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Abstract

The problem of unit testing multiprocessor real-time
schedulers in operating systems such as LITMUSRT is
discussed. A tool intended to aid debugging by identi-
fying deviations from an intended scheduling policy and
performance regressions is proposed. This paper gives
a specification for the tool and also discusses ongoing
work on a prototype implementation.

1 Introduction

The advent of multicore computing has led to renewed
interest in real-time scheduling algorithms for multipro-
cessor systems. In research on this topic, the greatest
emphasis has been on purely algorithmic issues. To im-
pact the development of real systems, such work must
be complemented by prototype development, so that
scheduler-related overheads can be measured and the
practicality of proposed scheduling algorithms assessed.
The LInux Testbed for MUltiprocessor Scheduling in
Real-Time Systems (LITMUSRT) project [2, 4, 8] was
launched to enable such prototype-oriented research.
LITMUSRT provides a testbed for multiprocessor real-
time schedulers by extending the Linux kernel to support
the implementation of such schedulers as plugins.

Unfortunately, developers of real-time schedulers, in-
cluding LITMUSRT scheduler plugins, face two press-
ing challenges. First, it is very difficult to ascertain if
a scheduler is actually making correct decisions, and
thus is implemented correctly. For example, mistaken
scheduling decisions may not result in deadline overruns
for a particular benchmark task set, and thus may go un-
noticed. Second, it is easy for scheduler developers to
introduce extra, unwanted scheduling overhead. Such
overhead will increase the degree to which the scheduler
deviates from a desired scheduling policy.

These challenges are exacerbated by serious difficul-
ties associated with multiprocessor operating system de-
velopment. For example, concurrent programming is-
sues such as synchronization, race conditions, etc., must

be properly taken into account. Furthermore, collecting
relevant data to aid debugging can be an obstacle in itself
due to programming limitations commonly encountered
in kernel environments.

Currently, developers must exert much effort after
each subsequent update to scheduler code to manu-
ally discover and correct faults, such as those described
above. Despite this extra effort, it is still likely that latent
defects will be introduced into the scheduler code over
time due to limitations in scope and coverage of purely
manual testing approaches. An automated tool that fa-
cilitates extensive testing after each code update would
both eliminate much of the need for manual testing and
increase developers’ confidence that scheduler code has
been implemented correctly.

A sensible strategy for such a tool to utilize is unit
testing [6], which is a widely-followed software engi-
neering practice [9] wherein individual units of a soft-
ware system are programmatically tested for appropriate
behavior, ideally after each code revision. Besides de-
tecting undesired behavior in LITMUSRT scheduler plu-
gins, a unit-testing tool should produce detailed output
that can help developers identify and fix detected prob-
lems, including incorrect scheduling decisions, deadline
overruns, and regressions in scheduling overhead.

In this paper, we present a specification for such a
tool, and discuss both the current state of a prototype
implementation and desired extensions.

Prior work. The Linux Test Project [7] has imple-
mented a testing mechanism for the Linux scheduler,
including the two POSIX-mandated real-time schedul-
ing policies included in stock Linux, SCHED FIFO and
SCHED RR. Like the proposed tool, the Linux Test
Project performs scheduling overhead regression test-
ing and conducts a series of checks that can alert de-
velopers to various problems. However, the Linux Test
Project lacks a lightweight event tracing mechanism that
would allow it to analyze individual scheduler decisions
and provide very precise scheduling overhead analysis.
(Our tool makes use of Feather-Trace [1, 5], a toolkit
used by LITMUSRT to record events.) Furthermore,



from a real-time scheduling perspective, the Linux Test
Project’s scope is limited to only static-priority schedul-
ing (SCHED FIFO and SCHED RR).

LITMUSRT currently supports a much wider range
of real-time scheduling algorithms, including several
global algorithms that have been the subject of much re-
cent research. The development of LITMUSRT has thus
far relied on purely manual techniques for debugging
and testing of adherence to desired scheduling policies.
Due to the scarcity of developer time, such testing is only
conducted infrequently and involves running only a few
simple, hand-crafted task sets. With the increasing com-
plexity and maturity of LITMUSRT, a more thorough
testing effort is clearly warranted. Therefore, we desire
a high-quality unit-testing tool for use with LITMUSRT.
To the best of our knowledge, the topic of testing of mul-
tiprocessor real-time scheduler implementations has not
been considered in prior work.

