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Abstract

Graphics processing units (GPUs) are becoming increasingly important in today’s
platforms as their growing generality allows for them to be used as powerful co-
processors. In previous work, the authors showed that GPUs may be integrated into
real-time systems by treating GPUs as shared resources, allocated to real-time tasks
through mutual exclusion locking protocols. In this paper, an asymptotically optimal
k-exclusion locking protocol is presented for globally-scheduled job-level static-priority
(JLSP) systems. This protocol may be used to manage a pool of resources, such as
GPUs, in such systems.

1 Introduction

The widespread adoption of multicore technologies in the computing industry has prompted

research in a wide variety of computing fields with the goal of better understanding how

to exploit multicore parallelism for greater levels of performance. In the field of real-time

systems, multicore technologies have led to the revisiting of problems that have had well

understood uniprocessor solutions. This research has found that uniprocessor techniques are

often no longer valid or suffer from significant inefficiencies when applied directly to multi-

processor platforms. As a result, new algorithms for scheduling and synchronization and new

methods of analysis have been developed. However, the topic of k-exclusion synchronization

has only recently been considered for real-time multiprocessor applications [5]. k-exclusion

locking protocols can be used to arbitrate access to pools of similar or identical resources,
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such as communication channels or I/O buffers. k-exclusion extends ordinary mutual exclu-

sion (mutex) by allowing up to k tasks to simultaneously hold locks (thus, mutual exclusion

is equivalent to 1-exclusion). In this paper, we present a new protocol for implementing

k-exclusion locks in multiprocessor real-time systems.

The commonality of resource pools is enough to motivate our investigation of k-exclusion

protocols for such systems. However, we are specifically driven to study such protocols due

to their application to another new technology: general-purpose computation on graphics

processing units (GPGPU). In prior work, we showed that mutual exclusion locks may be

used to integrate individual GPUs into real-time multiprocessor systems.

The use of mutual exclusion locks naturally complements the state of current GPU tech-

nology and resolves many technical challenges arising from both hardware and software

constraints [9], thus allowing guarantees on predictable execution as required by real-time

systems. For example, current technology does not allow the preemption of program code

executing on a GPU. Thus, once a task has commenced using a GPU, it must finish using

the GPU before another task may make use of it. This can easily result in priority inversions

with respect to CPU scheduling. From this perspective, there is little to distinguish the

GPU, which is an I/O device, from a traditional resource. The use of a real-time locking

protocol may be used to bound the durations of priority inversions.

In addition to the fundamental limitations imposed by non-preemption, GPUs (because

they are I/O devices) are managed by closed-source device drivers that are currently not

designed for real-time applications. This introduces a number of challenges [9]. However, the

use of mutual exclusion locks to arbitrate access to a GPU prevents the closed-source driver

from invoking its own resource arbitration mechanisms (such as unbounded spinning on the

CPU). Thus, the use of real-time mutual exclusion locks with GPUs simultaneously addresses

issues caused by non-preemption and largely prevents the GPU driver from introducing

non-real-time behaviors.
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This resource-based methodology can be extended to systems with multiple GPUs through

the use of k-exclusion locks to protect pools of GPU resources. Such an approach may maxi-

mize GPU utilization as it avoids the need to statically assign real-time tasks to use individual

GPUs. In this paper, we present an asymptotically optimal k-exclusion protocol that can

be used to realize this approach in globally-scheduled real-time systems, where optimality

is defined in terms of the number of resource requests that may block one another. At this

time, we see GPU computation to be more relevant to soft real-time computing than hard

real-time computing, due to difficult unresolved timing analysis issues affecting the latter on

multicore platforms. Thus, our focus on global scheduling is motivated by the fact that a

variety of global schedulers are capable of ensuring bounded deadline tardiness in sporadic

task systems with no utilization loss [14], despite the Dhall effect [8]. Such schedulers are

particularly well-suited for supporting soft real-time workloads. However, this attention to

soft real-time applications does not preclude the use of the locking protocol presented in this

paper in systems with hard real-time constraints.

Prior Work. k-exclusion locking protocols for real-time systems have been investigated

before. Chen [6] presented techniques to adapt several common uniprocessor mutex pro-

tocols to derive uniprocessor k-exclusion locks. However, the use of such techniques in a

multiprocessor environment requires that tasks and resources be statically bound to individ-

ual processors. This static partitioning may place undesirable limits on maximum system

utilization.

Much more recently, Brandenburg et al. presented an extension to the O(m) Locking

Protocol (OMLP) to support k-exclusion locks on cluster-scheduled multiprocessors [5].1 The

Clustered k-exclusion OMLP (CK-OMLP) is asymptotically optimal and may be applied

to globally-scheduled systems (since a globally-scheduled system is a degenerate case of a

1To the best of our knowledge, this is the first work investigating the k-exclusion problem in globally-
scheduled real-time multiprocessor systems.
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cluster-scheduled system where there is only one cluster), but under it, real-time tasks not

requiring one of the k resources may still experience delays in execution. These delays are

artifact behaviors that are required in clustered scheduling, owing to the fact that priorities

between clusters are not directly comparable. In order to bound blocking time between

clusters, a task may be required to donate its priority to another task instead of being

scheduled itself. Hence, any task can experience delays in execution. This behavior is not

strictly necessary under global scheduling. However, delays become unbounded, even in the

global case, if these behaviors are removed. Delays caused by the CK-OMLP may not be

particularly harmful, in terms of schedulability, when the protocol is used to protect resources

with short protection durations (as may be the case with internal data structures), but may

be extremely detrimental in systems using GPUs. This is due to the fact that protection

durations (i.e., critical section lengths) for GPU resources may be very long, on the order of

tens of milliseconds to even several seconds [9]. Thus, it is desirable to develop a k-exclusion

protocol for globally-scheduled systems that does not affect the execution of non-GPU-using

tasks. Note that such a protocol can be applied in a clustered setting if GPUs are statically

allocated to clusters (in which case, clusters can be scheduled independently).

To find inspiration for an efficient k-exclusion locking protocol for real-time systems,

one may also look at k-exclusion protocols from the distributed algorithms literature, where

research has been quite thorough (see, e.g., [1, 17]). However, such protocols were designed

for the use in throughput-oriented systems for which predictability is not a major concern.

The use of resource locks is not the only approach that may be taken to integrate GPUs

into a real-time system. A heterogeneous processor-scheduling algorithm may schedule dis-

similar processors. However, existing approaches, such as [2, 13, 16], are problematic in

multi-GPU systems due to one or more of the following constraints: (i) they cannot account

for non-preemptive GPU execution; (ii) they require that tasks be partitioned among dif-

ferent types of processors yet our GPU-using tasks must make use of both CPU and GPU
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processors; (iii) they statically assign GPU-using tasks to GPUs; (iv) they place restrictions

on how GPUs may be shared among tasks; and (v) they place limits on the number of CPUs

and GPUs. Heterogeneous processor-scheduling approaches may better express the parallel

execution of CPU and GPU code (which is not captured when GPUs are treated as shared

resources instead of processors), though they may place too many constraints on some sys-

tems. Of course, further research in this direction is clearly merited, though we leave this to

future work.

