
Virtual Real-Time Scheduling

Malcolm S. Mollison and James H. Anderson
Department of Computer Science

University of North Carolina at Chapel Hill

Abstract

We propose a new approach for the runtime scheduling
of real-time workloads. This approach, which we call
virtual scheduling, decouples real-time scheduling from the
underlying real-time operating system (RTOS) kernel. Such
a decoupling provides for the use of scheduling algorithms
on an RTOS platform that does not support them natively.
This allows new scheduling functionality to be offered
to industry practitioners without sacrificing the ideal of
the stable, predictable, time-tested, and (mostly) bug-free
RTOS kernel.

1. Introduction

In recent years, significant research effort has been
expended in the development of novel scheduling algo-
rithms and synchronization protocols for multiprocessor
real-time systems. Much attention has also been given
to determining whether these techniques perform well on
real hardware platforms, despite potential obstacles such
as scheduling overheads. Overall, the results are promis-
ing: a number of interesting multiprocessor scheduling
and synchronization techniques have proven viable. For
example, recent work has shown that the clustered earliest-
deadline-first algorithm (C-EDF) performs well on large
multicore machines [3], and an asymptotically optimal
locking protocol that can be used with this algorithm has
been given [5].

Unfortunately, real-time operating systems (RTOSs)
have not kept pace with such developments. Support for
any real-time scheduling algorithm or locking protocol
developed within the last twenty years1 is practically non-
existent in both commercial and open-source RTOSs, at
least without modification by the end user (which, in
general, is impractical). This leaves industry practitioners

Work supported by the NC Space Grant College and Fellowship Pro-
gram; NC Space Grant Consortium; NSF grants CNS 0834270, CNS
0834132, and CNS 1016954; ARO grant W911NF-09-1-0535; AFOSR
grant FA9550-09-1-0549; and AFRL grant FA8750-11-1-0033.

1. The stack resource protocol, commonly available in real-time oper-
ating systems (albeit under other names), was developed around 1990 [2].

without a means to make use of recent advances in the
state-of-the-art, and thus unable to deploy the more so-
phisticated embedded and real-time applications that have
otherwise been made possible.

Thus, in terms of real-time scheduling and synchroniza-
tion, there is a large gap between technology (including
theory) that exists in academia, and technology that is
“consumable” by industry practitioners. This gap is likely
only to widen in future years. Even as some advances are
incorporated into consumable technology (if they are), new
advances will be made by researchers.

We believe that RTOS vendors are strongly disincen-
tivized from incorporating these kinds of advances into
existing kernels, which would explain the gap described
above. Any changes will alter the timing characteristics
of the kernel, and could introduce new sources of timing
indeterminism and new bugs. From the perspective of
RTOS consumers whose immediate needs are met by
existing kernels—that is, most likely, the vast majority
of them—making changes to the kernel is a bad thing.
Over time, RTOS customers may begin to call for new
features. However, it is likely that only the most generic
features—that is, those that can be used by customers
spread across many different sectors of industry—will be
incorporated. This runs counter to increasing interest in
real-time scheduling for more niche domains, such as
adaptive systems and cyber-physical systems.

RTOS consumers are also disincentivized from mod-
ifying existing RTOS kernels to achieve more advanced
functionality. The complexity of any non-trivial operating
system is such that any kernel modifications are hazardous,
unless done by someone with specialized expertise in that
particular kernel, and with very extensive testing.

Thus, we believe that it is likely that the gap described
above will only continue to widen, unless a way around
these problems can be found. Specifically, a technique to
avoid these problems would allow real-time scheduling
and synchronization to be modified or customized totally
independently of the RTOS kernel.

Fundamentally, solving these problems means decou-
pling real-time scheduling and synchronization from the
kernel. This implies the creation of a layer of middle-



ware software running “atop” the kernel that provides for
real-time workloads to be scheduled according to new
scheduling paradigms, while making use of existing kernel
services, including the existing scheduler provided with a
given RTOS kernel. Such a software layer would provide
the effective illusion of the presence of a more capable
kernel scheduler than actually exists in the system.

