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Abstract
Semi-partitioned real-time scheduling algorithms extend
partitioned ones by allowing a (usually small) subset of
tasks to migrate. The first such algorithm to be proposed
was directed at soft real-time (SRT) sporadic task systems
where bounded deadline tardiness is acceptable. That al-
gorithm, called EDF-fm, has the desirable property that
migrations are boundary-limited, i.e., they can only occur
at job boundaries. However, it is not optimal because per-
task utilization restrictions are required. In this paper, a
new optimal semi-partitioned scheduling algorithm for SRT
sporadic task systems is proposed that eliminates such re-
strictions. This algorithm, called EDF-os, preserves the
boundary-limited property. In overhead-aware schedulabil-
ity experiments presented herein, EDF-os proved to be bet-
ter than all other tested alternatives in terms of schedulabil-
ity in almost all considered scenarios. It also proved capa-
ble of ensuring very low tardiness bounds, which were near
zero in most considered scenarios.

1 Introduction
Multiprocessor real-time scheduling algorithms may follow
a partitioned or global approach or some hybrid of the
two. Under partitioned scheduling, tasks are statically as-
signed to processors, while under global scheduling, they
are scheduled from a single run queue and hence may mi-
grate. When comparing different scheduling approaches,
one criterion is optimality, i.e., the ability to correctly sched-
ule (without timing-constraint violations) any task system
for which a correct schedule exists. In the case of implicit-
deadline (see Sec. 2) sporadic task systems, optimality can
be achieved via global scheduling, but not partitioning;
however, global scheduling entails higher runtime over-
heads. When designing a hybrid approach, the goal is usu-
ally to attain optimal or near-optimal behavior but with less
overhead than a truly global approach.

One such hybrid approach is semi-partitioned schedul-
ing, which extends partitioned scheduling by allowing those
tasks that cannot be feasibly assigned to processors to mi-
grate. Semi-partitioned scheduling was first proposed for
supporting implicit-deadline soft real-time (SRT) sporadic
task systems under the “bounded deadline tardiness” defini-
tion of SRT (which is the definition of SRT we assume here-
after) [3]. Subsequently, several semi-partitioned algorithms
were proposed for hard real-time (HRT) systems where no
deadline misses are tolerable [5, 6, 11, 12, 13, 16, 18, 21,
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22, 23, 24, 25, 26, 27, 28, 31, 32]. In these prior efforts,
various migration strategies for migrating tasks were pro-
posed. Given the stated goal of “less overhead,” it is de-
sirable for such a strategy to be boundary-limited, i.e., to
allow a migrating task to migrate only between job bound-
aries (i.e., between successive invocations). Non-boundary-
limited schedulers allow jobs to migrate, which can be ex-
pensive in practice if jobs maintain much cached state.

Of the algorithms cited in the prior paragraph, only one,
namely EKG [6], meets the stated goal of optimality for the
class of systems for which it was designed, and only in a
very restricted sense: it is optimal only for periodic (not spo-
radic) task systems, and only when a configurable parameter
k becomes equal to the number of processors, which unre-
alistically increases preemption frequency. Moreover, EKG
is not boundary-limited. In fact, it can be easily shown that
no boundary-limited scheduler can be optimal for HRT spo-
radic task systems.

In this paper, we show that a semi-partitioned scheduling
algorithm that is both optimal and boundary-limited does
exist in the SRT case. We use the usual definition of the term
“optimal,” as given earlier; however, for SRT schedulers
as considered here, the phrase “correctly schedule” means
that bounded tardiness can be guaranteed for each task. Un-
der this definition, prior work shows that correct scheduling
is possible via global scheduling if no task over-utilizes a
single processor and the entire system of processors is not
over-utilized [17]. No further utilization restriction is nec-
essary. In the context of global scheduling, the boundary-
limited property can be achieved by executing jobs non-
preemptively, which increases tardiness bounds. This prop-
erty can be sacrificed, yielding smaller bounds, by execut-
ing jobs preemptively. However, overheads then become a
problem. In this regard, semi-partitioned schedulers have a
key advantage over global ones as the former use push mi-
grations, which are pre-planned, while the latter use pull
migrations, which are reactive in nature and thus more dif-
ficult to account for and implement efficiently [10].

The original SRT algorithm from [3], called EDF-fm,
is boundary-limited and able to fully utilize the underlying
hardware platform’s available capacity. However, it requires
per-task utilization restrictions that render it non-optimal.
In their simplest form, these restrictions preclude any task
utilization from exceeding half the capacity of a processor,
though they can be relaxed somewhat, as discussed below.

Contributions. In this paper, we close a problem that
has stood open since the initial publication of EDF-fm in
2005 [2] by presenting the first optimal semi-partitioned
scheduling algorithm for SRT sporadic task systems.



This algorithm, called EDF-os (earliest-deadline-first-
based optimal semi-partitioned scheduling), is boundary-
limited, like EDF-fm. However, it eliminates the need for
EDF-fm’s per-task utilization restriction through the use of
several novel techniques.

Like any semi-partitioned algorithm, EDF-fm functions
in two phases: an offline assignment phase, where tasks
are assigned to processors and fixed tasks (which do not
migrate) are distinguished from migrating ones (which
do); and an online execution phase. In EDF-fm’s execu-
tion phase, rules that extend earliest-deadline-first (EDF)
scheduling are used to execute fixed and migrating tasks.
Specifically, each migrating task executes on two proces-
sors, and for each processor, at most two specific migrat-
ing tasks may execute upon it. The tardiness-bound proof
for EDF-fm relies crucially on the fact that migrating tasks
never miss deadlines. To ensure this, migrating tasks are
statically prioritized over fixed ones, jobs of migrating tasks
are prioritized against each other on a EDF basis, and two
migrating tasks that may execute on the same processor are
limited to have a combined utilization of at most one. This
last requirement restricts per-task utilizations.