The rest of this paper is organized as follows. In Sec-
tion 2, we provide background on real-time scheduling
on multiprocessor platforms, including LITMUSRT and
associated tools. In Section 3, we provide a specification
of the proposed tool. In Section 4, we describe progress
to date on a prototype of the tool and planned future ex-
tensions. Finally, in Section 5, we conclude.

2 Background

The LITMUSRT operating system [2, 4, 8] executes task
sets under a real-time scheduler selected by the user.
Feather-Trace [1, 5] records scheduling decisions made
by LITMUSRT in machine-readable, binary trace files.
Our proposed tool, in turn, reads these files and performs
analysis upon them under a unit-testing paradigm. This
section provides necessary background on these topics.

2.1 Real-Time Task Model

A real-time task set consists of a number of tasks that
are subject to real-time constraints. Tasks are invoked,
or released, repeatedly during their lifetimes; each such
invocation is known as a job. Under the sporadic task
model, each release of a task must be separated by a
minimum interval of time known as the task’s period.
Each task also has an associated worst-case execution
time (WCET), which is an estimate of the execution time
of any job of the task in the worst case. The ratio of each
task’s WCET and period defines its utilization. In this
paper, we limit attention to sporadic tasks with implicit
deadlines, i.e, each job is expected to complete before
the end of its period; otherwise, it has exceeded its dead-
line and is considered tardy. A job is eligible if it has
been released, is unfinished, and the previous job of the

same task has completed execution.

2.2 Real-Time Scheduling Policies

A scheduling policy is an algorithm used by a scheduler
at runtime to determine how to allocate available cores1

to jobs.
Under the global earliest-deadline-first (G-EDF) pol-

icy, contending jobs are prioritized in order of non-
decreasing deadlines. Hence, on an m-processor system,
at any time, if there are more than m eligible jobs, then
the m eligible jobs with the earliest deadlines should
be executing, with ties broken consistently according to
some (perhaps implementation-specific) policy. In order
to meet this condition, the scheduler can preempt jobs or
migrate them to different cores.

Our prototype unit-testing tool only supports the
analysis of G-EDF, though support for other policies is
planned. These include partitioned earliest-deadline-
first (P-EDF) scheduling, under which each task is as-
signed to a particular core and only contends for ex-
ecution time with other tasks assigned to the same
core; clustered earliest-deadline-first (C-EDF) schedul-
ing, under which tasks are assigned to user-defined clus-
ters of cores; and the PD2 scheduling algorithm [10],
under which tasks make progress at a rate proportional
to their utilizations.

2.3 LITMUSRT

The LITMUSRT operating system provides a platform
for executing real-time task sets according to a real-
time scheduling policy. LITMUSRT is implemented as a
patch to the Linux kernel,2 modifying its scheduling fa-
cilities to allow for the use of more specialized real-time
scheduling policies than those that are included in stock
Linux. LITMUSRT scheduler plugins have been writ-
ten for the G-EDF, P-EDF, C-EDF, and PD2 scheduling
policies (among others).

2.4 Feather-Trace

Feather-Trace is a light-weight event tracing toolkit.
It allows scheduler code in the kernel to buffer bi-
nary data and make it available for asynchronous ex-
port to userspace, from whence it can be written to disk.
Feather-Trace is designed to incur very little overhead,
so that time-critical code can record data without being
disrupted.

In LITMUSRT, this mechanism can be used to record
scheduler events (for example, the release or completion
of a job) in trace files. Each event record is stored in a

1In this paper, we denote any logical CPU available for scheduling
by the OS as a “core.”

2The latest release patches kernel version 2.6.24.



special binary format and includes a precise timestamp.
These records can later be retrieved and examined by
analysis tools, such as our unit-testing tool.

3 Specification

The goal of our proposed tool is to help real-time sched-
uler developers produce correct scheduler code for the
LITMUSRT system. Towards this end, the tool will con-
duct a series of tests to determine if desired criteria are
met by a scheduler. An error will be reported when a
criterion is not met, and details will be provided to help
developers resolve the problem.

In typical unit testing, modules of source code are
executed in a test framework. Each module is executed
with pre-specified input and checked for expected out-
put. If unexpected output is produced, then the test
framework reports an error. This approach works well
for source code that can be factored into small, modu-
lar components that accept well-defined inputs and give
predictable outputs.