This classic pattern—in which a new layer of indirec-
tion allows for both better management of complexity and
the addition of new features—is well known in software
engineering and computer science. One ubiquitous exam-
ple of this pattern is virtual memory, which provides the
illusion to processes of access to a full memory address
space and allows for new memory management features.
Another example of this pattern is the use of process
virtual machines (such as the Java Virtual Machine, or
JVM), which gives the illusion of a standard hardware
platform when none exists, and also provides features
(such as garbage collection) not available natively. Because
we draw inspiration from this pattern, and in light of
existing terminology for describing it, we call our approach
virtual real-time scheduling.2

The goal of this paper is to explore the viability of the
virtual real-time scheduling approach. First, in Section 2,
we explore the support for real-time workloads provided
by generic, existing RTOS kernels, and cover necessary
background material and related work. In Section 3, we
show (by constructing an example) that a virtual sched-
uler supporting a wide variety of real-time scheduling
algorithms and synchronization protocols can itself be
supported atop a generic POSIX-compliant RTOS. In Sec-
tion 4, we explain how to modify the virtual scheduler
from the previous section to support memory protection
(i.e., space partitioning) between tasks. In Section 5, we
describe future work. In Section 6, we conclude.

2. Foundations for Virtual Scheduling

In the following subsections, we describe the under-
lying RTOS functionality that will serve as a foundation
for virtual scheduling. Interspersed with this discussion
is necessary background material and information about
related work.

2.1. OS Support for Multiprocessor Real-
Time Scheduling and Synchronization

In this paper, we adopt a widely-used formalism for
representing real-time task systems known as the sporadic

2. More pragmatically, our terminology serves to distinguish our
approach from existing middleware software which supports real-time
tasks without providing new functionality beyond that provided by the
“real” (kernel) scheduler. This practice is detailed in Section 2 under
“Related Work.”

task model. Under this model, each task T has an associ-
ated worst-case execution time (WCET), T.e, and minimum
separation time, T.p. Each successive job of T is released
at least T.p time units after its predecessor, and a job
released at time t must complete by its deadline, t+ T.p.
The first job of each task is released at an arbitrary time
after the release of the task system. The utilization, or
long-run processor share required by a task, is given by
T.u = T.e/T.p.

A task system of n tasks is schedulable if, given a
scheduling algorithm and m processors, the algorithm can
schedule tasks in such a way that all its timing constraints
are met. For hard real-time task systems, jobs must never
miss their deadlines, while for soft real-time task systems,
some deadline misses are tolerable. Specifically, we require
here that the tardiness of jobs of soft real-time tasks be
bounded by a (reasonably small) constant.

Scheduling algorithms. Approaches to scheduling real-
time tasks on multicore systems can be categorized ac-
cording to two fundamental (but related) dimensions: first,
the choice of how tasks are mapped onto processing cores;
and second, the choice of how tasks are prioritized. In each
case, there are two common choices. Tasks are typically
mapped onto cores either by partitioning, in which each
task is assigned to a core at system design time and
never migrates to another core; or by using a migrating
approach, in which tasks are assigned to cores at runtime
(and can be dynamically re-assigned). Tasks are typically
prioritized using either static priorities, in which case
priorities are chosen at design time and never change; or
dynamic priorities, in which case tasks’ priorities relative
to one another change at runtime according to some criteria
specified by the scheduling algorithm.

In this paper, migrating, dynamic-priority algorithms are
of particular interest. An example is the clustered earliest-
deadline-first (C-EDF) algorithm, which was mentioned in
the Section 1. Under C-EDF, before system runtime, each
core is assigned to one of c clusters, where 1 ≤ c ≤ m; and
each of the n tasks is assigned to one of the clusters.3 Let d
denote the cluster size, i.e., m/c. At system runtime, within
each cluster, the d eligible tasks with highest priority are
scheduled on the d available cores. (The word “eligible”
is used to exclude tasks that are waiting for some shared
resource to become available.)

In contrast, almost all RTOSs support only static-
priority scheduling. These include VxWorks [12], which
is widely considered to be one of the industry leaders in
terms of RTOS market share, and Linux, which can be used
to run certain real-time workloads. Some existing RTOSs
do support dynamic-priority scheduling, such as ERIKA

3. C-EDF partitions tasks, rather than migrating them, if and only if
c = m.



Enterprise [7]. However, all existing RTOSs essentially
limit their users to the particular scheduling algorithm(s)
chosen by the RTOS implementers.