In EDF-os, we eliminate unnecessary utilization restric-
tions by altering both phases. The assignment phase of
EDF-os differs from that of EDF-fm in that we consider
tasks in a specific order and allow a migrating task to ex-
ecute on any number of processors (instead of just two).
The execution phase of EDF-os differs from that of EDF-
fm in that we statically prioritize jobs of certain migrat-
ing tasks over those of others, instead of prioritizing them
against each other on an EDF basis. As a result of our differ-
ent strategies, migrating tasks can miss deadlines. However,
we show that tardiness bounds can be derived by leverag-
ing certain properties pertaining to our EDF-os assignment
phase and the more predictable nature of the static prioriti-
zations we introduce. These properties allow us to apply a
novel reduction method that enables a given system to be
converted to a simpler form that can be more easily ana-
lyzed. This analysis shows that EDF-os is optimal, regard-
less of whether deadlines are implicit, constrained, or unre-
stricted (see Sec. 2). In contrast, the analysis for EDF-fm is
restricted to implicit-deadline systems.

To evaluate EDF-os, we conducted an experimental
evaluation in which it was compared to other algorithms,
including EDF-fm. In this evaluation, the effects of mea-
sured overheads from actual operating-system-based sched-
uler implementations were factored into schedulability and
tardiness analysis. From a schedulability standpoint, i.e., the
ability to guarantee bounded tardiness, EDF-os proved to
be the best algorithm in almost all considered scenarios. The
magnitude of such bounds is important as well. In this re-
gard also, EDF-os excelled, ensuring very low bounds gen-
erally, and near-zero bounds in most considered scenarios.

Organization. We present our optimality proof (Sec. 4) af-
ter first providing needed background (Sec. 2) and describ-
ing EDF-os in detail (Sec. 3). We then present our experi-
mental evaluation (Sec. 5) and conclude (Sec. 6).

2 Background

We consider the scheduling of a sporadic task system τ =
{τ1, τ2, . . . , τN} on M identical processors, P1, . . . , PM
(we assume familiarity with the sporadic and periodic task
models). Task τi is specified by (Ci, Ti), where Ci is its
maximum1 per-job execution requirement and Ti is its pe-
riod. The jth job of τi, denoted τi,j , has release time ri,j and
deadline di,j . We initially restrict attention to implicit dead-
lines (di,j = ri,j+Ti) but in an online appendix [4] we con-
sider both constrained deadlines (di,j ≤ ri,j+Ti) and unre-
stricted deadlines (no relationship between di,j and ri,j+Ti
assumed). We denote the utilization of τi by Ui = Ci/Ti,
and the pth processor as Pp. We assume that time is discrete.

In the scheduling algorithms we consider, each task is al-
located a non-zero fraction, or share, of the available utiliza-
tion of 1.0 on certain processors. Task τi’s share (potentially
zero) on Pp is denoted si,p. The total share allocation on Pp
is denoted σp ,

∑
τi∈τ si,p. We require that σp ≤ 1.0 and

that each task’s total share allocation matches its utilization:
Ui =

∑M
k=1 si,k. If τi has non-zero shares on multiple (only

one) processor, then it is a migrating (fixed) task.
The scheduling algorithms we consider have the addi-

tional property that each job of each task τi executes on
a specific processor. The fraction of τi’s jobs (potentially
zero) that execute on processor Pp is denoted fi,p. Such
fractions are commensurate with τi’s share allocations:

fi,p =
si,p
Ui

. (1)

The lowest-indexed processor to which migrating task τi as-
signs jobs is called its first processor.

If a job τi,j completes at time t, then its lateness is t−di,j
and its tardiness is max (0, t− di,j). Observe that if a job’s
lateness is negative, then its tardiness is zero; otherwise, its
lateness and tardiness are identical. We seek scheduling al-
gorithms that ensure bounded tardiness: for each task, there
is an upper bound on the tardiness of any of its jobs. We
consider only feasible task systems that satisfy the follow-
ing conditions.

∀τi ∈ τ, Ui ≤ 1 and
∑
τi∈τ

Ui ≤M. (2)

Note that if a job is tardy, then the release time of the next
job of the same task is unaltered; in such a case, consecutive
jobs of the same task must execute in sequence (no paral-
lelism). It follows that, if a task’s tardiness is bounded, then
its long-term processor share will be commensurate with
its utilization. Also, per-job response times are bounded.
(These are desirable properties of the SRT notion of cor-
rectness we employ.)

1Mills and Anderson [30] have shown that the worst-case execution
times pertaining to our model can be viewed as operating-system-enforced
budgets that can be provisioned on an average-case (or near-average-case)
basis. Stochastic analysis pertaining to such a provisioning is layered “on
top of” tardiness analysis pertaining to (deterministic) budget allocations.



EDF-fm. The EDF-os algorithm presented herein was ob-
tained through key design changes to EDF-fm [3] that en-
able new analysis techniques. EDF-fm consists of assign-
ment and execution phases. During the assignment phase,
tasks are allocated shares offline. The employed procedure
allocates processor utilization (as shares) to tasks by consid-
ering each processor and task in turn. If the currently con-
sidered processor Pp has sufficient unallocated utilization,
then the currently considered task τi is assigned to it as a
fixed task; otherwise, τi exhausts the remaining unallocated
utilization of Pp and receives the rest of its needed alloca-
tion from Pp+1.

In the execution phase, released jobs are scheduled on-
line without migration (i.e., each job executes on only one
processor). The following prioritizations are used on each
processor: migrating tasks are prioritized over fixed ones,
and jobs of a given type (fixed or migrating) are prioritized
against each other on an EDF basis. By the assignment pro-
cedure just described, at most two migrating tasks can have
non-zero shares on a given processor. It is required that for
any two such tasks, their combined utilization is at most 1.0.
This ensures that such tasks do not miss deadlines (which is
a crucial property in the tardiness analysis of EDF-fm).