Contributions. In this paper, we present a new real-time k-exclusion locking protocol

for globally-scheduled real-time multiprocessor systems. This protocol is asymptotically

optimal under suspension-oblivious schedulability analysis [4], where optimality is defined

in terms of the number of resource requests that may block one another. Our protocol is

designed with real-time multiprocessor systems with multiple GPUs in mind. This leads us

to use techniques that (i) minimize the worst-case wait time of a task for a shared resource,

as this helps meet timing constraints; (ii) do not cause non-resource-using tasks to block;

(iii) yield beneficial scaling characteristics of worst-case wait time with respect to resource

pool size, since pool size directly affects system processing capacity in the GPU case; and

(iv) increase CPU availability through the use of suspension-based methods, which aids in

meeting timing constraints in practice. While our focus is on GPUs as resources, our protocol

may still be used to efficiently manage pools of generic resources, offering improvements over

the CK-OMLP on globally-scheduled systems.

Organization. The rest of this paper is organized as follows. In Sec. 2, we describe the

task model upon which our locking protocol is built. In Sec. 3, we discuss what it means for a

locking protocol to be “optimal” in a globally-scheduled system and how it might be achieved.

In Sec. 4, we discuss how even an informed approach can lead to sub-optimal characteristics

in a k-exclusion locking protocol. We also present our k-exclusion locking protocol, the
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O-KGLP, and prove that it is asymptotically optimal in the same section. In Sec. 5, we present

more detailed analysis to derive tighter blocking bounds to improve schedulability analysis.

In Sec. 6, we present results from schedulability experiments, comparing the performance

of the O-KGLP to other k-exclusion locking protocols. We end in Sec. 7 with concluding

remarks and a discussion of future work.

2 Task Model

We consider the problem of scheduling a mixed task set of n sporadic tasks, T = {T1, . . . , Tn},

on m CPUs with one pool of k resources. A subset TR ⊆ T of the tasks requires use

of one of the system’s k resources. We assume k ≤ m since there is little benefit under

suspension-oblivious analysis to allowing k simultaneous resource holders when k > m [3].

A job is a recurrent invocation of work by a task, Ti, and is denoted by Ji,j where j

indicates the jth job of Ti (we may omit the subscript j if the particular job invocation is

inconsequential). Each task Ti is described by the tuple Ti(ei, li, di, pi). The worst-case CPU

execution time of Ti, ei, bounds the amount of CPU processing time a job of Ti must receive

before completing. The critical section length of Ti, li, denotes the maximum length of time

task Ti holds one of the k resources. For tasks Ti /∈ TR, li = 0. The maximum critical section

length of any task Ti ∈ T is denoted by lmax. The relative deadline, di, is the time after

which a job is released by when that job should complete. Arbitrary deadlines are supported

in this work, i.e., a relative deadline may take any positive value. The period of Ti, pi, is

the minimum separation time between job invocations for task Ti. The utilization of Ti, ui,

is defined as ui , ei/pi. Task set utilization is defined by U ,
∑

Ti∈T ui.

We say that a job Ji is pending from the time of its release, ai, to the time it completes.

A pending job Ji is ready if it may be scheduled for execution. Conversely, if Ji is not ready,

then it is suspended. Throughout this paper, we assume that the tasks in T are scheduled

using a job-level static-priority (JLSP) global scheduler. In such a scheduler, the priority

6



of a job is determined at release time and remains fixed until the job completes. Also,

because the scheduler is global, jobs may be scheduled on any available system processor.

The global earliest-deadline-first (G-EDF) scheduling algorithm is one such JSLP global

scheduler. Under G-EDF, the job-level static priority of any job is its absolute deadline,

ai + di, and jobs are prioritized by earliest deadline and are scheduled globally.

A job Ji,j (of a task Ti ∈ TR) may issue a resource request Ri,j for one of the k resources

(as with jobs, we may omit the subscript j if the particular request invocation is inconse-

quential). Requests that have been allocated a resource (resource holders) are denoted by

Hx, where x is the index of the particular resource (of the k) that has been allocated. We

assume that a job may not make nested resource requests, and thus may only hold one of

the k resources at a time. Requests that have not yet been allocated a resource are pending

requests. Resource holding and pending requests together, are incomplete requests. Moti-

vated by common GPU usage patterns, we assume that a job requests at most one resource

once per job, though the analysis presented in this paper can be generalized to support mul-

tiple, non-nested, requests.2 We let bi denote an upper bound on the duration of “priority

inversion blocking,” further defined in Sec. 3, by which a job may be blocked.

In this paper, we consider locking protocols where a job Ji suspends if it issues a request

Ri that cannot be immediately satisfied. In such protocols, priority-sharing mechanisms are

commonly used to ensure bounded blocking durations. Priority inheritance is a mechanism

where a resource holder may temporarily assume the higher priority of a blocked job that

is waiting for the held resource. Another common technique is priority boosting, where a

resource holder temporarily assumes a maximum system scheduling priority. The priority of

a job Ji in the absence of priority-sharing is the base priority of Ji. The priority with which

Ji is scheduled is the effective priority of Ji.

2Though the asymptotically optimal locking protocol we present in this paper supports multiple, non-
nested, requests, we omit this generalization in analysis to prevent notation from becoming too cumbersome.
However, please see [3] for a generalized framework that may be applied to the analysis presented here.
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3 Definition of Optimality

Generally speaking, a job of a real-time task is blocked from execution when it attempts to

acquire a resource from some set of resources of which there are none currently available;

the job must wait until said resource becomes available. Schedulability analysis requires

that these blocking durations be of bounded length to ensure that timing constraints, such

as deadline requirements, are met. In [4], this definition of blocking was refined for JLSP

globally-scheduled multiprocessor systems, allowing for a definition of optimality in blocking

duration to be made.

It was observed that a real-time job is “blocked” only if it waits for a resource when it

would otherwise be scheduled. When a job lacks sufficient priority to be scheduled, it makes

no difference in terms of analysis if it is suspended implicitly by the scheduler or if it is

suspended while waiting for a resource. The effect is the same: the job is not scheduled.

It is only the duration of time that a job would be scheduled, but otherwise cannot due to

waiting, that must be considered by analysis. In such cases, there is a priority inversion

since a lower-priority job may be scheduled in the blocked job’s place. Thus, this refined

definition of blocking is termed priority inversion blocking, or pi-blocking. The method to

bound the time a job may experience pi-blocking depends upon the scheduling algorithm

used and its analysis.