In this paper, our concern is to enable migrating,
dynamic-priority scheduling algorithms to be run atop ker-
nels that natively only support static-priority scheduling.

Synchronization protocols. A real-time synchronization
protocol is used to arbitrate among tasks that share re-
sources that cannot be simultaneously accessed by any
number of tasks, such as a critical section of code or a
shared hardware device. These protocols typically attempt
to prevent priority inversions, in which lower-priority tasks
are allowed to execute in favor of higher-priority tasks
due to resource-sharing dependencies. The possibility of
priority inversions in a system must be accounted for in
schedulability analysis. To the best of our knowledge, no
existing commercial RTOS supports any synchronization
protocol more recent than the stack resource protocol,
which was developed for uniprocessor systems around
1990 [2]. Since then, a number of other multiprocessor
locking protocols have been developed. These include
the multiprocessor priority-ceiling protocol (MPCP) [9],
the distributed priority-ceiling protocol (DPCP) [10], the
flexible multiprocessor locking protocol (FMLP) [4], and
the O(m) locking protocol (OMLP) [5]. These protocols are
designed for use with migrating, dynamic-priority schedul-
ing algorithms such as those discussed in the previous
subsection. The example virtual scheduler described in this
paper can support these protocols.

2.2. OS Support for Real-Time Tasks

In this paper, we use the term “task mechanism” to
denote a mechanism by which tasks—that is, separate
segments of code, runnable independently of one another—
can be supported. The range of task mechanisms available
on a given system depends upon the underlying CPU
architecture, and upon the abstractions made available for
programmers by the operating system. These mechanisms
are, at least for our purposes, similar across all modern
systems. Not all of these mechanisms are accessible to
the kernel scheduler, but all of them are accessible to the
virtual scheduler. Any virtual scheduler implementation
must take careful account of how these abstractions are
leveraged, because this will have an impact upon both the
performance characteristics of the virtual scheduler and the
features it may offer.

Task mechanisms commonly available in modern com-
puter systems are given in the list below. Note that ter-
minology used to describe these mechanisms is far from
unified; we attempt to use terminology that is specific
enough to avoid and potentially confusing overlap with
existing usage.

• A function. Tasks implemented using functions share
the same stack. This prohibits arbitrarily preempting
and switching between tasks. In particular, tasks must
run in a nested order in order to preserve the stack.
This seriously limits the scheduling algorithms and
synchronization protocols that can be supported under
this task mechanism.

• A processor context.4 Each context has its own stack,
allowing tasks to be preempted and switched among
in an arbitrary order. A single context can persist over
multiple function calls. In C, contexts can be stored
and recalled in userspace using the setjmp() and
longjmp() functions.

• A kernel-level thread. A kernel-level thread is defined
to be an entity that is known to the operating system
and schedulable by the kernel scheduler. The rela-
tionship between a kernel-level thread and a context
is typically one-to-one, but could be one-to-many, or
many-to-many; in other words, contexts can be shared
between kernel-level threads. A kernel thread may or
may not have memory protection from other kernel
threads in the system.

• A process. A process is defined to be a group of
one or more kernel-level threads that have memory
protection from all kernel-level threads that are not
in the group. The relationship between a process and
a kernel-level thread is typically one-to-one, but could
be one-to-many. In many older operating systems, the
distinction between kernel-level threads and processes
did not exist; all kernel-schedulable entities had inde-
pendent memory protection. In such cases, the term
“process” was generally preferred over other terms.

Making Use of Task Mechanisms. A user threading li-
brary implements tasks using user-level threads, i.e.,
threads which the kernel is not directly aware of or able
to schedule (in contrast to kernel-level threads). User
threading libraries typically implement user-level threads
by means of contexts. There exist many such libraries;
GNU Portable Threads (“Pth”) [8] is one example. User-
level threading libraries support concurrency (i.e., multiple
tasks whose execution is interleaved); however, they do not
support parallelism, because they are assumed to execute
from within only a single kernel thread.