To ensure that fixed tasks have bounded tardiness, it is
important that no processor be overloaded in the long run.
This can be ensured by employing a mechanism that ensures
that, in the long run, each migrating task τi submits an ap-
propriate fraction of its jobs to each of the two processors
on which it executes. Such fractions are given by (1) and are
maintained by leveraging results from Pfair scheduling [7].
Under Pfair scheduling, scheduling decisions are made for
each time slot of length one quantum. Further, for any fea-
sible implicit-deadline, synchronous, periodic task system,
a task with utilization u receives between bu · tc and du · te
quanta by the integral time instant t.

The above Pfair guarantee is used to assign the jobs of a
migrating task τi that executes on processors Pq and Pq+1

as follows. A schedule of two Pfair tasks Tq and Tq+1 of
total utilization 1.0 is conceptually maintained, where Tp
(p = q or p = q + 1) corresponds to execution on pro-
cessor Pp and has a utilization of fi,p. If, in a uniprocessor
schedule of these two Pfair tasks, Tp is allocated time slot t,
then the tth job of the migrating task τi is assigned to pro-
cessor Pp. Using this idea, the guarantee provided by Pfair
scheduling ensures that the following property holds under
EDF-fm.

Property 1. In any schedule, out of the first n jobs of a
migrating task τi, the number of jobs assigned to some pro-
cessor Pp is between bfi,p · nc and dfi,p · ne.

In EDF-fm, the Pfair schedule is maintained only implic-
itly, via a formula provided in [3].
Ex. 1. We now give an example task system that shows
that if the task utilization restriction of EDF-fm is violated,
then migrating tasks may miss deadlines. Such misses in-
validate the tardiness analysis given in [3]. Consider the
system τ = {(4, 6), (2, 3), (5, 6), (2, 3), (1, 2), (2, 3)}. Be-

Figure 1: EDF-fm task assignment for Ex. 1.

cause
∑
τi∈τ Ui = 4, τ is feasible on four processors. Be-

cause all task utilizations but one exceed 1
2 , and the other

utilization is exactly 1
2 , EDF-fm’s utilization restriction will

be violated regardless of the order in which tasks are con-
sidered for assignment on a four-processor system. For the
listed order, with the assignment of tasks depicted in Fig. 1,
we show that deadlines may be missed by migrating tasks
on P2. The Pfair-based mapping formula will assign odd-
indexed jobs of τ2 to P1 and even-indexed jobs of τ2 to P2.
For τ3, f3,2 = 2

3 ·
6
5 = 4

5 . The mapping formula will assign
the first four jobs in each consecutive group of five jobs of
τ3 to P2. Fig. 3 shows the first 25 time units of execution on
P2 assuming deadline ties are broken in favor of τ2. Note
that each of the first four jobs of τ3 misses its deadline.

3 EDF-os
In designing EDF-os, our goal was to eliminate EDF-
fm’s per-task utilization restrictions without altering the
boundary-limited property or the fact that the underlying
platform can be fully utilized. Because migrating tasks in
EDF-fm cannot miss deadlines, tardiness under it can be
analyzed on a per-processor basis. If such tasks can miss
deadlines, then complex “couplings” of processors that are
difficult to analyze arise: a miss by a migrating task on one
processor can delay the processing of work due to it on an-
other processor. Here, we show that such couplings can be
dealt with by utilizing these key ideas:
• We use a worst-fit decreasing scheme to assign tasks to

processors, rather than using an arbitrary ordering.
• Instead of prioritizing jobs of migrating tasks against

each other using EDF, we statically give such a task
the highest possible priority on any processor that is
not its first processor (recall Sec. 2).
• By exploiting both modifications, we show that a

reduction method can be used to analyze tardiness
bounds in a simpler system in which complex “cou-
plings” are eliminated.

EDF-os’s assignment phase is described by the proce-
dure in Fig. 4. An assignment is produced in two steps: first,
as many tasks as possible are assigned as fixed tasks, us-
ing a worst-fit decreasing bin-packing heuristic. Then, all
remaining tasks are assigned (in decreasing utilization or-
der) by considering each processor and remaining task in
turn. Each task considered in this step is allocated non-zero
shares from a succession of processors until the sum of its
shares equals its utilization. Because the remaining tasks are



Figure 2: Key for Figures 3 and 6.

Figure 3: An EDF-fm schedule for the task system in Ex. 1 show-
ing execution on P2. Jobs from τ3 = (5, 6) complete late.

considered in decreasing-utilization order, it is possible that
such a task receives a non-zero share on only one processor,
in which case it is a fixed task; otherwise, it is migrating.
Like the assignment procedure for EDF-fm, this procedure
ensures that there are at most two migrating tasks with non-
zero shares on any processor. However, a migrating task un-
der EDF-os can have non-zero shares on more than two
processors. In this respect, EDF-os is similar to the C=D
algorithm [16]. Note that EDF-os does not impose any re-
strictions on task utilizations (other than (2)), so it is now
possible that migrating tasks may be tardy. Note also that,
because tasks are considered in decreasing utilization order,
each processor must contain at least one fixed task with a
utilization at least that of any migrating task.

In the execution phase, EDF-os works as follows. As
in EDF-fm, each job executes on only one processor. The
prioritization rules used are as follows.
• On any processor, migrating tasks are statically priori-

tized over fixed ones (like in EDF-fm).
• Fixed tasks are prioritized against each other using

EDF (like in EDF-fm).
• If a processor has two migrating tasks τi and τi+1, as-

signed in this order, then τi is statically prioritized over
τi+1 (this differs from EDF-fm). That is, a migrating
task executes with highest priority on any processor
that is not its first processor.

Informally, the last rule ensures that tardiness is “created”
for a migrating task only on its first processor; on its other
processors, one of its jobs will be tardy only if its predeces-
sor job was also tardy. In fact, any such job assigned to a
non-first processor will be scheduled as soon as it is eligi-
ble (i.e., released and its predecessor finished). As we shall
see in the tardiness-bound proof in Sec. 4, this very pre-
dictable execution behavior for “non-first-processor” jobs
can be leveraged to derive a lateness bound for all migrat-
ing tasks, and in turn a tardiness bound for all fixed tasks.