Assuming jobs suspend from execution (instead of busy-waiting) while waiting for a re-

source, the analytical method used to determine the effect of pi-blocking may be suspension-

oblivious or suspension-aware. Suspension-oblivious analysis treats delays caused by pi-

blocking as additional execution time, factoring into task utilization and thus into task set

utilization as well. This treatment converts a set of dependent tasks (i.e., tasks that share

resources) into a task set of independent tasks with greater execution requirements. This is a

safe conversion, but may be pessimistic if pi-blocking delays are long. In contrast, suspension-

aware analysis does not treat pi-blocking delays as processor demand. Unfortunately, most
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Figure 1: Job J3 does not experience pi-blocking within the interval [t1, t2] under suspension-
oblivious analysis for this two-processor system scheduled by G-EDF. Job J2 is scheduled within
this interval while job J1 is analytically considered to be scheduled. Job J3 is not pi-blocked because
it does not have sufficient priority to be scheduled (analytically), whether it waits for a resource or
not.

known multiprocessor schedulability analysis techniques for JLSP global schedulers, such as

G-EDF, that account for blocking delays are suspension-oblivious.

It was shown in [4] that under suspension-oblivious analysis, a job Ji is not pi-blocked if

there exist at least m pending higher-priority jobs, where m is the number of system CPUs.

Because suspensions are analytically treated as execution time under suspension-oblivious

analysis, even suspended jobs of higher-priority can eliminate priority inversions with respect

to lower-priority jobs. If it can be shown in the analysis of a locking protocol that there exist

at least m higher-priority suspended jobs that are waiting for a resource, then lower-priority

jobs also waiting for a resource do not experience any pi-blocking. Such an example is

illustrated in Fig. 1 for a two-processor system scheduled under G-EDF with a single shared

resource. As depicted, the presence of pending jobs J1 and J2 within the interval [t1, t2]

prevents J3 from incurring any pi-blocking under suspension-oblivious analysis.

9



The OMLP, as well as the locking protocol presented in this paper, are specifically de-

signed to exploit this characteristic of suspension-oblivious analysis. Through this analysis,

it was further shown in [4] that a mutex locking protocol may be considered asymptotically

optimal under suspension-oblivious analysis if the maximum number of requests of other

tasks that cause pi-blocking is O(m) per resource request—a function of fixed system re-

source parameters and not the number of resource-using tasks. In a k-exclusion locking

protocol, we may hope to do better. Intuitively, we would like to obtain a bound of O(m/k),

so pi-blocking scale with the inverse of k (another fixed system parameter). Indeed, the

CK-OMLP achieves this bound when there exists only one pool of k resources, as is the case

with our GPU system. However, as stated earlier, the CK-OMLP is not suitable for our use

on a JLSP globally-scheduled system with GPUs due to the excessive blocking costs charged

to non-GPU-using tasks. Still, any efficient k-exclusion locking protocol we develop for a

JLSP globally-scheduled system should be O(m/k).

By establishing that Ω(m/k) maximum pi-blocking is sometimes unavoidable in k-exclu-

sion resource arbitration under suspension-oblivious analysis, it follows that any k-exclusion

locking protocol with O(m/k) pi-blocking is asymptotically optimal. We can show an Ω(m/k)

pi-blocking lower bound using the same approach taken by Brandenburg et al. to establish

an Ω(m) lower bound for mutual exclusion under suspension-oblivious analysis (Lemma 1

in [4]).

Lemma 1. There exists an arrival sequence for a task set such that, under suspension-ob-

livious analysis, max1≤i≤n{bi} = Ω(m/k) under any k-exclusion locking protocol and JLSP

scheduler.

Proof. Without loss of generality, let T (n) denote a task set of n identical tasks that share

one pool of k resources protected by an arbitrary k-exclusion lock such that ei = 1, pi = 2n,

and li = 1 for each Ti, where n ≥ m ≥ k ≥ 2. Assume that n is an integer multiple of

m, and m is an integer multiple of k. Consider the schedule resulting from the following
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periodic arrival sequence: each Ji,j is released at ai,j = (di/me−1) ·m+(j−1) ·pi, and issues

one request Ri,j immediately upon release. Jobs are released in groups of m and each job

requires one of the k resources protected by the k-exclusion lock for its entire computation.

A resulting G-EDF schedule is depicted in Fig. 2.

There is a total of n/m groups ofm tasks each. Each group of jobs of tasks {Tg·m+1, . . . , Tg·m+m},

where g ∈ {0, . . . , n/m − 1}, issues m concurrent requests for a resource. Since only

k resources may be used simultaneously, any locking protocol must impart some order,

and thus there exist k jobs in each group that incur d time units of pi-blocking for each

d ∈ {0, . . . ,m/k − 1}. Hence, for each g,
∑g·m+m

i=g·m+1 bi ≥ k ·
∑m/k−1

i=0 i = Ω(m2/k), and thus,

across all groups,

n∑
i=1

bi =
n/m−1∑
g=0

g·m+m∑
i=g·m+1

bi

= n
m
· Ω
(

m2

k

)
= Ω

(
nm
k

)
,

(1)

which implies max1≤i≤n{bi} = Ω(m/k).

By construction, the schedule does not depend on G-EDF scheduling since no more than

m jobs are pending at any time.

Observe that when k = 1 (mutual exclusion), the proof for Lemma 1 here matches that

of Lemma 1 in [4].

4 Locking Protocols

Developing an efficient k-exclusion protocol for JLSP globally-scheduled systems is a non-

trivial process. Through the development of an O(m/k) k-exclusion locking protocol, we

found that some initial assumptions that we made did not hold. We will now explain the

development process we went through to arrive at an asymptotically optimal k-exclusion

11



T
1

T
2

T
3

T
4

T
5

T
6

T
7

T
8

suspended, pi-blocked

scheduled with resource completionrelease
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Figure 2: Depiction of Lemma 1. The illustrated example shows a G-EDF schedule of T (n) for
n = 8, m = 4, and k = 2, and thus g ∈ {0, 1}. Jobs request a resource immediately upon release.
The first group of jobs is released at time 0; the second group is released at time 4. Each group

incurs 0 + 0 + 1 + 1 = k ·
∑m/k−1

i=0 i total suspension-oblivious pi-blocking.
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locking protocol, which we present thereafter.

4.1 A Single Queue

A classic result from queuing theory states that a single wait-queue is the most efficient

method for ordering resource requests for a pool of resources [15]. Without presenting the

details of this result, we may come to understand this to be true intuitively. Consider the case

where a separate queue is used for each resource. There may exist an “unlucky” request, Ri,

that is enqueued behind a job that uses a resource for a very long duration. In the meantime,

other requests, including those made after Ri, are quickly processed on the other queues,

yet the unlucky request continues to wait. To make a colloquial analogy, this is much like

the frustration one may feel at the checkout line in a grocery store. You may find yourself

stuck behind someone who needs a dozen price checks on their items, while you watch others

quickly pass through the remaining lines. It is impossible for a request to be forced to wait

on a long-running job when a single queue is used. Hence, the single queue reduces overall

wait time for all participants.