POSIX Threads (“Pthreads”) is a POSIX standard that
defines an API for creating and managing threads; a
POSIX-compliant threading implementation can make use
of either user-level threads or kernel-level threads. Most
generic RTOSs support Pthreads, possibly alongside a

4. This term is equivalent, for our purposes, to the term continuation,
which arises in the study of programming languages and denotes an
abstract representation of the processor context that can be stored and
recalled by the programmer.



vendor-defined API; these implementations, in turn, rely on
kernel-level threads (with or without memory protection),
which are then scheduled to run according to a static-
priority scheduling algorithm, as discussed previously.

The virtual scheduler implementation proposed in this
paper uses both user-level threads and kernel-level threads.
This approach, known as hybrid threading (as opposed
to “user threading” or “kernel threading”), has been used
before in the parallel processing community. The highly
concurrent, non-real-time Erlang programming language
uses this approach [6]; however, Erlang does not offer
enough fine-grained control of tasks to support our needs.
On the other hand, a hybrid scheduling approach known as
scheduler activations [1]—like Erlang, originally devised
for large-scale parallel processing—does support many
features that are desirable for virtual scheduling. However,
making use of scheduler activations requires specialized
kernel support. To the best of our knowledge, no RTOS
offers support for scheduler activations.5

2.3. Related Work

Virtual scheduling is not the only approach that pro-
poses to enhance practical real-time scheduling capabilities
through software that runs in userspace. Other approaches
include the following.

• In industry, operating system abstraction layers (OS-
ALs) are occasionally used to provide portability for
applications between different RTOSs.

• The Real-Time Ada programming language provides
for a userspace runtime library that is intended to
simplify and standardize the development of real-time
applications, and particularly, to improve their porta-
bility across different operating system platforms.

• The Real-Time Java programming language is similar
(for our purposes), though it is implemented using a
process virtual machine (a specialized JVM) instead
of a runtime library.

Real-Time Ada and Real-Time Java do support certain
kinds of processor synchronization. However, to the best
of our knowledge, they currently only support the same
scheduling services offered by the underlying kernel
scheduler—i.e., fixed-priority scheduling.6 Because these
two languages rely on userspace implementations, enhanc-
ing the facilities they currently offer with the addition of
a virtual scheduler (i.e., a scheduler that supports services
not present in the underlying scheduler) would be a natural
fit.

5. Support for scheduler activations is present in certain versions of
the Solaris operating system, and (surprisingly) in Windows 7.

6. There has been some discussion of extending Ada to support
earliest-deadline-first scheduling [11]. This is comparable to the overall
topic of this paper, but has a different goal.

3. Constructing a Virtual Scheduler

In this section, we first determine the functionality that
should be supported by our virtual scheduler. We then
describe our proposed implementation. In describing this
implementation, our intention is, first, two show that a
generic, POSIX-compliant RTOS offers sufficient features
to virtualize a broad variety of scheduling algorithms;
and, second, to provide a starting point for investigating
more refined virtual scheduler implementations. Thus, we
attempt to avoid trivial optimizations in favor of a more
generic and easily-understood model.

3.1. Functional Requirements

Earlier, we classified scheduling algorithms according
to whether the priorities of tasks can change, and whether
tasks can migrate. In effect, this creates four classes of
algorithms, which (for convenience) we label as follows.

(P-SP) partitioned, static-priority algorithms
(P-DP) partitioned, dynamic-priority algorithms
(M-SP) migrating, static-priority algorithms
(M-DP) migrating, dynamic-priority algorithms

Any scheduler (either virtual or kernel-based) that sup-
ports arbitrary P-DP algorithms supports arbitrary P-SP
algorithms. Any scheduler that supports arbitrary M-DP
algorithms supports arbitrary M-SP algorithms. Finally,
any scheduler that supports arbitrary M-DP algorithms
supports arbitrary P-DP algorithms. Thus, any scheduler
that can support arbitrary M-DP algorithms can support
all four classes. Furthermore, in each of the classes, it is
possible to define algorithms that support either preemp-
tive or non-preemptive scheduling; preemptive scheduling
is more general. To the best of our knowledge, these
classifications cover all of the multiprocessor scheduling
algorithms for sporadic real-time task systems that are
currently of interest in the research community.