Because a migrating task may execute on more than two
processors under EDF-os, the Pfair-based job-assignment
formula used by EDF-fm cannot directly be applied to
EDF-os. However, the same idea of using Pfair concepts
to determine job assignments can continue to be used. In
particular, if a migrating task τi executes on n processors,
then we can conceptually manage n Pfair tasks with total

initially si,p = 0 and σp = 0 for all i and p
/∗ assign fixed tasks via a worst-fit decreasing packing ∗/
Index tasks in the order of heaviest utilization to lightest;
for i := 1 to N do

Select p such that σp is minimal;
if Ui > 1− σp then

break /∗ this task must be migrating ∗/
fi;
si,p, σp, last := Ui, σp + Ui, i

od;
/∗ assign migrating and low-utilization fixed tasks ∗/
p := 1;
for i := last + 1 to N do

remaining := Ui

repeat
si,p := min(remaining , (1− σp));
σp, remaining := σp + si,p, remaining − si,p;
if σp = 1 then p := p+ 1 fi

until remaining = 0
od

Figure 4: EDF-os assignment phase.

Figure 5: EDF-os task assignment for Ex. 1.

utilization 1.0, where each Pfair task corresponds to execu-
tion on a processor Pp and has utilization fi,p, as before.
If, in a uniprocessor schedule of these n Pfair tasks, the pth
task is allocated time slot t, then the tth job of the migrating
task is assigned to processor Pp. Because Prop. 1 is based
solely on the guaranteed behavior of any Pfair scheduler, it
holds for EDF-os with this generalized assignment policy.
Ex. 1 (revisited). We now discuss how EDF-os would
schedule the task system from Ex. 1 in Sec. 2. For conve-
nience, we list here the tasks in decreasing utilization order:
τ = {(5, 6), (4, 6), (2, 3), (2, 3), (2, 3), (1, 2)}. In Figs. 5–
6, we also re-index the tasks to match this new ordering.

The task assignment EDF-os produces is shown in
Fig. 5. Note that there are two migrating tasks, and one of
them, τ5 = (2, 3), executes on three processors, P1, P2, and
P3. Fig. 6 (with a key in Fig. 2) shows an example EDF-os
schedule for this task system. In this case, due to the im-
proved assignment scheme, only fixed tasks actually have
deadline misses within the example schedule.

4 Tardiness Bounds
In this section, we derive tardiness bounds under EDF-
os. We consider migrating and fixed tasks separately, in
Secs. 4.1 and 4.2, respectively. For migrating tasks, we actu-
ally consider lateness bounds rather than tardiness bounds.
Recall from Sec. 2 that if tardiness is positive, then lateness



Figure 6: EDF-os schedule for Ex. 1. f5,1 = 1
4

, f5,2 = 1
2

and
f5,3 = 1

4
. f6,3 = 1

3
and f6,4 = 2

3
.

is identical to tardiness, but lateness can be negative while
tardiness cannot. Allowing the lateness bounds for migrat-
ing tasks to be negative can result in tighter tardiness bounds
for fixed tasks. In the rest of this section, we assume that the
task system τ being analyzed is feasible (refer to (2)). We
denote the set of all fixed tasks on processor Pp as τfp , and
the sum of the shares of all fixed tasks on Pp as σfp .

We begin by establishing several properties that follow
from the assignment procedure in Fig. 4. Recall that, as dis-
cussed in Sec. 3, Prop. 1 holds for EDF-os.

Property 2. For each migrating task τi, Ui < 1.

This property follows from the worst-fit decreasing
heuristic used by our assignment procedure. Because τ is
feasible, if Ui < 1 fails to hold, then Ui = 1 holds. More-
over, i ≤ M , for otherwise, total utilization would exceed
M . These facts imply that τi would have been assigned as a
fixed task to a dedicated processor.

Property 3. There are no more than two migrating tasks
that assign jobs to processor Pp. If there are two migrating
tasks that assign jobs to Pp, then Pp is the first processor
for exactly one of them.

It can be shown by induction that when our assignment
procedure first considers a migrating task τi, there can be at
most one migrating task already assigned to the currently
considered processor (which will be τi’s first processor).
From this, Prop. 3 follows.

Property 4. For processor Pp with one or more migrating
tasks τi (and possibly τk) that have shares si,p (and sk,p),
σfp + si,p + sk,p ≤ 1.

Our assignment procedure does not allow σp to exceed
1.0 (i.e., Pp cannot be over-allocated).

Property 5. If processor Pp contains migrating tasks τi and
τk and Pp is the first processor of τk, then si,p + Uk < 1.

Because tasks are assigned in decreasing-utilization or-
der, there must be a fixed task τf on Pp such that Uf ≥ Uk.
Therefore, by Prop. 4 and because sk,p > 0, Prop. 5 holds.

Property 6. Out of any c consecutive jobs of some migrat-
ing task τi, the number of jobs released on Pp is at most
fi,p · c+ 2.

By Prop. 1, if τi executes jobs on Pp, then out of its first
n jobs, the number assigned to Pp is between bfi,p · nc and
dfi,p · ne. Thus, out of any c consecutive jobs of τi, where
the index of the first such job is j, the number of jobs as-
signed to Pp is at most

dfi,p · (j + c− 1)e − bfi,p · (j − 1)c
≤ {Since dx+ ye ≤ dxe+ dye}
dfi,p · (j − 1)e+ dfi,p · ce − bfi,p · (j − 1)c

≤ {Since dxe − bxc ≤ 1}
dfi,p · ce+ 1

< {Since dxe < x+ 1}
fi,p · c+ 2.

4.1 Lateness Bounds for Migrating Tasks

We now derive a lateness bound for migrating tasks. Since
such tasks are statically prioritized over fixed ones, we need
not consider fixed tasks in this derivation. Thus, all refer-
enced tasks in this subsection are assumed to be migrating.

