CPU-Only Tasks 12.5% 12.5% 1.6% 10.0% 10.0% 9.9% 0% 0%
GPU-Using Tasks 10.1% 8.5% 6.8% 0% 0% 0% 0% 0%

Avg. Resp. Time as % Period
CPU-Only Tasks 22474.5% 24061.0% 8992.1% 55.8% 55.8% 55.6% 55.4% 55.4%
GPU-Using Tasks 23066.1% 34263.5% 61131.7% 46.7% 49.6% 46.2% 46.2% 46.2%

Table II
AVERAGE NUMBER OF DEADLINE MISSES PER TASK AND AVERAGE JOB RESPONSE TIMES (EXPRESSED AS A PERCENTAGE OF PERIOD) FOR

THE EXPERIMENTAL TASK SET EXECUTED UNDER SEVERAL SCHEDULING ALGORITHMS AND INTERRUPT HANDLING METHODS. THE
EXPERIMENTAL TASK SET WAS EXECUTED 25 TIMES PER CATEGORY.

those not yet released) by the end of a test are considered
to have missed deadlines, though these jobs are not
included in response time measurements.

Observation 1. There are no good options for selecting
a fixed priority for interrupt threads shared by tasks
of differing priorities. The increase of GPU interrupt
priority in column (b) causes all bottom-half thread
execution to preempt CPU-only jobs, directly increasing
their response times with respect to column (a), where
interrupts have the lowest priority. In most cases under
column (b), GPU interrupt execution is on behalf of
lower-priority GPU-using jobs, thus causing CPU-only
jobs to experience priority inversions. Priority inversions
also occur if interrupt priority is too low, resulting in the
starvation of GPU-using jobs. This is evident in column
(a), where GPU-using tasks miss deadlines more often
than in column (b).

Observation 2. Unmodified Linux outperforms PRE-
EMPT_RT (in this pathological case) due to lower
interrupt handling overhead. Under unmodified Linux,
bottom-halves are usually executed immediately after
top-halves; thus, bottom-halves essentially execute with
maximum priority (like column (b)), yet this is ac-
complished without the overhead of threaded interrupt
handling. Increased CPU availability greatly improves
the response times of CPU-only jobs in column (c) in
comparison to both columns (a) and (b), while deadline
misses of GPU-using jobs are reduced.

Observation 3. klmirqd dynamically assigns priori-
ties to interrupt threads, resulting in schedulable and
analyzable real-time systems. The average response time
values in columns (d) and (e) indicate that jobs typically
complete well before their deadlines (they are less than
100%). While the response time of GPU-using tasks is
slightly worse in column (e), the heuristic-driven nature
of SLIH is not amenable to schedulability analysis.

Observation 4. Overheads introduced by klmirqd into
LITMUSRT are largely negligible, in comparison to both
SLIH and PAI. The nearly-equal response times in
columns (d), (e), and (f) indicate that klmirqd overhead
costs are negligible. This indicates that techniques like
those of PAI are unnecessary in the case of GPU in-
terrupts. However, PAI does perform slightly better than
klmirqd in most cases, though it suffers from significant

analytical pessimism, as shown next in Sec. VII.
Observation 5. LITMUSRT with klmirqd or PAI out-

performs PREEMPT_RT. A comparison of column (b)
to columns (e) and (f) shows that deadline misses were
not significant under klmirqd or PAI, but were common
under PREEMPT_RT. Unfortunately, it is difficult to
identify a single difference between PREEMPT_RT and
LITMUSRT that causes this disparity in performance, as
there are many core differences (in scheduler implemen-
tation, etc.) between the two. Additional investigation
is merited. Nevertheless, these differences do not have
bearing on the previously made observations.

Observation 6. C-EDF scheduling is superior to C-
RM in limiting deadline tardiness. This is not surprising,
in light of prior work [32], but we mention it nonetheless.
This is another indication that PREEMPT_RT may not
be a desirable solution in all applications, especially in
soft real-time systems, since C-EDF is not supported.

VII. OVERHEAD-AWARE SCHEDULABILITY

As seen in Secs. V and VI, both klmirqd and PAI
reduce the frequency and duration of priority inversions.
klmirqd accomplishes this through some additional
scheduling overheads. PAI, on the other hand, incurs
lower system overheads due to the lack of scheduling,
but does so through the sharing of program stacks with
bottom-half execution. SLIH usually executes bottom-
halves immediately following the top-half, incurring
overheads less than even PAI. How do these trade-offs
affect general task set schedulability? The answer to this
question depends upon the actual system overheads and
worst-case priority inversions that may occur in each
approach.14 To address this question in the context of C-
EDF, we conducted schedulability experiments using a
methodology similar to that proposed in [33] to integrate
actual measured overheads.