The virtual scheduler proposed in this paper supports
one scheduling algorithm from the preemptive M-DP class.
To aid in understanding of the proposed implementation,
we did not attempt to support arbitrary algorithms from
the preemptive M-DP class, which would (in turn) allow
any scheduling algorithm from any of the given classes
to be supported. However, we conjecture that extending
our specific implementation to support arbitrary M-DP
algorithms is possible. Thus, we hope to convince the
reader that our proposed virtual scheduler can easily be
extended to support all scheduling algorithms of interest.

In contrast to the algorithmic flexibility suggested by the
virtual scheduler implementation proposed in this section,
our proposed implementation supports only partial memory
protection between tasks. Memory protection is a relatively
new feature for some widely-used RTOSs; for example, the



BACKUPTHREAD mWORKERTHREAD mBACKUPTHREAD m-1WORKERTHREAD m-1BACKUPTHREAD 2WORKERTHREAD 2BACKUPTHREAD 1WORKERTHREAD 1CPU 1 CPU 2 CPU m-1 CPU m
Figure 1: Assignment of kernel-level threads to CPUs.

first edition of VxWorks to support memory protection was
the 6.0 series, which was released in 2004. Nonetheless,
memory protection can be expected to play a larger role in
real-time systems over time, as these systems grow more
complex. These issues are explored in depth in Section 4,
where we describe how our proposed implementation
could be altered to support full memory protection between
tasks, at the expense of increased runtime overhead.

3.2. Proposed Implementation

Our approach uses hybrid scheduling—that is, a mixture
of user-level threads and kernel-level threads. For ease of
explanation, the implementation provided here only sup-
ports the global earliest-deadline-first (G-EDF) algorithm.
G-EDF is equivalent to C-EDF with cluster size m. As
mentioned previously, we conjecture that our implemen-
tation can be extended to support arbitrary scheduling
algorithms in the M-DP class.

Task mechanism. Our implementation supports real-time
tasks as contexts. This choice is preferable over more
heavy-weight task mechanisms because user-level context
switching is generally considered to have at least an order-
of-magnitude speed advantage over switching between
kernel threads [1]. On the other hand, a more light-
weight mechanism—supporting tasks in a manner that
maps multiple tasks to one context—would not allow for
switching between tasks in arbitrary order, as explained
in Section 2. This rules out using mapping the n tasks to
fewer than n separate contexts. Nonetheless, each task is
encapsulated inside a function call; when this function call
is executed, a job of the task begins executing, and when
a job completes, the function returns. Our implementation
mechanisms will ensure that each task receives its own
context. These mechanisms are implemented as a runtime
library that merely needs to be included with the tasks’
code as a header file.

Task initialization. A special initialization thread is re-

sponsible for setting up all state needed by the virtual
scheduler for the real-time workload to begin executing.
This includes initializing the real-time tasks. To initialize
a task, the initialization thread calls the setjmp() function
immediately before a conditional call to the task’s func-
tion, storing the result—the newly-initialized context—in a
variable. The conditional call, starting the execution of the
task, only executes when setjmp() returns after a context
switch—hence, not during the initialization phase.

Data structure initialization. After initializing the tasks,
the initialization thread creates the following key data
structures.

• The release queue, a priority queue that holds the
contexts for tasks that have no currently eligible job,
but will experience a job release at a known time in
the future.

• The ready queue, a priority queue that holds the
contexts for tasks that are currently eligible, but not
running.

• The lowest-priority indicator. During runtime, this
variable indicates the CPU of the lowest-priority
currently-running task. This will allow for the proper
task to be interrupted when a new task that has
sufficient priority to run becomes eligible. Ties are
broken arbitrarily.

Additional data structures created by the initialization
thread are described later in the paper, when they can be
understood more easily.