First, we provide a bound on the work from a migrating
task that competes with an arbitrary task. This result will be
used both here and in the next subsection.

Lemma 1. Consider a migrating task τi that releases jobs
on processor Pp. Let t0 ≥ 0 and tc > t0. If no job of τi
has lateness exceeding ∆i (which may be negative), then
the demand from τi in the interval [t0, tc) on Pp is less than

(si,p)(tc − t0) + (si,p)(∆i + 2Ti) + 2Ci.

Proof. Since we assume that the maximum lateness of τi is
at most ∆i, we know that any job released by τi will take
no more than Ti + ∆i time units to complete, so jobs of
τi released before t0 − (∆i + Ti) cannot create demand in
[t0, tc). Thus, competing demand for execution from jobs
of τi in the interval [t0, tc) comes from jobs of τi released
in [t0 −∆i − Ti, tc). Since the minimum inter-release time
between jobs of τi is Ti, there are at most

⌈
tc−(t0−∆i−Ti)

Ti

⌉
such jobs released in this interval. Since τi is a migrating
task, the number of jobs executed on Pp out of any number
of consecutive jobs of τi is limited by Prop. 6. Thus, the
demand from τi in the interval [t0, tc) on Pp is at most(

fi,p ·
⌈
tc − (t0 −∆i − Ti)

Ti

⌉
+ 2

)
Ci

< {Since dxe < x+ 1}(
fi,p ·

(
tc − (t0 −∆i − Ti)

Ti
+ 1

)
+ 2

)
Ci

≤ {Rewriting}(
fi,p ·

(
tc − t0 + ∆i + 2Ti

Ti

)
+ 2

)
Ci



= {By (1)}
(si,p)(tc − t0) + (si,p)(∆i + 2Ti) + 2Ci.

We now show that we can upper-bound the lateness of a
migrating task τ` by using a reduction argument that consid-
ers an alternate job allocation in which all of its jobs execute
on its first processor, Pp. (For ease of understanding, we use
the indices “`” and “h” in the rest of this subsection to re-
flect lower and higher static priorities, respectively.) Note
that Prop. 5 ensures that, when ignoring fixed tasks (as we
do in this subsection), Pp has sufficient capacity to accom-
modate any jobs of τ` we may move to it from other pro-
cessors. This is because there must exist a fixed task on Pp
with utilization at least that of τ`. (Our usage of a worst-fit
decreasing assignment strategy is crucially exploited here.)

Lemma 2. If every job of migrating task τ` that executes on
a non-first processor of τ` is moved to its first processor Pp,
no job of τ` will complete earlier. Also, if another migrating
task τh executes on Pp, such moves do not affect it.
Proof. If τ` shares Pp with another migrating task τh, then
by the prioritization rules of EDF-os, τh is not impacted by
moving jobs of τ` to Pp, since τh has higher priority than τ`
(we are not changing the static prioritization of these tasks).

We now show that moving a single job τ`,k of τ` to Pp
cannot lessen the completion time of any job of τ`. By in-
ducting over all such moves, the lemma follows.

Because job τ`,k is being moved, it was originally ex-
ecuting on a non-first processor of τ`. Hence, τ`,k was of
highest priority on that processor and executed immediately
to completion as soon as it was eligible (i.e., by the later of
its release time and the completion time of its predecessor
τ`,k−1, if any). After the move, its execution may be delayed
by jobs of τh, which have higher priority than those of τ` on
Pp. Thus, after the move, τ`,k cannot complete earlier, and
may complete later. If it completes later, then this cannot
cause subsequent jobs of τ` to complete earlier (earlier jobs
of τ` are clearly not impacted).

Thm. 1 below provides lateness bounds for migrating
tasks. If a migrating task τ` shares its first processor with
another migrating task τh, then the bound for τ` depends on
that of τh. Such bounds can be computed inductively, with
the following lemma providing the base case.

Lemma 3. The migrating task τh with the lowest-indexed
first processor Pp does not share Pp with another migrating
task.
Proof. By the assignment procedure of EDF-os, no migrat-
ing task other than τh executes on Pp.

Theorem 1. Let Pp be the first processor of τ`. If τ` is not
the only migrating task that executes on Pp, then let τh de-
note the unique (by Prop. 3) other migrating task that does
so, and let ∆h denote an upper bound on its lateness. Then,
τ` has lateness no larger than

∆` ,

{
(sh,p)(∆h+2Th)+2Ch+C`

1−sh,p
− T` if τh exists,

C` − T` otherwise.
(3)

Proof. By Lem. 2, we can establish the desired lateness
bound by assuming that all jobs of τ` run on Pp. We make
this assumption in the remainder of the proof.

If τ` is the only migrating task on Pp, then its jobs will
be of highest priority on Pp. Thus, by Prop. 2 and Lem. 2,
every job of τ` will have a response time of at most C`, and
therefore a lateness of at most C` − T`.

In the rest of the proof, we assume that τ` shares Pp with
another migrating task. By Prop. 3, there is a unique such
task τh, as stated in the theorem. By the prioritization rules
used by EDF-os, τh has higher priority than τ`.

Consider job τ`,j with release time r`,j and deadline d`,j .
For purposes of contradiction, assume that τ`,j’s lateness
exceeds ∆`. According to the prioritization rules used by
EDF-os, τ`,j’s execution may be impacted only by jobs
from τh and by jobs from τ` with deadlines before d`,j . We
now upper bound the processor demand impacting τ`,j by
considering a certain time interval, as defined next.

Interval [t0, tc). Let t0 be the latest point in time at or be-
fore r`,j such that no jobs of τh or τ` released on Pp before
t0 are pending; a released job is pending if it has not yet
completed execution. (t0 is well-defined because the stated
condition holds at time 0.) Define tc , d`,j + ∆`. The as-
sumption we seek to contradict is that τ`,j does not com-
plete by tc. Since τ`,j fails to complete by tc, there are more
than tc − t0 units of demand in the interval [t0, tc) for the
execution of jobs on Pp with priority at least that of τ`,j .