Using the same hardware platform described in
Sec. V, we measured the following system overheads:
thread context switching, scheduling, job release queu-
ing, inter-processor interrupt latency, CPU clock tick
processing, both GPU interrupt top-half and bottom-half
processing, and, in the case of klmirqd and PAI, tasklet

14We assume for analysis that SLIH always executes bottom-halves
immediately following the top-halves.
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Figure 5. The percentage of schedulable task systems (y-axis) as a
function of CPU utilization (x-axis) under klmirqd (threaded) inter-
rupt handling, PAI (non-threaded) handling, and SLIH (non-threaded)
interrupt handling.

release queuing. We then randomly generated task sets
with properties similar to those in Sec. V. Schedulability
of each generated task set was determined by using a
soft real-time (bounded tardiness) schedulability test for
C-EDF scheduling [34], augmented to account for over-
heads. Average overhead values were used (as in [33]
when analyzing soft real-time systems). Interrupts were
accounted for using task-centric methods [20].15

A selection of our schedulability results is given in
Fig. 5,16 which presents results for task sets in which:
per-task utilizations vary uniformly over [0.5, 0.9]; GPU-
using tasks use 75% of their execution time on the GPU;
and 50% to 60% of tasks in each task set are GPU-
using. Variance in GPU behavior was controlled by a
parameter i ∈ {1, 3, 6}, which specifies the number
of GPU interrupts each GPU-using job may generate.
In Fig. 5, schedulability is higher under klmirqd than
both PAI and SLIH for each choice of i, with a greater
disparity between them for larger values of i.

Contrary to what we might expect from the results in
Secs. V and VI, PAI performs worse than SLIH. This is
because, while PAI attempts to schedule bottom-halves
to avoid priority inversions, it does so at the expense
of using the program stacks of other tasks. Under PAI,
a bottom-half can preempt the lowest-priority scheduled
job when the bottom-half arrives. However, on a non-
partitioned multiprocessor, the relative priority of the
preempted job may increase with respect to other jobs
before the bottom-half completes (this may occur when
higher-priority jobs on other processors complete). Un-
fortunately, the preempted job cannot resume execution
until the preempting bottom-half completes, freeing up
the task’s program stack. The job is blocked, and this
must be reflected in analysis. Accounting for bottom-
halves under PAI results in formulas matching those
for SLIH, except that PAI must also include additional

15Please see Appendix B of the online version of this paper for
theoretical analysis, which includes a detailed description of interrupt
and overhead accounting methods.

16Additional graphs are available in Appendix D of the online
version of this paper.
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Figure 6. Schedulability results similar to Fig. 5 except that a GPU
speedup of 16× is assumed.

overheads due to bottom-half scheduling.
It is important to note that this scenario for PAI

cannot occur on uniprocessors or partitioned multipro-
cessors since the preempted task never has a priority
great enough to be scheduled before the preempting
bottom-half completes.17 Like the issues raised by co-
scheduling bottom-halves and their owner tasks, this PAI
limitation reinforces the notion that prior solutions for
real-time interrupt handling may need reconsideration on
multiprocessor platforms.

The primary motivation for utilizing GPUs in a real-
time system is increased performance. The benefits of
threaded GPU interrupt handling are even more clear
when effective utilization is considered instead of actual
CPU utilization. By supposing a GPU-to-CPU speed-up
ratio of R, we may convert each GPU-using task into a
functionally equivalent CPU-only task by viewing each
time unit spent executing on a GPU as R times units
spent executing on a CPU. We define effective utilization
to be the utilization of a task set after such a conversion.
Fig. 6 depicts the same schedulability results shown in
Fig. 5, except that effective utilizations are considered,
for the case R = 16 (i.e., a GPU is 16× faster than a
CPU), a common speed-up.

As Fig. 6 shows, the impact of using klmirqd is even
greater if effective utilizations are considered. When
i = 6, 90% of task sets with an effective utilization of
65.0 CPUs are schedulable under klmirqd. In contrast,
effective utilization must be decreased to 55.0 CPUs to
achieve the same degree of schedulability under SLIH
or PAI. klmirqd supports effective utilizations ten CPUs
greater at 90% schedulability!