Kernel-level thread initialization. Finally, the initializa-
tion thread creates a number of kernel-level threads. This
includes n worker threads and m backup threads. Each of
the m cores has exactly one of the worker threads statically
assigned to it; these are called active worker threads. The
non-active worker threads and the backup threads are only
relevant in a specialized case, which is explained later.
Until then, they can be safely ignored. See Figure 1 for a



diagram showing the described kernel threads.

Overview of runtime scheduling. The active worker
threads perform the role of switching between tasks and
executing them. Under our G-EDF example, at any time,
the m highest-priority eligible tasks are executed by the
m active worker threads; if there are less than m eligible
tasks, then one or more of the active worker threads is idle.

Task switching. An active worker thread can switch tasks
by saving the current task context using setjmp() and
appending it to a queue (or other shared data structure)
where it can be retrieved later, and executing longjmp() on
a task context that it has obtained from a queue (or other
shared data structure) and is to begin executing. Whenever
task switching occurs, the lowest-priority indicator variable
is updated.

In summary, the basic technique used by the virtual
scheduler is to execute the n tasks on m active worker
threads, switching execution between tasks as appropriate
using setjmp() and longjmp(). Now, we can move on to
an explanation of how job completions, job releases, and
task synchronization are handled.

Job completions. When a job completes, the active worker
thread executing the task switches to a new task drawn
from the ready queue (if any is available). If the completed
task is released periodically—i.e., at a known offset from
its previous release— it is added to either the release queue
or ready queue, depending on whether the release time of
the next job has already been reached. Note that adding
a task to the release queue implies updating the release
timer under certain circumstances, as explained below. On
the other hand, if the task is released in response to some
stimulus, it is instead saved in a data structure reserved for
tasks of this kind.

Responding to asynchronous stimuli. Tasks that are re-
leased in response to external stimuli can be accommo-
dated easily. The virtual scheduler implementation merely
needs to define a signal handler for signals indicating that
a task of this kind needs to be added to the ready queue.
Such a signal could originate from a task that receives
network packets, for example, or directly from a device
driver.

Aside: POSIX timers and signals. The rest of our expla-
nation requires a basic understanding of POSIX timers and
signals. A POSIX timer is armed with an associated expiry
time and notification thread. (The notification thread must
be one created using the POSIX API). When the expiry
time is reached, the timer fires, sending a POSIX timer-
expired signal to the notification thread.

Maintaining the release queue timer. Throughout task

system execution, a POSIX timer is used to mark the
time of the next job release in the system. In our virtual
scheduler, this timer is set (or reset) whenever a task is
added to the release queue, if no task with an earlier release
time exists in the queue. The low-priority indicator variable
is used as a basis for selecting the proper notification thread
(i.e., one of the worker threads).

Responding to a timer expiry signal. When a worker
thread receives the timer expiry signal, its execution jumps
to an associated signal handler (provided in our virtual
scheduler’s runtime library). In this signal handler, the
worker thread moves the next-to-be-released task to the
ready queue, and updates the release queue timer. If the
moved task is of sufficiently high priority, some worker
thread will begin executing it. This could be the same
worker thread that just released it; otherwise, a signal is
sent to the appropriate worker thread by the thread that
released it. The appropriate thread is determined by the
current status of the lowest-priority indicator variable.

Synchronization protocols. The virtual scheduler runtime
library must provide an API that can be used by a task to
request access to a shared resource. If the task is to be
allowed to acquire the resource without waiting, the API
returns immediately. Otherwise, the task’s context is saved
and stored in a data structure used specifically to hold tasks
blocked in such a case. When a task is finished with the
resource, it must perform another API call to release it. At
this point, any task held in the data structure referenced
above that is now eligible (i.e., can obtain the resource)
is moved onto the ready queue. If the newly-unblocked
task has sufficient priority, a signal is then sent to the
appropriate worker thread (as indicated via the lowest-
priority indicator variable) so that the task will be removed
from the ready queue and executed.