Scheduler code is not amenable to such piecemeal
testing. This is due to three fundamental reasons. First,
the absence of errors when testing individual compo-
nents for logical correctness does not imply that the sys-
tem as a whole exhibits temporally correct behavior (for
example, scheduling errors due to race conditions can-
not be found by piecewise testing). Second, schedul-
ing code tends to rely heavily on side effects and exter-
nal entities such as hardware timers; such dependencies
are hard to emulate correctly in a traditional unit-testing
environment. Third, scheduling code is invoked from
many different code paths within the kernel since the
scheduler constitutes the very core of the OS; it is infea-
sible to recreate appropriate system and task state for all
possible invocations. In essence, traditional unit-testing
techniques rely heavily on the tested system being well-
structured and modular, whereas scheduling code tends
to (implicitly) interact with large parts of the whole sys-
tem. Furthermore, testing on a per-module basis would
not allow for accurate sampling of scheduling overhead.

To work around these concerns, the proposed tool
executes unit tests offline against records of scheduler
events as they occurred on real hardware in the actual
system. To automate the testing process, the generation
and execution of task systems can also be automated.

This approach permits testing on any task system for
a supported scheduling policy, alleviating the need to
provide rigid, module-specific test input. It also allows
for accurate measurement of scheduling overhead.

As with typical unit testing, errors will be reported
when desired criteria are not met. Information to help

developers correct bugs will be included with each error.
If all tests complete without errors, developers can con-
clude that the scheduler behaved correctly for the criteria
being tested.

3.1 Architecture

As depicted in Figure 1, the proposed tool consists of
four components: the Driver, the Parser, the Validator,
and the Report Generator.

Driver. The Driver automates the testing process, fa-
cilitating unit testing after each incremental update to
the scheduler code. Each testing session begins with
the Driver reading a developer-supplied configuration
file that specifies task systems to execute and a suite
of unit tests. Any unit-test tuning variables (for exam-
ple, acceptable tardiness bounds) are also specified in
the configuration file. The Driver executes the speci-
fied task system under LITMUSRT with Feather-Trace
recording enabled. When the task system completes ex-
ecution, the Driver invokes the Parser, Validator, and Re-
port Generator in sequence. For more thorough testing,
the Driver can repeatedly generate and test random task
systems (generated according to distributions specified
in the configuration).

Parser. Feather-Trace exports scheduler event records
to a buffer in a compact format to avoid incurring un-
necessary overhead. The contents of this buffer are later
written to a set of trace files. The Parser reads the trace
files, extracting event records and storing them in an
easy-to-use format in memory. The in-memory records
are represented as a “stream” data structure, which the
Validator and Report Generator iterate over in the course
of performing their work.

Feather-Trace records the following types of events.

• Release: A job is released.

• Switch To: A job begins executing.

• Switch Away: A job stops executing.

• Completion: A job completes.

• Block: A job blocks. Even in task systems with-
out synchronization requirements, blocking can be
caused by the Linux I/O subsystem.

• Resume: A job resumes, after being blocked.

Each scheduling event record identifies the job and task
it is associated with and includes a timestamp indicating
the time of the event. Records for events associated with
a particular core include the logical CPU number for that
core.
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Figure 1: Data flow between components of the proposed tool (shaded) and LITMUSRT.

Additional Feather-Trace records specifying the
WCET and period for each task are recorded at the be-
ginning of task system execution.

Validator. The Validator executes each unit test, us-
ing as input the scheduler event stream. Each unit test
produces an error record for each error it finds. Each er-
ror record includes the time of the scheduler event that
triggered the error. This allows the Report Generator
to display errors in the context of surrounding schedul-
ing events. The Validator outputs a stream of all error
records produced by the unit tests.

Report Generator. The Report Generator receives as
input the event and error streams. It generates mean-
ingful output to help developers correct bugs and detect
problematic scheduling latency. A plugin system allows
for output in various formats. For example, plugins to
support HTML output or graphical output could be de-
veloped.

3.2 Unit Tests

The current needs of LITMUSRT have motivated the
creation of algorithms for a number of unit tests.

Completion Test. The Completion Test checks
whether all released jobs actually complete. That is,
for each Release record in the scheduler event stream,
there should be a Completion record corresponding to
the same job. An error is produced for any released jobs
that do not complete.

Sporadic Task Model Test. The Sporadic Task Model
Test checks whether all jobs of the same task are sepa-
rated by at least the period of the task.

The algorithm for this unit test is straightforward: for
each Release record in the event stream, if there is a pre-
vious Release record of the same task, then a check is
made to ensure that the separation time between them is
at least the corresponding task’s period.