VIII. CONCLUSION

In this paper, we presented flexible real-time interrupt-
handling techniques for multiprocessor platforms that
are applicable to any JLSP-scheduler and that respect
single-threaded task execution. We also reported on our
efforts in implementing such techniques in LITMUSRT,
and showed that they can be successfully applied to
even a closed-source GPU driver, thus allowing for

17Barring priority inheritance mechanisms from locking protocols.



improved real-time characteristics for real-time systems
using GPUs. We presented an experimental evaluation
of this implementation that shows that it reduces the
interference caused by GPU interrupts in comparison to
standard interrupt handling in Linux, outperforms fixed-
priority interrupt handling methods, is competitive with
other real-time methods, and offers better results in terms
of overall schedulability (with overheads considered).

This paper lays the groundwork for future investiga-
tions into GPU-enabled real-time platforms. We limited
attention to clustered scheduling in this paper. In a
future study, we intend to consider a full gamut of
partitioned, clustered, and global schedulers and different
GPU-to-CPU assignment methods and GPU arbitration
(i.e., locking) protocols. The goal of this study will be
to identify the best combinations of scheduler, locking
protocol, etc., for both soft and hard real-time systems,
from the perspective of overhead-aware schedulability.

ACKNOWLEDGMENT

Work supported by NSF grants CNS 1016954 and CNS
1115284; ARO grant W911NF-09-1-0535; AFOSR grant
FA9550-09-1-0549; and AFRL grant FA8750-11-1-0033.

REFERENCES

[1] J. Bolz, I. Farmer, E. Grinspun, and P. Schröoder, “Sparse
matrix solvers on the GPU: conjugate gradients and
multigrid,” in SIGGRAPH ’03, 2003.

[2] M. J. Harris, W. V. Baxter, T. Scheuermann, and A. Las-
tra, “Simulation of cloud dynamics on graphics hard-
ware,” in SIGGRAPH ’03, 2003.

[3] J. Krüger and R. Westermann, “Linear algebra operators
for gpu implementation of numerical algorithms,” in
SIGGRAPH ’03, 2003.

[4] AMD Fusion Family of APUs. [Online].
Available: http://sites.amd.com/us/Documents/48423B_
fusion_whitepaper_WEB.pdf

[5] Intel details 2011 processor features, of-
fers stunning visuals build-in. [Online]. Avail-
able: http://download.intel.com/newsroom/kits/idf/2010_
fall/pdfs/Day1_IDF_SNB_Factsheet.pdf

[6] Bringing high-end graphics to handheld devices. [Online].
Available: http://www.nvidia.com/object/IO_90715.html

[7] V. Kindratenko and P. Trancoso, “Trends in high-
performance computing,” Computing in Science Engi-
neering, vol. 13, no. 3, 2011.

[8] S. Thrun. (2010) GPU technology conference
keynote, day 3. [Online]. Available: http://livesmooth.
istreamplanet.com/nvidia100923/

[9] B. Andersson, G. Raravi, and K. Bletsas, “Assigning real-
time tasks on heterogeneous multiprocessors with two
unrelated types of processors,” in 31st RTSS, 2010.

[10] G. Raravi, B. Andersson, and K. Bletsas, “Provably good
scheduling of sporadic tasks with resource sharing on
two-type heterogeneous multiprocessor platform,” in 15th
OPODIS, 2011.

[11] S. Kato, K. Lakshmanan, R. Rajkumar, and Y. Ishikawa,
“Resource sharing in GPU-accelerated windowing sys-
tems,” in 17th RTAS, 2011.

[12] ——, “TimeGraph: GPU scheduling for real-time multi-
tasking environments,” in USENIX Annual Technical
Conference, 2011.

[13] S. Kato, K. Lakshmanan, A. Kumar, M. Kelkar,
Y. Ishikawa, and R. Rajkumar, “RGEM: A responsive
GPGPU execution model for runtime engines,” in 32nd
RTSS, 2011.

[14] C. J. Rossbach, J. Currey, M. Silberstein, B. Ray, and
E. Witchel, “PTask: operating system abstractions to
manage GPUs as compute devices,” in 23rd SOSP, 2011.

[15] G. Elliott and J. Anderson, “Globally scheduled real-time
multiprocessor systems with GPUs,” Real-Time Systems,
vol. 48, 2012.

[16] J. Calandrino, H. Leontyev, A. Block, U. Devi, and J. An-
derson, “LITMUSRT: A testbed for empirically comparing
real-time multiprocessor schedulers,” in 27th RTSS, 2006.