The Bank Algorithm [12] (not to be confused with Dijkstra’s Banker’s Algorithm) is a

non-real-time k-exclusion locking protocol built upon the single-queue principle. It is so

named due to its likeness to the single queue commonly used at a bank. Suppose we built

a real-time locking protocol based upon the Bank Algorithm. There would be one FIFO

queue for k resources. We can ensure no pending request is blocked unboundedly through

priority inheritance. For our real-time Bank Algorithm, let each of the k resource holders

(if that many exist) inherit a unique priority, if that priority is greater than its own, from

a distinct request in the set of the k highest-priority pending requests (if that many exist).

Thus, at least one resource holder is scheduled with an effective priority no less than that of

any pending request. In the worst-case scenario for the highest-priority pending request, Ri,

all pending resource requests ahead of Ri are serialized through a single resource, while the
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RlRj

Figure 3: Pending requests ahead of Ri may be serialized through a single resource when a single
wait-queue is used. Depicted above, Ri is the highest-priority request and resource holder H1 inherits
Ri’s priority. The remaining k − 1 resource holders inherit priority from pending requests with
priorities less than Ri’s. The resource holders that do not inherit from Ri are not guaranteed to
release their resource before Ri acquires one, thus all pending requests ahead of Ri may be forced to
serialize on the resource held by H1. In the worst-case, Ri may have to wait for n− k requests to
complete before obtaining a resource.

remaining k − 1 resources remain held. This may occur since these k − 1 resource holders

do not inherit a priority from Ri and may not be scheduled. This case is depicted in Fig. 3,

where Ri may be pi-blocking by O(n−k) other requests. With a little work, it is possible to

combine methods from the Bank Algorithm and the OMLP to arrive at an O(m− k) locking

protocol. However, this still falls short of our desired optimal bound of O(m/k).

In a non-real-time context, it is often implicitly assumed that all resource holders execute

simultaneously. However, this guarantee cannot be maintained in a real-time system with

n > m since the priority of the highest-priority job can only be inherited by a single resource

holder.3 It appears that for traditional sporadic real-time systems, a single queue approach

will not yield an asymptotically optimal bound for worst-case pi-blocking time because it is

possible for resource requests to become serialized on a single resource. We must develop

a k-exclusion locking protocol where execution progress can be guaranteed for all resource

holders.

3We have considered algorithms where a single priority is inherited by multiple resource holders. However,
we found that this breaks the sporadic task model since multiple jobs may execute concurrently with the
same inherited priority. Different schedulability tests are required to analyze such a method.
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4.2 An Optimal k-Exclusion Global Locking Protocol

The Optimal k-Exclusion Global Locking Protocol (O-KGLP) is a k-exclusion locking protocol

that achieves the desired O(m/k) bound. In the previous section, we noted that a straight-

forward application of OMLP techniques to the k-exclusion problem results in Ω(m − k)

pi-blocking time. While the pi-blocking under these techniques is a function of fixed system

parameters instead of task set size, this pi-blocking still does not meet our definition of

optimality under k-exclusion and do not fully exploit the greater parallelism offered by the

existence of k resources. The O-KGLP offers better scaling behavior with respect to both the

number of processors and resources.

Structure. The O-KGLP uses k + 1 job queues to organize resource requests. k FIFO

queues, of length dm/ke, are assigned to each of the k resources (without loss of generality,

we assume k evenly dividesm for the remainder of this section). An additional priority queue

(ordered by job priority) is used if there are more than m jobs contending for the use of a

protected resource. The priority queue holds the “overflow” from the fixed-capacity FIFO

queues. We denote the FIFO queues as FQx and the priority queue as PQ. Fig. 4 depicts the

queue structure of the O-KGLP and inheritance relations derived from the following rules.

Rules. Let queued(t) denote the total number of queued jobs in the PQ and FQs at time

t. The rules governing queuing behavior and priority inheritance are as follows:

O1 When job Ji requests a resource at time t0,

O1.1 Ri enqueues on the shortest FQx if queued(t0) < m, else

O1.2 Ri is added to PQ.

O2 All queued jobs are suspended except the jobs at the heads of the FQs, which are

resource holders. All resource holders are ready to execute.
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Figure 4: Queue structure and priority inheritance relations used by the O-KGLP.

O3 The effective priority of a resource holder, Hx, at time t is inherited from either the

highest-priority request in FQx, or from a distinct request among the k highest-priority

pending requests in the PQ, whichever has greater priority. Each resource holder claims a

distinct request (if available) from the k highest-priority pending request in PQ, whether

or not Hx inherits priority from it.

O4 When Hx frees a resource, its request is dequeued from FQx and the next request in

FQx, if one exists, is granted the newly available resource.4 Further, the claimed distinct

request (if it exists) from among the k highest-priority requests in the PQ is moved to

FQx.

Let us define several simplifying identifiers. Let PQHP (for “high priority”) denote the

set of min(k, |PQ|) highest-priority pending requests in the PQ. Let Ux denote the distinct

(unique) request in PQHP associated with Hx by Rule O3; note that no two resource holders

4As an implementation optimization, if FQx is left empty by the dequeue of Hx, then the highest-priority
pending request in the remaining FQs may be “stolen” (removed from its queue and enqueued onto FQx)
and granted the free resource, if such a request exists. This technique may reduce the observed average time
jobs are blocked in practice, but does not improve upon the worst case.
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may claim the same request in PQHP . Finally, let PQLP (for “low priority”) denote the set

of requests in PQ that are not in PQHP .

In our initial analysis of the O-KGLP, we make the following assumption:

A1 Ux is never evicted from PQHP by the arrival of new, higher-priority, requests.

This important property is guaranteed by ensuring that Ux always has a sufficient effective

priority to remain in PQHP . The mechanisms used to realize Assumption A1 are explained

in detail later in this paper.

Before bounding the worst-case pi-blocking time a job using the O-KGLP may experience,

let us define the term progress. We say that a pending request Ri makes progress at time

instant t if every Hx, ahead of Ri on any path through the queues that Ri may take before

obtaining a resource, is scheduled with an effective priority no less than that of Ri. If Ri

is pi-blocked for a bounded time bi, then Ri is no longer pi-blocked after bi time units of

progress.

Progress is ensured with relative ease through priority sharing mechanisms (inheritance,

boosting, etc.) in common locking protocols where a request can only follow a single path.

However, progress is more difficult to ensure when more than one path may be taken, as is

the case in the O-KGLP due to its use of k FQs. We now explain how this is done in the

O-KGLP.