Blocking in the kernel. We have laid most of the es-
sential groundwork for our virtual scheduler. Only one
key issue remains: What if a worker thread blocks while
running in kernelspace? Such a scenario could arise due to
a system call or a page fault. We solve this problem using
the backup threads that were mentioned earlier. Recall that
there are exactly m backup threads, each affixed to one of
the m processors. The backup threads are assigned a lower
priority than the active worker threads; thus, a backup
thread only runs on a core if the worker thread on that
core blocks in the kernel. In such a case, the backup thread
causes one of the non-active workers to become the new
active worker thread on that core. (The non-active workers
are kept at a priority below the backup threads, so that none
of them will execute until it has been selected to become
an active worker, has been migrated to the proper core,
and has had its priority adjusted.) Just before adjusting the



priority of the new active worker and giving up its control
of the processor, the backup thread boosts the priority of
the blocked worker thread to be above that of all worker
threads, and sends it a signal to indicate that it has blocked
in the kernel. As soon as the blocked worker finishes
blocking in the kernel, it will receive the signal indicating
that it has blocked. This worker adds its task to the release
queue, sends a signal to the worker thread indicated by
the lowest-priority indicator variable (to potentially trigger
a context switch to the task that blocked in the kernel),
and becomes a non-active worker. Note that this process
happens immediately when the task finishes blocking in
the kernel, since the priority of the blocking thread has
been boosted above that of the active worker threads.

4. Supporting Memory Protection

One hazard of any multitasking computer system is
the possibility of one task corrupting the memory of
another task. As real-time systems have become more
complex, this problem has become a growing concern. In
this section, we discuss the degree of memory protection
provided by the virtual scheduler implementation described
in Section 3, and also explain how full memory protection
between tasks can be provided, at the expense of additional
runtime overhead.

Note that, in this paper, we are not concerned with the
difficult problem of preventing code created with malicious
intent from damaging the system, which is typically only
a concern in a narrow segment of highly-critical real-time
systems (such as military weapon systems and nuclear
power plants). Rather, we are interested in preventing
widespread failures caused by programmer error and in
the absence of attacks by adversaries.

4.1. Existing Properties

The implementation given in Section 3 can be made
relatively robust to these kinds of errors with just a little
bit of effort. Memory protection for kernel-level threads is
now a common feature, even in RTOS kernels. If each
kernel-level worker thread has memory protection from
all other threads (i.e., is treated as a process), the only
possibility for one task to corrupt another is by corrupting
the data structures shared between worker threads (such as
the release queue and the ready queue).

Furthermore, if this kind of corruption does not occur,
the implementation is already robust to process failures
(for example, segfaults). Under such a failure, the worker
thread and the real-time task being executed inside it would
be lost; the backup thread running on that core would then
run and activate a non-active worker thread in its place, in
accordance with the specification given in Section 3.

4.2. Achieving Complete Memory Protec-
tion

Nonetheless, the implementation given in Section 3
leaves critical shared scheduling data structures vulnerable
to corruption. If one of these data structures were to
become corrupted, it could cause the failure of all tasks
in the system. The only way around this problem is to
prevent any task application code from being able to write
to these shared scheduling data structures. (We assume that
the virtual scheduler runtime library code is trusted not to
cause corruption; ultimately, some code in the system must
be trusted to update scheduling data structures.) Below,
we outline how the implementation from Section 3 can be
modified to achieve this property. (There are many specific
implementation tradeoffs that may be worth investigating
in future work. Here, our concern is simply to show that
our virtual scheduler mechanism can be modified to enable
memory protection.)

Modifications for full memory protection. Rather than
using contexts as the task mechanism, kernel-level threads
are used. When the system is initialized, n such threads
are created, all with a priority lower than that of the
backup threads. In this scheme, the backup threads play a
more important role than before. The backup threads share
access to scheduling data structures. They select tasks to
run on each core, and cause them to do so by forcing
them to migrate to the appropriate core and setting their
priority to be higher than that of the backup threads. Task
completion is carried out when a task sets its priority back
to the lower setting, returning control to the backup thread
on that core. Timer-driven signals for releasing tasks are
set up in a way that causes them to be delivered to the task
running on the relevant core. When a task receives such a
signal, it returns control to the backup thread on that core
by lowering its priority.

5. Future Work

Initially, we would like to make a more elaborate
examination of the likelihood of the virtual scheduling
approach to yield useful results. Such an examination
would most likely focus on measuring the performance
of several virtual scheduler implementations and compar-
ing their performance to that achieved by native RTOS
schedulers.