Demand from τh. By Lem. 1, the competing demand in
[t0, tc) due to τh on Pp is at most

(sh,p)(tc − t0) + (sh,p)(∆h + 2Th) + 2Ch. (4)

Demand from τ`. Additional demand can come from jobs
of τ` with deadlines earlier than d`,j . By the definition of
t0, all such jobs are released in [t0, r`,j). Thus, there are at

most
⌊

(r`,j−t0)
T`

⌋
such jobs. Including job τ`,j itself, there

are at most
⌊

(r`,j−t0)
T`

⌋
+ 1 jobs of τ` released in [t0, tc)

with deadlines at most d`,j . The total demand due to such

jobs is
(⌊

(r`,j−t0)
T`

⌋
+ 1
)
C`, which by the definition of U`

is at most
U`(r`,j − t0) + C`. (5)

Total demand. For notational convenience, let

K , (sh,p)(∆h + 2Th) + 2Ch + C`. (6)

Then, by (4) and (5), the total demand on Pp due to jobs of
equal or higher priority than τ`,j in [t0, tc) is at most

K + (tc − t0)sh,p + (r`,j − t0)U`. (7)

Because τ`,j completed after time tc (by assumption), the
considered demand exceeds the length of [t0, tc), so

(tc − t0) < {By (7)}
K + (tc − t0)sh,p + (r`,j − t0)U`



= {Rearranging}
K + (tc − r`,j)sh,p + (r`,j − t0)(sh,p + U`)

< {By Prop. 5}
K + (tc − r`,j)sh,p + (r`,j − t0). (8)

Subtracting (r`,j − t0) from both sides of (8) gives (tc −
r`,j) < K + (tc − r`,j)sh,p, which implies

K > (tc − r`,j)(1− sh,p). (9)

By Prop. 2, Uh < 1, and hence sh,p < 1. Thus, by (9),

(tc − r`,j) < {since 1− sh,p is positive}
K

1− sh,p
= {By (6)}

(sh,p)(∆h + 2Th) + 2Ch + C`
1− sh,p

= {By (3)}
∆` + T`.

Because r`,j = d`,j − T`, this implies tc − d`,j < ∆`,
which contradicts the definition of tc and thus violates our
assumption that τ`,j completes after time d`,j + ∆`.

4.2 Tardiness Bounds for Fixed Tasks

Although we provided bounds on lateness in Sec. 4.1, in this
subsection we instead provide bounds on tardiness, because
it is not possible for the bounds in this subsection to be nega-
tive. If no migrating tasks execute on a given processor, then
the fixed tasks on that processor have zero tardiness, by the
optimality of EDF on one processor. The following theo-
rem establishes tardiness bounds for fixed tasks that must
execute together with migrating tasks.

Theorem 2. Suppose that at least one migrating task exe-
cutes on processor Pp and let τi be a fixed task on Pp. If
Pp has two migrating tasks (refer to Prop. 3), denote them
as τh and τ`, where τh has higher priority; otherwise, de-
note its single migrating task as τh, and consider τ` to be a
“null” task with T` = 1, s`,p = 0, and C` = 0. Then, τi has
a maximum tardiness of at most

∆i ,
(sh,p)(∆h + 2Th) + 2Ch + (s`,p)(∆` + 2T`) + 2C`

(1− sh,p − s`,p)
.

(10)

Proof. The proof is similar to that of Thm. 1. We will upper
bound demand over the following interval.

Interval [t0, tc). For purposes of contradiction, suppose
that there exists a job τi,j of τi that has tardiness exceeding
∆i, i.e., τi,j has not completed by tc, where tc , di,j + ∆i.
Define a job as a competing job if it is released on Pp and it
is a job of τh or τ`, or a job of a fixed task that has a dead-
line at or before di,j . Let t0 be the latest point in time at
or before ri,j such that no competing jobs released before

t0 are pending. (t0 is well-defined because the stated con-
dition holds at time 0.) We now bound demand over [t0, tc)
due to competing jobs (including τi,j itself) by considering
migrating and fixed tasks separately.

Demand from migrating tasks. By Lem. 1, demand over
[t0, tc) due to jobs of τh and τ` is at most

(sh,p)(tc − t0) + (sh,p)(∆h + 2Th) + 2Ch+

(s`,p)(tc − t0) + (s`,p)(∆` + 2T`) + 2C`. (11)

Demand from fixed tasks. A fixed task τk can release at
most

⌊
di,j−t0
Tk

⌋
competing jobs within [t0, tc). Thus, de-

mand from all competing jobs of fixed tasks is at most∑
τk∈τf

p

⌊
di,j − t0
Tk

⌋
Ck ≤ (di,j − t0)

∑
τk∈τf

p

Ck
Tk
. (12)

By the definition of σfp , the bound in (12) can be written as

(di,j − t0)(σfp ) ≤ {By Prop. 4}
(di,j − t0)(1− sh,p − s`,p). (13)

Total demand. For notational convenience, let

K , (sh,p)(∆h + 2Th) + 2Ch + (s`,p)(∆` + 2T`) + 2C`.
(14)

Then, by (11) and (13), total competing demand is at most

K + sh,p(tc − t0) + s`,p(tc − t0)+

(di,j − t0)(1− sh,p − s`,p). (15)

Because τi,j completed after time tc (by assumption),
the considered demand exceeds the length of the interval
[t0, tc), so

(tc − t0) < {By (15)}
K + sh,p(tc − t0) + s`,p(tc − t0)+

(di,j − t0)− (di,j − t0)(sh,p + s`,p)

= {Rearranging}
K + (sh,p + s`,p)(tc − t0)+

(di,j − t0)− (di,j − t0)(sh,p + s`,p). (16)

Subtracting (di,j − t0) from both sides of (16), we have
(tc−di,j) < K+(sh,p+s`,p)(tc− t0)− (di,j− t0)(sh,p+
s`,p) = K + (sh,p + s`,p)(tc − di,j). This implies

K > (tc − di,j)(1− sh,p − s`,p). (17)

By Prop. 4 and because at least one fixed task τi is assigned
to Pp, we have (1− sh,p − s`,p) > 0. Thus, by (17),



tc − di,j <
K

(1− sh,p − s`,p)
= {By (10) and (14)}

∆i.