Blocking Analysis. Ji may be pi-blocked during three different phases as its request

traverses the queues in the O-KGLP. The first phase is the duration from when Ri enters

the PQ until it joins the set PQHP . The second phase takes place from the time Ri joins

PQHP to the time it is moved to an FQ. Finally, the last phase is measured from the time

Ri enqueues on an FQ to the time Ri reaches the head of this FQ. We denote pi-blocking

in each phase as bLQ , bHQ , and bFQ , respectively. The worst-case time Ji may be pi-blocked

using the O-KGLP is equal to the sum of the maximum pi-blocking durations in each phase:
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Figure 5: Job Ji may experience pi-blocking in three time intervals: first in the interval [t0, t1),
from when Ji’s request, Ri, enters the PQ to when the request joins the set PQHP; next, in the
interval [t1, t2), which is the duration Ri is in PQHP; and finally, in the interval [t2, t3), which is
the time Ri must wait in an FQ until it receives a resource.

bi = bLQi + bHQ
i + bFQi . These phases are depicted in Fig. 5.

The number of tasks,
∣∣TR

∣∣, using the same O-KGLP lock determines whether a job may

experience blocking in each of these three phases. For example, if
∣∣TR

∣∣ ≤ k, then no job

is ever pi-blocked (bi = 0) since every request can be trivially satisfied simultaneously. If

k <
∣∣TR

∣∣ ≤ m, then a job only experiences bFQ pi-blocking since all possible simultaneous

requests can be held in the FQs. Similarly, bFQ and bHQ contribute to total pi-blocking if

m <
∣∣TR

∣∣ ≤ m+ k. A job can only experiences pi-blocking in every phase if
∣∣TR

∣∣ > m+ k.

Let us compute the worst-case pi-blocking a job Ji may experience starting with bFQ and

working our way backwards through the queue structures.

Lemma 2. A job Ji may be pi-blocked by at most min
(

m
k
− 1,

⌊ ∣∣TR
∣∣−1

k

⌋)
lower-priority jobs
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while enqueued on FQx.

Proof. Progress is ensured for any Ri in FQx since Hx is always scheduled with an effective

priority no less than Ji’s by Rule O3. Thus, bFQi can be bounded by the total time required

to complete every request ahead of Ri in FQx.

In the worst case, while Ri is on FQx, it may be preceded by m
k
− 1 requests before it

reaches the head of FQx and Ji receives a resource. However, if k <
∣∣TR

∣∣ ≤ m, then Ji may

be pi-blocked by fewer requests. In this case, there may be as many as
∣∣TR\{Ti}

∣∣ requests
already in the FQs when Ji issues Ri at time t0. Load-balancing these preceding requests

evenly across the k FQs (by Rule O1.1), the shortest FQ at time t is at most
⌊ ∣∣TR\{Ti}

∣∣
k

⌋
in

length since the length of any FQ may only deviate from the average FQ length by more

than one. Thus,
⌊ ∣∣TR

∣∣−1

k

⌋
upper-bounds the number of lower-priority jobs that may pi-block

Ji when k <
∣∣TR

∣∣ ≤ m.

Lemma 3. Ji experiences pi-blocking while Ri is queued on FQx of at most

bFQ
i = min

(
m

k
− 1,

⌊∣∣TR
∣∣− 1

k

⌋)
· lmax. (2)

Proof. Ji experiences worst-case pi-blocking when the jobs that pi-block it have the longest

possible critical sections. By Lemma 2 and by upper-bounding critical section lengths with

lmax , the proof follows.

Lemma 4. Ji may only be pi-blocked for the duration of one critical section while its request

is in the set PQHP. Thus,

bHQ
i = lmax (3)

in the worst case.

Proof. By Assumption A1, a request Ri cannot be evicted from PQHP . By Rule O3, there

exists some FQx such that Hx is scheduled with an effective priority no less than that of Ji
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while Ri is in PQHP , thus progress is guaranteed. Further, Ri will be removed from the PQ

and placed onto FQx immediately after Hx releases its resource. It may take up to lmax time

units until Hx complete its critical section, thus bHQ
i = lmax .

We now present a derivation of bLQi by placing an upper bound on the number of lower-

priority jobs that may pi-block Ji while Ri is in the PQ and not in PQHP . Recall from Sec. 3

that a job is not pi-blocked at any time instant (under suspension-oblivious analysis) if there

exist at least m pending higher-priority jobs.

Lemma 5. Progress is guaranteed for any request, Ri, pending in PQLP.

Proof. Assumption A1 ensures that each Ux ∈ PQHP has a priority no less than that of

Ri ∈ PQLP . Thus, by Rule O3, each Hx is scheduled with an effective priority greater than

Ri while Ri ∈ PQLP . Hence, progress for Ri is guaranteed for any path that Ri may take,

even though the particular FQ Ri will traverse is yet to be determined.

Lemma 6. Job Ji, with request Ri ∈ PQLP, is pi-blocked for at most m
k
· lmax time. Thus,

bLQi =
m

k
· lmax. (4)

Proof. A job is not pi-blocked under suspension-oblivious analysis when there exist at least

m other pending higher-priority jobs. By Lemma 5, all the resource holders in the FQs are

scheduled with an effective priority at least that of Ri while Ri ∈ PQLP . Consequently, all

potential lower-priority requests in the FQs when Ji issued Ri at time t0 (see Fig. 5) will be

satisfied in at most m
k
· lmax time if Ri continues to remain in PQLP . If Ri is in PQLP after

time t0+
m
k
· lmax (which is possible since new requests with a higher priority than Ri may be

issued before Ri is moved to PQHP), then, by Rule O4 (and Assumption A1), all m requests

in the FQs must have a higher priority than Ri, and Ji is no longer pi-blocked.

It may appear that we have arrived at an O(m/k) k-exclusion locking protocol since each

component of bi is either O(m/k) (bFQi and bLQi ) or O(1) (bHQ
i ). However, our proofs for

20



FQ1

FQx

FQk

H1

Hx

Hk

...

...

PQHP

...

...

Ri

FQ1

FQx

FQk

H1

Hx

Hk

...

...

PQHP

...

...

Ri

PQLP

Rh

Rh

Rh

FQ1

FQx

FQk

H1

Hy

Hk

...

...

PQHP

...

...

Ri Rh

Rh

Rh

FQ1

FQx

FQk

H1

Hy

Hk

...

...

PQHP

...

...

Ri Rh

Rl

Rl

Rh

Rh

FQ1

FQx

FQk

H1

Hy

Hk

...

...

PQHP

...

...

Ri Rh

Rl

Rl

Rl

Rl

Rh

Rh

FQ1

FQx

FQk

H1

Hy

Hk

...

...

PQHP

...

...

Ri

PQLP

Rh

Rh

Rh

Rh

Rl

Rl

Rh

Rh

time t0

time t2

time t4 time t5

time t3

time t1

Figure 6: Unbounded pi-blocking for bHQ
i if evictions from PQHP are allowed. t0: Ri is in PQHP

and Hx inherits the priority of Ri. t1: Ri is evicted from PQHP by the arrival of k higher-priority
requests. t2: Resource holder Hy completes; Ri rejoins PQHP. t3: All resource holders other than
Hy complete. t4: Once again, all resource holders other than Hy complete. t5: Ri is evicted once
again from PQHP by the arrival of k higher-priority requests. There are lower-priority requests in
FQs (except for FQy, which may through repetitions of this scenario), so we cannot bound the time

Ri is pi-blocked while in PQHP. 21



these bounds are founded upon the assumption that each request, once in PQHP , remains

so until it is moved to an FQ. Our bound for bHQ
i breaks if we allow evictions. Consider the

following scenario, which is depicted in Fig. 6.