Given the success of such an examination, we would
ultimately like to conduct a more comprehensive study
of virtual schedulers. Such a study would first catalog
relevant classes of real-time systems, as distinguished by
characteristics like hardware platform (including number
of cores and caching hierarchy); workload properties (such



as the number of tasks and the maximum per-task utiliza-
tion); performance requirements (such as types of timing
constraints or requirements for adaptivity); and robustness
requirements (such as fault isolation and security protec-
tion). Then, the study would determine, as best as possible,
the most effective virtual scheduling implementation for
each class, in terms of characteristics like runtime over-
head. Such a study would allow industry practitioners to
choose intelligently between native RTOS scheduling and
virtual scheduling for applications of interest, and would
(hopefully) open up avenues for entirely new classes of
real-time systems to be deployed.

In this study, we do not wish to rule out implementation
approaches necessitating basic RTOS kernel modifications,
in return for a significant boost in the capabilities of the
virtual scheduler. Such approaches would be of interest if
the needed modifications were generic and straightforward
enough that one could reasonably hope for commercial
RTOS vendors to eventually adopt them.

If the virtual scheduling approach proves viable, we are
eager to apply it to novel topics currently being studied by
the real-time systems research community, such as adaptive
systems, mixed-criticality systems, hierarchical scheduling
systems, and secure real-time systems. We believe virtual
scheduling may enable significant practical advances in
these areas.

6. Conclusion

In this paper, we proposed a new approach for the run-
time scheduling of real-time workloads, virtual scheduling,
which decouples real-time scheduling from the underlying
real-time operating system (RTOS) kernel. This decoupling
provides for the use of scheduling algorithms on an RTOS
platform that does not support them natively. If it proves
to be viable, this approach will allow new scheduling
functionality to be offered to industry practitioners without
sacrificing the ideal of the stable, predictable, time-tested,
and (mostly) bug-free RTOS kernel. However, the best way
to go about exploring this concept is far from obvious.
We are eager to receive feedback from real-time kernel
developers and academic researchers on how to make the
most of this approach, considering the intricacies of real-
time operating systems and the complexity of real-time
scheduling algorithms.

References

[1] T. Anderson, B. Bershad, E. Lazowska, and H. Levy.
Scheduler activations: Effective kernel support for user-
level management of parallelism. In ACM Transactions on
Computer Systems, vol. 10, no. 1, pages 53–79, 1992.

[2] T. P. Baker. Stack-based scheduling of real-time processes.
The Journal Of Real-Time Systems, 3(1):67–99, 1991.

[3] A. Bastoni, B. Brandenburg, and J. Anderson. An empirical
comparison of global, partitioned, and clustered multipro-
cessor edf schedulers. In Proceedings of the 2010 31st IEEE
Real-Time Systems Symposium, pages 14–24, 2010.

[4] A. Block, B. Leontyev, B. Brandenburg, and J. Anderson.
A flexible real-time locking protocol for multiprocessors.
In Proceedings of the 13th IEEE Conference on Embedded
and Real-Time Computing Systems and Applications, pages
47–57, 2007.

[5] B. Brandenburg and J. Anderson. Optimality results for
multiprocessor real-time locking. In Proceedings of the
2010 31st IEEE Real-Time Systems Symposium, pages 49–
60, 2010.

[6] Erlang Web site. http://www.erlang.org/.
[7] Evidence Web site. http://www.evidence.eu.com.
[8] GNU Portable Threads Web site. http://www.gnu.org/software/pth.
[9] R. Rajkumar. Real-time synchronization protocols for

shared-memory multiprocessors. In Proceedings of the 10th
International Conferece on Distributed Computing Systems,
pages 116–123, 1990.

[10] R. Rajkumar, L. Sha, and J. Lehockzy. Real-time syn-
chronization protocols for multiprocessors. In Proceedings
of the 9th Real-Time Systems Symposium, pages 259–269,
1988.

[11] A. Wellings and A. Burns. Generalizing the edf scheduling
support in ada 2005. In Ada Letters, vol. 30, pages 116–124,
2010.

[12] Wind River Web site. http://www.windriver.com.