Some premature releases are expected in the case that
periodic releases are desired, since scheduling overhead
will delay releases by a variable, nonzero amount of
time. To accommodate this, a “tolerance” tuning vari-
able can be specified in the Driver configuration file. Re-
leases that are premature by an amount of time less than
the tolerance value will not cause an error to be gener-
ated.

Deadline Test. The Deadline Test checks to see if jobs
meet their deadlines. Once again, the algorithm for the
test is straightforward: for each Release record, there
must be a Completion record for the same job, and the
difference in their timestamps must be at most the period
for the corresponding task.

A tolerance variable, similar to the one used for the
Sporadic Task Model Test, allows developers to specify
an acceptable tardiness bound.

G-EDF Decision Test. No scheduler can achieve true
G-EDF scheduling in practice, due to scheduling over-
head. For example, when a new job becomes eligible
that has an earlier deadline than one of the jobs currently
in execution, the new job should begin executing imme-
diately. However, the overhead of halting the execution
of the job to be preempted and starting execution of the
new job takes a nonzero amount of time. Thus, testing
for true adherence to the G-EDF policy would be an ex-
ercise in futility.

However, it still holds that whenever a scheduler does
decide to switch execution to a particular job, that job
should be one of the m earliest-deadline eligible jobs.
The G-EDF Decision Test checks against this constraint.
Successful validation of an event stream over both the
Completion Test and G-EDF Decision Test assures de-
velopers that the scheduler allocated all eligible jobs in
earliest-deadline-first order.

The G-EDF Decision Test algorithm models the state
of the task system over the course of its execution. The



model consists of a list of executing jobs (up to m) and
a list of released jobs that are eligible for execution. The
algorithm progresses by iterating over the event stream,
updating the model for each record. For example, a
Switch To record indicates that a job began execution
on a particular core; upon encountering such a record,
the algorithm would add that job to the list of executing
jobs.

The algorithm generates an error each time it deter-
mines that a job that did not have sufficiently high prior-
ity was scheduled for execution. A job has sufficiently
high priority for execution if it is one of the m earliest-
deadline eligible jobs.

G-EDF Latency Test. The G-EDF Latency Test helps
developers locate areas of high overhead in scheduler
code and quantitatively evaluate their efforts to optimize
code to reduce overhead. It also may help developers
discover bugs that do not violate the decision-making
constraint checked by the G-EDF Decision Test, as these
bugs often contribute to overhead.

Scheduler overhead causes departure from the G-
EDF policy when a job becomes one of the m earliest-
deadline eligible jobs but has not yet begun execution.
Therefore, to measure G-EDF scheduling latency, we
examine each such occurrence, and measure the specific
latency components contributing to overhead. Note that
this condition occurs prior to each switch in execution to
a job, and thus once for each job release.

Which latency components are present depends on
the context of the system when switching to a new job
becomes necessary. There are three such contexts, ex-
plained in the following paragraphs.

In Context 1, as depicted in Figure 2, a job is re-
leased into a system with an idle core and is eligible (i.e.,
the previous job of the same task has completed). The
only latency component—and, thus, the total scheduling
overhead that occurs in this context—is the difference
between the time of the release of the job and the time
when it is switched to for execution on a core.

In Context 2, as depicted in Figure 3, a job is released
into a system with no idle cores, but it is not one of
the m highest-priority eligible jobs. When it becomes
one of the m highest-priority eligible jobs due to the
completion of another job, that job should be switched
away from execution and the new job should commence
execution. Scheduling overhead is the sum of two la-
tency components. The first is the difference between
the time of completion of the previously-executing job
and the time when it is switched away from execution.
The second is the difference between the time when the
previously-executing job is switched away from execu-
tion, and the time when the new job is switched to for
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Figure 2: Context 1: The new job is scheduled immedi-
ately on an idle core.
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Figure 3: Context 2: There is no idle core available, and
the new job has insufficient priority to preempt one of
the currently-scheduled jobs, i.e., it must await the com-
pletion of a previous job.

execution.

In Context 3, as depicted in Figure 4, a job is re-
leased into a system with no idle cores, but it is one of
the m highest-priority eligible jobs. Another job should
be switched away from a core and the new job should
commence execution. Scheduling overhead is the sum
of two latency components. The first is the difference
between the time when the new job is released and the
time when the preempted, previously-executing job is
switched away from execution. The second is the dif-
ference between the time when the previously-executing
job is switched away from execution, and the time when
new job is switched to execution.