Suppose at time t0, Hx has just received a resource and Hx inherits the priority of Ri,

the highest priority request in the PQ. At time t1 = t0 + (lmax − ε0), k new requests with

priorities greater than Ri are issued, and Ri is evicted from PQHP . At time t2 = t1 + ε1, Hy

completes and releases its resource. Consequently, one of the new requests is moved to FQy

and Ri rejoins the set PQHP . By Rule O3, Ri is claimed by Hy, though Hy does not inherit

the priority of Ri since the newer request that just entered FQy has greater priority. At this

point, the lmax − ε progress Ri had accrued before its eviction from PQHP has been lost.

Still, perhaps the number of times Ri can be evicted, while Ri remains pi-blocked, can

be bounded by an O(m/k) term in a similar fashion to bLQi . After all, it seems reasonable

that higher-priority requests should be able to enter the FQs ahead of Ri. Unfortunately,

so may lower-priority request. Continuing the scenario above (soon after Ri has rejoined

PQHP), at time t3 = t2 + ε2 all resource holders except Hy complete and the requests of

PQHP\{Ri} (which have higher priority than Ri) are moved to the FQs, and requests with

priorities less than Ri join PQHP . At time t4 = t3+ε3, once again all resource holders except

Hy complete, only now lower-priority requests are moved onto the FQs and Ri remains in

PQHP . Finally, at time t5 = t4+ε4, another batch of new k higher-priority requests is issued,

evicting Ri from PQHP once again. This cycle may repeat with requests of lower priority

than Ri entering any FQ, so we cannot prove the presence of m pending higher-priority jobs

as is required to end pi-blocking under suspension-oblivious analysis.

It could be reasonably suggested that requests from PQHP should be dequeued in priority-

order to avoid lower-priority requests from preceding Ri. However, doing so can result in

an unbounded scenario when
∣∣PQHP

∣∣ < k. Such a scenario is illustrated in Fig. 7. Suppose

there is a single request Rl in PQHP and resource holder Hx inherits Rl’s priority at time t0.
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Figure 7: Dequeueing requests from PQHP in priority-order (in violation of Rule O4) can lead to
starvation. At time t0, Hx inherits priority from Rl. At time t1, R

l has made lmax − 2ε time units
of progress. Also at time t1, a higher priority request Rh enters PQHP. At time t2, Hx completes
and Rh is dequeued from the PQ (priority-order) and moved to FQx. The progress made by Rl (now
lmax − ε time units) has been lost. Progress made by Rh (ε time units) could be given to Rl, but it
is not enough to compensate for the lost progress. This scenario may repeat indefinitely, resulting
in the starvation of Rl.

Further suppose at time t1 = t0 + lmax − 2ε, Rl has made lmax − 2ε time units of progress.

Also at time t1, a higher-priority request Rh is issued and joins PQHP , and resource holder

Hy inherits R
h’s priority. Soon thereafter, at time t2 = t0+ lmax −ε, Hx releases its resource,

causing Rh to be dequeued from the PQ (priority-order) and moved to FQx. The progress

made by Rl (now lmax − ε time units) has been lost. Further, the brief progress Rh made

while in PQHP , t2 − t1 = ε time units, cannot be transferred to Rl to fully compensate Rl

because Rh arrived after Rl.5 This scenario can recur and Rl starves in PQHP .

Merely disallowing PQHP evictions will not resolve these issues since doing so trades one

k-exclusion problem (resources) for another (the k positions in PQHP). Since we cannot

disallow the arrival of new higher-priority requests, another mechanism is required to main-

tain our O(1) bound for bHQ
i . We will introduce three additional rules inspired by priority

donation to maintain A1.

Developed by Brandenburg et al. [5], priority donation is priority inheritance technique

that allows for the bounding of pi-blocking on cluster-scheduled systems. Under priority

donation, jobs with higher priorities may temporarily suspend and donate their priority to

5This transferal of progress could be made by forcing Hy to claim Rl from PQHP (Rule O3).
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resource holders. The technique uses nine rules to achieve bounded pi-blocking on cluster-

scheduled systems. However, our problem domain differs from that of [5] since: (i) all jobs

under consideration are already suspended and (ii) we are “scheduling” positions in queues

instead of scheduling actual CPUs. This greatly simplifies the donation process. In addition

to these simplifications, donation in the O-KGLP only affects tasks that make use of protected

k resources, so donation is isolated to these participating tasks. Non-resource-using tasks do

not participate and cannot experience pi-blocking as a result. This addresses the limitation

discussed earlier in Sec. 1 that arrises when the CK-OMLP is used in a globally-scheduled

system.

Additional Rules. The following additional rules allow us to maintain Assumption A1.

D1 (Precedes Rule O1.2) If the arrival of Ri in the PQ would cause the eviction from PQHP

of a request Ux, based upon the effective priority of Ux, then the priority of Ri is donated

to Ux, Ri is held from entering the PQ, and Ji suspends. Resource holder Hx may

transitively inherit the new effective priority of Ux.

D2 Ri ceases to donate its priority to Ux when either

D2.1 Ux enters FQx, or

D2.2 the arrival of a new request Rh would cause the eviction of Ux with the effective

priority of Ri, in which case Rh replaces Ri as a donor to Ux.

D3 Ri enqueues immediately on the PQ after Ri ceases to be a priority donor. This action

takes place before the set PQHP is re-evaluated, since this event may be triggered by a

request in PQHP enqueuing on an FQ.

Let us now show that Assumption A1 holds.

Lemma 7. Ux is never evicted from PQHP by the arrival of new, higher-priority, requests

in PQ.
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Proof. A request Rd that could cause Ux to be evicted from PQHP is prevented from entering

the PQ while Rd donates its priority to Ux instead. By Rules D1 and D2, Rd is one of the k

highest-priority requests in the PQ and any donors. Since Ux has the effective priority of Rd,

Ux must have one of the k highest effective priorities among requests in only the PQ.

Blocking Analysis Revisited. Jobs that donate their priority experience an additional

source of pi-blocking since donor requests are delayed from entering the PQ.

Lemma 8. A job Ji may experience pi-blocking due to donation of at most

bDi = 2 · lmax. (5)

Proof. Donation may introduce pi-blocking in addition to bFQ , bHQ , and bLQ in two ways:

(i) a job may experience pi-blocking while it acts as a donor; and (ii) when its request is

delayed by lower-priority requests in PQHP , that have received a donated priority. Let us

first bound the duration of (i).