This contradicts our definition of tc = di,j+∆i, so it cannot
be the case that τi,j has more than ∆i units of tardiness.

In an online appendix [4], we discuss some possible im-
provements and extensions to EDF-os.

5 Experimental Comparison
Several scheduling algorithms have been previously eval-
uated for use in SRT systems. Bastoni et al. [10] com-
pared several semi-partitioned algorithms, including EDF-
fm and also EDF-WM [26], although the latter was origi-
nally designed for HRT systems. In that study, EDF-WM
was shown to be effective for SRT systems due to its low
overheads. Although not a semi-partitioned algorithm, the
global algorithm G-FL has been proposed by Erickson et
al. [19] as a promising scheduler for SRT systems. G-FL
has provably better tardiness bounds than the better known
G-EDF algorithm. The variant C-FL [20], which partitions
tasks onto clusters of processors and runs G-FL within each
cluster, is often preferable in the presence of overheads.

We conducted overhead-aware experiments in which
each of EDF-os, EDF-fm, EDF-WM, and C-FL were com-
pared on the basis of schedulability and the tardiness bounds
they ensure. In order to determine the effect of overheads,
we implemented EDF-os in LITMUSRT [1] and measured
the same scheduler-specific overheads considered by Bas-
toni et al. [10]. Our modifications to LITMUSRT are avail-
able at [1]. We used an Intel Xeon L7455 system, which
has 24 cores on four physical sockets. The cores in each
socket share an L3 cache, and pairs of cores share an L2
cache. Overheads on the same machine were available for
EDF-fm and EDF-WM from the study in [10] and for C-
FL from the study in [20]. Cache-related preemption and
migration delays were also measured on this machine in
a prior study [8]. All of those prior measurements were
reused in the study here. We used these overheads in an
overhead-aware schedulability study involving randomly
generated task sets following the methodology in [10]. The
code used for schedulability tests is included with the online
appendix [4]. These experiments were conducted in order
to augment the study of Bastoni et al. by including EDF-os
(and also C-FL). It is beyond the scope of this paper to con-
duct a thorough evaluation of all relevant semi-partitioned
algorithms that have been proposed. (We note that the ex-
periments herein are not merely simulations; each tested
algorithm requires an actual kernel implementation so that
overheads can be measured.)

In our experiments, we randomly generated implicit-
deadline task sets, inflated the task system parameters to
account for average-case2 observed overheads, and com-

2In prior studies, e.g., [9, 10], average-case overheads were considered
when evaluating SRT schedulers, and worst-case overheads when evaluat-

puted the resulting schedulability—defined as the fraction
of generated systems for which bounded tardiness can be
guaranteed—and maximum tardiness bounds under each
tested algorithm. Task utilizations were generated using uni-
form, bimodal, and exponential distributions as in [10].
For uniform distributions, we considered a light distribution
where values were drawn from [0.001, 0.1], a medium distri-
bution where values were drawn from [0.1, 0.4], and a heavy
distribution where values were drawn from [0.5, 0.9]. For bi-
modal distributions, we drew values uniformly in the range
of either [0.001, 0.05] or [0.5, 0.9] with respective proba-
bilities of either 8

9 and 1
9 , 6

9 and 3
9 , or 4

9 and 5
9 , for light,

medium, and heavy distributions, respectively. For exponen-
tial distributions, we used a respective mean of 0.1, 0.25,
and 0.5 for light, medium, and heavy distributions, respec-
tively, and discarded any values that exceeded one. We gen-
erated periods uniformly from either a short (3 ms to 33
ms), moderate (10 ms to 100 ms), or long (50 ms to 250
ms) distribution.

We also considered utilization caps in the set
{1, 1.25, 1.5, . . . , 24}, and working set sizes (WSSs)
from 16 KB to 3072 KB. WSSs from [0, 256) KB were
considered in increments of 16 KB, from [256, 1024) KB
in increments of 64 KB, and from [1024, 3072] KB in
increments of 256KB.

We generated 100 task sets for each combination of pe-
riod distribution, utilization distribution, utilization cap, and
WSS. When generating each task set, we added tasks until
the total utilization exceeded the utilization cap, and then
removed the last task. We considered several variants of the
four tested schedulers, EDF-os, EDF-fm, EDF-WM, and
C-FL, yielding ten possibilities in total. We used cluster-
ing based on L3 cache boundaries for C-FL, resulting in
clusters of size six; this choice was made because C-FL
has overheads similar to clustered EDF (C-EDF), and [10]
used C-EDF with L3 cache boundaries as its standard of
comparison. (C-FL, which was developed after the publi-
cation of [10], has better tardiness bounds than C-EDF.)
For each tested scheduler, we considered cache-related pre-
emption and migration delays both for an idle system and
a system under load; considering both possibilities allows
conclusions to be drawn for systems with light and heavy
cache contention, respectively. Finally, because EDF-WM
was designed as a HRT scheduler, it may not behave cor-
rectly if overheads cause jobs to miss deadlines (specifi-
cally, such misses may cause a task to run in parallel with it-
self). Therefore, for EDF-WM, we also considered behavior
in the presence of worst-case observed overheads (denoted
with wc), as doing so is probably necessary in practice.

Schedulability depends on both WSS and the assumed
utilization cap. To avoid having to create three-dimensional
graphs, we use the metric of weighted schedulability from
[9]. Let S(U,W ) ∈ [0, 1] denote the schedulability of an
algorithm (after accounting for overheads) with utilization
cap (before overheads) U and WSSW , and letQ denote the
set of considered utilization caps. Weighted schedulability,

ing HRT schedulers.