The goal of the G-EDF Latency Test is to measure
each instance of overhead, classified as one of the la-
tency components discussed previously. When latency
greater than a desired threshold is discovered, it can be
reported to the developer. Furthermore, statistical anal-
ysis can be performed. For example, a developer could
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Figure 4: Context 3: There is no idle core available, but
the new job has sufficient priority to preempt a running
job.

use the latency measures to calculate the average amount
of latency for a particular latency component over the
course of execution of a task system. Historical data of
this kind, accumulated from past testing, can be used to
guard against regressions in scheduler performance.

Note that overhead potentially begins being accumu-
lated when a job is released, and ends when the job is
switched to. Thus, the G-EDF Latency Test algorithm
iterates over the event stream, extracting latency infor-
mation each time it encounters a release record.

The algorithm proceeds as follows. For each Release
record, the corresponding Switch To record is found.
This record is used to determine the CPU on which the
events leading up to the beginning of execution of the job
will occur. The events on that CPU from the time of the
release to the time of the switch to execution match one
of the three contexts. Once the context is identified, ex-
tracting the specific latency measures is straightforward.

Fortunately, each context represents a unique set of
scheduler events, making it possible to identify the con-
text for a particular release from the scheduler event
stream.

• Context 1 is indicated by a Release record followed
by a Switch To record.

• Context 2 is indicated by a Release record followed
by a Completion record.

• Context 3 is indicated by a Release record followed
by a Switch Away record.

The Driver configuration file allows developers to
specify a large number of criteria for the G-EDF Latency
Test. In the simplest case, acceptable thresholds for la-
tency components can be provided. An error is gener-
ated each time these values are exceeded.

4 Prototype Description and
Future Extensions

In this section, we provide a summary of ongoing work
on a prototype of the tool, and discuss desired future ex-
tensions of the tool.

4.1 Prototype

Most of the functionality described in the specification
has been successfully implemented in our prototype, in-
cluding each of the unit tests discussed in this paper. The
code has been made available online [3]. The prototype
is implemented in the Python programming language,
which was chosen for its ease of use and will be retained
for the official release version of the tool.

The prototype does not yet support some of the more
advanced proposed features, as discussed below, though
support for them is planned for future releases.

The Driver does not automatically create and test ran-
domized task systems; instead, a specific task system
must be provided by the user. This feature would be
useful for testing schedulers over a wide variety of task
systems, increasing the probability of finding bugs that
occur only in rare or specialized cases.

The Report Generator does not yet provide support
for creating a graphical depiction of scheduling events,
which would aid developers in understanding bugs.

The G-EDF Latency Test does not perform any auto-
matic statistical validation or regression checking. For
example, automatic calculation of average latency for
each latency component over the course of execution of
a task system is desired. These values could automati-
cally be compared to ideal values provided by the user.

4.2 Future Extensions

Significant expansion of the tool beyond the specifica-
tion described in this paper is desired. Most importantly,
support for testing additional scheduling policies be-
yond G-EDF—in particular, C-EDF, P-EDF, and PD2—
is planned.

Supporting C-EDF and P-EDF will be straightfor-
ward. C-EDF unit-test algorithms will not be notably
more complex than the G-EDF algorithms provided in
this paper. As P-EDF is a special case of C-EDF, a sep-
arate unit tests for P-EDF will not be needed.

However, PD2 will present a significant challenge,
and will require the development of a large number of
additional and complex unit tests. The need to debug
PD2 schedulers was the most pressing motivation for the
development of the tool, but G-EDF was chosen as a
more easily achievable initial target. Lessons learned in



developing the overall framework for the unit tester and
the G-EDF unit tests will likely prove invaluable in the
extension of the tool to allow for testing of PD2 sched-
ulers.

In addition, the current specification for the tool does
not account for jobs that block. A tool for testing real-
time schedulers running under LITMUSRT needs to ac-
count for blocking, since it can be caused by some syn-
chronization protocols as well as the Linux I/O subsys-
tem. Fortunately, extending the specification to account
for blocking will be straightforward. Most of the unit
tests remain the same, though a slight change to the
model used in the G-EDF Decision Test is necessary.
The most significant change will be the need to analyze
new latency components in the G-EDF Latency Test.

5 Conclusion

We have established the need for an automated
tool for testing multiprocessor real-time schedulers in
LITMUSRT. The tool should uncover incorrect schedul-
ing decisions. It should also allow for rigorous analysis
of scheduling overhead. We have presented a specifica-
tion of such a tool, and have discussed ongoing work on
a prototype. Finally, we have described significant de-
sired extensions of the tool beyond the features provided
for in our current specification.
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