The donor relationship is established at request initiation, so once a donor ceases to be a

donor, it can never be a donor again. Thus, bounding the duration of donation will bound

the length of pi-blocking caused by donation.

A donor Rd donates its priority to a donee Ux. By Rule D1, this priority is transitively

inherited by resource holder Hx, and thus, Rd makes progress. Hx will hold its resource

for no longer than lmax time (with respect to the priority of Rd) while Rd is pi-blocked.

Therefore, Ux will be dequeued onto FQx in no later than lmax time while Rd is pi-blocked,

at which point the donor relationship is terminated and Rd joins the PQ.

A request Ri may enter PQLP while requests with lower base priorities have a higher

effective priority, thus leading to the pi-blocking as in (ii). Ri can be pi-blocked only while

its priority is among the top m. Thus, while Ri is pi-blocked as in (ii), each request in PQHP

has an effective priority among the top m since Ri is among the top m and is not a donor
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(k donors must exist with priorities greater than Ri’s), and hence, through inheritance, Hx

also has a priority among the top m. Thus, Ri can be pi-blocked for a duration of at most

lmax due to scenario (ii): Hx will complete within lmax time units.

With all the building blocks in place, we may now derive the total pi-blocking a job using

the O-KGLP may experience, which is given by

bi = bDi + bLQi + bHQ
i + bFQi .

=
(

m
k
+min

(
m
k
− 1,

⌊ ∣∣TR
∣∣−1

k

⌋)
+ 3
)
· lmax

≤ 2
(
m
k
+ 1
)
· lmax

(6)

We can now show that the O-KGLP is asymptotically optimal with O(m/k) pi-blocking.

Theorem 1. The O-KGLP is asymptotically optimal with O(m/k) pi-blocking.

Proof. The maximum pi-blocking, bi, a job Ji may experience when issuing a request for a

resource under the O-KGLP is given by Equation (6). The component terms bDi and bHQ
i

are both O(1), while the terms bLQi and bFQi are O(m/k). Thus, bi is O(m/k). This is

asymptotically optimal because worst-case pi-blocking is Ω(m/k) under any protocol, as

shown by Lemma 1.

Supporting k > m. In Sec. 2, it was assumed k ≤ m since there is little benefit under

suspension-oblivious analysis to allowing k simultaneous resource holders when k > m [3].

However, it may be beneficial to allow k > m in cases where resources holders may self-

suspend, as can happen when GPUs are used to perform computations. When a resource

holder self-suspends, the (m+1)st highest-priority resource holder may then have an oppor-

tunity to execute. This can improve average case performance.

Minor modifications to the O-KGLP may be made to support instances where k >

m. Specifically, Rule O1.1 must be revised so that Ri enqueues on the shortest FQx if

queued(t0) < max(m, k). Also, the size of PQHP must be redefined to be min(m , k, |PQ|).
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The above proofs go through with minor revisions to accommodate these changed param-

eters. However, despite the possibility of improved performance in practice, the worst-case

bounds on blocking are no better than the case when k = m. Thus, even in cases where

resource holders may self-suspend, it may be better to statically allocate each “extra” re-

source to one resource-using task instead of using resource pools with k > m. Alternatively,

resources could be partitioned into clusters of no more than m in size and each cluster pro-

tected by a distinct O-KGLP lock. Resource-using tasks would be partitioned onto these

clusters. Either approach would result in schedulability at least as good as, but likely better

than, using the O-KGLP with k > m.

5 Detailed Blocking Analysis

Equation (6) gives an upper bound on pi-blocking that any resource-using job may expe-

rience. While this bound is asymptotically optimal, it is still pessimistic since all critical

section lengths are assumed to be lmax in length. In practice, the critical section lengths of

resource-using tasks may vary. In this case, tighter bounds on pi-blocking can be derived,

as we show next.

The maximum pi-blocking that a request Ri may experience under the O-KGLP is partly

dependent upon the maximum number of incomplete requests that may exist when Ri is

issued. Due to intra-task job precedence constraints, there may exist at most one incomplete

resource request per task in TR at any given instant. Thus, the number of requests that may

block (or “interfere” with) Ri is |TR\{Ti}| = |TR| − 1. This number of requests determines

whether Ji experiences pi-blocking in each of the phases (that is, bD , bLQ , bHQ , bFQ) of the

O-KGLP. For example, if |TR| ≤ k, then a request Ri can always be immediately granted

and no tasks experience blocking (we will not revisit analysis for this trivial case). Let us

next consider the case when k < |TR| ≤ m.
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Definition 1. Let the function top(v,S) denote the v longest requests in the set of requests

S, where request length is given by |Ri| , li.

Definition 2. Let the maximum set of requests that may exist when Ri is issued be denoted

by Ii , {Rj |Tj ∈ TR\{Ti}}.

Theorem 2. When k < |TR| ≤ m+ k, the maximum pi-blocking experienced by job Ji with

request Ri is

bi =
∑

Rj∈top
(⌊

|TR|−1
k

⌋
, Ii

) |Rj|. (7)

Proof. Let us first consider the case where k < |TR| ≤ m holds. Recall from Lemma 2

that a job Ji may be pi-blocked by at most b(
∣∣TR

∣∣− 1)/kc requests when |TR| ≤ m. Thus,

Theorem 2 follows in this case from Lemma 2 and intra-task precedence constraints.

We now consider the remaining case where m < |TR| ≤ m + k holds. The FQs and

PQHP can hold up to m+ k requests, which is at most the maximum number of incomplete

requests when |TR| ≤ m + k. Thus, no job may act as priority donor since no request can

enter PQLP . Assumption A1 trivially holds as a result, so no request may precede Ri into

the FQ to which Ri is bound while it is in PQHP (Rule O3). Thus, Ii is the set of requests

that may interfere with Ri. By Rules O3 and O4, Ri is blocked by at most dm/ke other

requests (one while Ri is in PQHP and dm/ke−1 while Ri is in an FQ). When |TR| = m+k,

b(
∣∣TR

∣∣−1)/kc = b(m+k−1)/kc = b(m−1)/kc+1 = dm/ke, which is equal to the maximum

number of requests that may block Ri. Thus, Theorem 2 follows.

This completes the detailed blocking analysis of the O-KGLP when
∣∣TR

∣∣ ≤ m + k. We

now consider remaining case where
∣∣TR

∣∣ > m+ k holds. This case is more complex than the

previous cases since requests may be enqueued in PQLP . This allows requests issued after

Ri to advance ahead of Ri in the queues; this even includes multiple requests from unique

jobs of the same task. Thus, Ii no longer captures all of the requests that may interfere with

Ri. A new interference set, Si, must be derived.
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A set of consecutive generic requests (i.e., virtual requests defined for analysis purposes)

of a task Tj that may interfere, in the worst-case, with a single request Ri from task Ti can be

computed for hard real-time and soft real-time (where soft real-time is defined by bounded

deadline tardiness) globally-scheduled systems using formulas from [4] and [9], respectively.6

This set is denoted by tif (Ti, Tj).