[17] CUDA Zone. [Online]. Available: http://www.nvidia.
com/object/cuda_home_new.html

[18] J. Liu, Real-Time Systems. Prentice Hall, 2000.
[19] K. Jeffay and D. Stone, “Accounting for interrupt han-

dling costs in dynamic priority task systems,” in 14th
RTSS, 1993.

[20] B. Brandenburg, H. Leontyev, and J. Anderson, “An
overview of interrupt accounting techniques for multi-
processor real-time systems,” Journal of Systems Archi-
tecture, vol. 57, no. 6, 2010.

[21] V. Gupta, A. Gavrilovska, K. Schwan, H. Kharche,
N. Tolia, V. Talwar, and P. Ranganathan, “GViM: GPU-
accelerated virtual machines,” in 3rd HPCVirt, 2009.

[22] N. Manica, L. Abeni, L. Palopoli, D. Faggioli, and
C. Scordino, “Schedulable device drivers: Implementation
and experimental results,” in 6th OSPERT, 2010.

[23] M. Lewandowski, M. J. Stanovich, T. P. Baker,
K. Gopalan, and A. Wang, “Modeling device driver
effects in real-time schedulability analysis: Study of a
network driver,” in 13th RTASS, 2007.

[24] Writing device drivers for LynxOS. [Online]. Avail-
able: http://www.lynuxworks.com/support/lynxos/docs/
lynxos4.2/0732-00-los42_writing_device_drivers.pdf

[25] U. Steinberg, J. Wolter, and H. Härtig, “Fast component
interaction for real-time systems,” in 17th ECRTS, 2005.

[26] U. Steinberg, A. Böttcher, and B. Kauer, “Timeslice
donation in component-based systems,” in 6th OSPERT,
2010.

[27] Y. Zhang and R. West, “Process-aware interrupt schedul-
ing and accounting,” in 27th RTSS, 2006.

[28] L. E. L. del Foyo, P. Mejia-Alvarez, and D. de Niz,
“Predictable interrupt management for real time kernels
over conventional pc hardware,” in 12th RTAS, 2006.

[29] A. Block, H. Leontyev, B. Brandenburg, and J. Anderson,
“A flexible real-time locking protocol for multiproces-
sors,” in 13th ECRTS, 2007.

[30] G. Elliott and J. Anderson, “An optimal k-exclusion real-
time locking protocol motivated by multi-GPU systems,”
in 19th RTNS, 2011.

[31] A. Bastoni, B. Brandenburg, and J. Anderson, “An em-
pirical comparison of global, partitioned, and clustered
multiprocessor real-time schedulers,” in 31st RTSS, 2010.

[32] U. Devi, “Soft real-time scheduling on multiprocessors,”
Ph.D. dissertation, University of North Carolina at Chapel
Hill, 2006.

[33] B. Brandenburg, “Scheduling and locking in multipro-
cessor real-time operating systems,” Ph.D. dissertation,
University of North Carolina at Chapel Hill, 2011.

[34] J. Erickson, N. Guan, and S. Baruah, “Tardiness bounds
for global EDF with deadlines different from periods,” in
14th OPODIS, 2010.

[35] B. Brandenburg and J. Anderson, “Real-time resource-
sharing under clustered scheduling: Mutex, reader-writer,
and k-exclusion locks,” in 11th EMSOFT, 2011.

http://sites.amd.com/us/Documents/48423B_fusion_whitepaper_WEB.pdf
http://sites.amd.com/us/Documents/48423B_fusion_whitepaper_WEB.pdf
http://download.intel.com/newsroom/kits/idf/2010_fall/pdfs/Day1_IDF_SNB_Factsheet.pdf
http://download.intel.com/newsroom/kits/idf/2010_fall/pdfs/Day1_IDF_SNB_Factsheet.pdf
http://www.nvidia.com/object/IO_90715.html
http://livesmooth.istreamplanet.com/nvidia100923/
http://livesmooth.istreamplanet.com/nvidia100923/
http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/object/cuda_home_new.html
http://www.lynuxworks.com/support/lynxos/docs/lynxos4.2/0732-00-los42_writing_device_drivers.pdf
http://www.lynuxworks.com/support/lynxos/docs/lynxos4.2/0732-00-los42_writing_device_drivers.pdf

	Introduction 
	Interrupt Handling 
	Interrupt Handling in LITMUSRT 
	GPU Integration 
	Evaluation of Priority Inversions  
	System-Wide Evaluation of Interrupt Handling Methods 
	Overhead-Aware Schedulability 
	Conclusion  
	References