S(W ), is defined as S(W ) =
∑

U∈Q U ·S(U,W )∑
U∈Q U . A conven-

tional utilization-based schedulability plot for a fixed WSS
collapses to a single point in a weight schedulability graph
that gives the total area under the conventional plot [9].

Due to space constraints, we present only a subset of
our results here—other results can be found in an online
appendix [4]. A typical result for weighted schedulability
is depicted in Fig. 7, which shows weighted schedulabil-
ity, with respect to WSS, for each algorithm under uni-
form medium utilizations and uniform moderate periods.3
Because all utilizations considered are no greater than 0.5,
EDF-fm has 100% schedulability before accounting for
overheads. EDF-os and EDF-fm have similar overheads,
so they are nearly indistinguishable from a schedulability
perspective, but both have higher schedulability than EDF-
WM or C-FL. Fig. 8 has the same axes as Fig. 7, but de-
picts a uniform heavy utilization distribution rather than a
uniform medium distribution. Because the utilization con-
straint for EDF-fm is no longer guaranteed to be satis-
fied, EDF-fm schedules very few task systems in this case.
However, EDF-os continues to exhibit the best weighted
schedulability of any considered algorithm. Overall, EDF-
os usually provided the best weighted schedulability of any
algorithm, although EDF-fm and EDF-WM sometimes pro-
vided small advantages for task systems with light utiliza-
tions.

Tardiness bounds are depicted with respect to utilization
cap (for a fixed WSS of 128 KB) in Fig. 9. For small uti-
lization caps, C-FL can guarantee negative lateness, which
leads to a tardiness bound of zero. Usually, fewer tasks are
migratory under EDF-os than under EDF-fm; as a result,
tardiness was usually drastically lower under EDF-os than
under EDF-fm, often very close to zero. Therefore, even
for task systems where EDF-fm and EDF-os yielded com-
parable schedulability, EDF-os was superior. Overall, C-
FL typically provided tardiness bounds between those of
EDF-fm and EDF-os, while EDF-WM provided zero tar-
diness (as it is a HRT scheduler), at the cost of the inabil-
ity to schedule many task sets. C-FL sometimes provided
smaller tardiness bounds than EDF-os for some task sys-
tems with small WSSs where migration overheads are rel-
atively small, but typically only EDF-WM yielded smaller
tardiness bounds than EDF-os.

Because EDF-WM is not boundary-limited, it might not
always interact well with synchronization protocols in the
presence of critical sections [15]. Therefore, in addition to
its typically better schedulability, EDF-os provides a sig-
nificant practical advantage over EDF-WM when synchro-
nization is needed. Moreover, as noted previously, the be-
havior of EDF-WM is not well-defined if systems are provi-
sioned assuming deadline misses are tolerable. Compared to
C-FL, EDF-os provides better schedulability and typically

3Under the experimental process followed in [10], “load” and “idle”
curves should really be displayed separately because they cannot be di-
rectly compared. For example, for certain WSSs, it is possible that under
load, cache-related overheads are lower, leading to improved schedulability
compared to the idle case, because no affinity with the cache is established.
We have combined these curves due to space constraints.
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Figure 7: Weighted schedulability for task systems with uniform
medium utilizations and uniform moderate periods.
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Figure 8: Weighted schedulability for task systems with uniform
heavy utilizations and uniform moderate periods.

provides lower tardiness bounds, and compared to EDF-fm,
EDF-os provides both better schedulability and lower tar-
diness bounds. Therefore, EDF-os represents a significant
improvement to the state-of-the-art for SRT scheduling.

6 Conclusion
We have closed a long-standing open problem by present-
ing EDF-os, the first boundary-limited semi-partitioned
scheduling algorithm that is optimal under the “bounded
tardiness” definition of SRT correctness. We have also dis-
cussed (in an online appendix [4]) optimal variants of EDF-
os in which implicit deadlines are not assumed and in which
algorithms other than EDF are used as the secondary sched-
uler. EDF-os and its analysis improve upon prior work on
EDF-fm by introducing two new key ideas: using some
static prioritizations to make the execution of migrating
tasks more predictable; and exploiting properties of worst-
fit decreasing task assignments to enable a migrating task to
be analyzed by “pretending” that all of its jobs execute on its
first processor. In experiments that we conducted, EDF-os
proved to be the best overall alternative from a schedulabil-
ity perspective while providing very low tardiness bounds.
Moreover, it has practical advantages over algorithms that
are not boundary-limited.

The only other optimal boundary-limited scheduling al-
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gorithms for SRT systems known to us are non-preemptive
global EDF (NP-G-EDF) [17] and global FIFO (G-
FIFO) [29] (which is also non-preemptive). For static sys-
tems, EDF-os is likely to be preferable in practice, because
the tardiness bounds we have established are much lower
than those known for NP-G-EDF and G-FIFO, and be-
cause semi-partitioned algorithms have lower runtime over-
heads than global ones [10]. On the other hand, for dynamic
systems, where task timing parameters (such as execution
budgets and periods) may change at runtime, NP-G-EDF
is likely to be preferable, as EDF-based global scheduling
tends to more amenable to runtime changes [14]. In con-
trast, the correctness of EDF-os relies crucially on how
tasks are assigned to processors, and redefining such assign-
ments on-the-fly does not seem easy.

As discussed in the online appendix [4], the conditions
we present here for bounded tardiness are not sufficient if
non-preemptive code regions exist. We would like to deter-
mine tight conditions that guarantee bounded tardiness in
such circumstances. Furthermore, a job splitting technique
as in [20] might be useful to reduce tardiness bounds, even
after accounting for the increased overheads resulting from
such a technique. For example, a task with Ci = 300 and
Ti = 1000 could have each job split into ten subjobs, result-
ing in a task with Ci = 30 and Ti = 100. We would like to
examine the effects of job splitting under EDF-os.
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