Definition 3. For hard real-time systems,

tif (Ti, Tj) ,

{
Rj,v | 1 ≤ v ≤

⌈
pi + rtj

pj

⌉}
, (8)

where rtj is the worst-case response time of a job of Tj [4].

Definition 4. For soft real-time systems (under the “bounded tardiness” definition of soft

real-time),

tif (Ti, Tj) ,

{
Rj,v | 1 ≤ v ≤

⌈
pi + xi + pj + xj

pj

⌉}
, (9)

where xi and xj denote tardiness bounds of job completion for tasks Ti and Tj, respectively [9].

We say that tif (Ti, Tj) defines a set of generic requests because request Rj,v ∈ tif (Ti, Tj)

does not denote the vth request made by task Tj after the release of Tj’s first job. Rather,

Rj,v denotes the v
th resource request in a worst-case string of consecutive requests of Tj that

may interfere with request Ri of Ti.

To gain an intuitive understanding of tif (Ti, Tj), let us consider the upper limit of v.7

The upper limit of v denotes the maximum number of jobs of Tj that may execute over the

time interval during which the request Ri may be made. We assume that Ri may be issued

at any time while Ji is executing, so this interval is bounded by pi and pi+xi in the hard and

soft real-time cases, respectively. We divide this interval by the minimum separation time

6The formulas of [4] and [9] support multiple, non-nested, requests to be made. As mentioned in Sec. 2,
the O-KGLP supports multiple, non-nested, requests though we omit this generalization in analysis to prevent
notation from becoming too cumbersome.

7Please refer to [4] and [9] for proofs of Equations (8) and (9), respectively.
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between jobs of Tj, pj. We must also incorporate a carry-in job for Tj that may be released

prior Ji. This entails increasing the interval under consideration by the worst-case response

time of job Jj, which is rtj and pj + xj in the hard and soft real-time case, respectively.

Thus, tif (Ti, Tj) generates the set of requests from Tj that may interfere with Ri.

We aggregate the interference from each task to derive Si (using the hard and soft real-

time variants as appropriate):

Definition 5.

Si ,
⋃

Tj∈TR\{Ti}

tif (Ti, Tj). (10)

Equation (10) gives us the set of requests that may interfere with Ri, but not all requests

may cause pi-blocking. An upper bound on the number of interfering requests can be derived

using the same steps to derive Equation (6).

Lemma 9. When
∣∣TR

∣∣ > m+ k, the maximum number of requests that pi-block Ji is

2
(⌈m

k

⌉
+ 1
)
. (11)

Proof. Follows from Lemmas 2, 4, 6, and 8. In other words, this is Equation (6), with

lmax removed. (Note that the term b(|TR| − 1)/kc drops out of Equation (6) when
∣∣TR

∣∣ >
m+ k.)

Computing the worst-case pi-blocking experienced by Ji when
∣∣TR

∣∣ > m+ k is straight-

forward using Equations (10) and (11).

Theorem 3. When
∣∣TR

∣∣ > m+ k, the maximum pi-blocking experienced by Ji is

bi =
∑

Rj∈top(2(dm/ke+1), Si)

|Rj| . (12)

Proof. Follows from Lemma 9.
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While the O-KGLP is asymptotically optimal and the above analysis offers tighter bounds

than Equation (6), there are cases where an O(n/k) protocol can offer better schedulability

when
∣∣TR

∣∣ is sufficiently small. One such O(n/k) protocol is the k-FMLP [10]. When a

resource request is issued under the k-FMLP, the request is enqueued on the shortest of k

FIFO queues, one per k resource. The k-FMLP resembles the O-KGLP without restrictions

on FQ length (so there is no PQ or donors, as well). As a result, Equation (7) may be used

to compute the worst-case pi-blocking of a request under the k-FMLP for task sets of any

size. Note that this also implies that non-resource-using tasks do not experience pi-blocking.

The k-FMLP offers better schedulability than the O-KGLP when a greater number of re-

quests may block Ri under the O-KGLP than under the k-FMLP. Specifically, when 2(dm/ke+

1) > b(
∣∣TR

∣∣ − 1)/kc.8 For example, suppose
∣∣TR

∣∣ = m + k + 1. Under the O-KGLP, bi is

composed of 2(dm/ke+1) critical section lengths from interfering requests. However, under

the k-FMLP, bi is composed of only b(
∣∣TR

∣∣ − 1)/kc = b(m + k)/kc critical section lengths

from interfering requests. This is at least half as many as the O-KGLP.

For a specific task set under which the k-FMLP yields better schedulability than the

standard O-KGLP, one may opt to use the k-FMLP instead. Alternatively, one may also

increase the length of the O-KGLP FQs to d
∣∣TR

∣∣ /ke and allow up to a total of
∣∣TR

∣∣ requests
to be enqueued in the FQs. This essentially deactivates the PQ and donor rules, and the

O-KGLP operates as if it were the k-FMLP. This “enhanced” O-KGLP may be favorable

to the k-FMLP from a system designer’s perspective since only a single locking protocol

implementation is required, provided that the FQs can be resized when appropriate.9 The

O-KGLP, with this task-set-specific enhancement, is guaranteed to perform at least as well

as the k-FMLP, and due to asymptotic optimality, will outperform the k-FMLP by larger

8There are additional cases when the k-FMLP may still offer better schedulability than the O-KGLP,
even if 2(dm/ke+ 1) > b(

∣∣TR
∣∣− 1)/kc does not hold. This is because a job Ji with a single request can be

pi-blocked by requests of multiple jobs of task Tj under the O-KGLP. Jobs of Tj may have long critical sections
in comparison to other tasks, displacing shorter requests in the set of requests determined by top(v, S). In
contrast, only one critical section per task is considered under the k-FMLP.

9This is trivial if FQs are implemented with linked lists.
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Protocol Utilization Schedulable? busing bnon-using

k-FMLP 4.25 no 3.5 0.0
CK-OMLP 4.75 no 1.5 1.0
O-KGLP 4.0 yes 3.0 0.0

Table 1: Soft real-time schedulability for an example task set under the k-FMLP, CK-OMLP, and
O-KGLP on a system with m = 4 and k = 2.

margins as n grows.

Example. We now present comparative schedulability analysis of the k-FMLP, CK-OMLP,

and O-KGLP for an example task set to illustrate the advantages of the O-KGLP over previous

protocols. We want to schedule a task set of resource-using and non-resource using tasks with

G-EDF for a soft real-time system where deadline tardiness must be bounded. Tardiness is

bounded, i.e., the system is soft real-time schedulable, if the total task set utilization (with

blocking time treated as execution time) is no greater than m [7], provided no task has an

individual utilization greater than one.

Suppose we have a system consisting of four CPUs (m = 4) and a resource pool size of

two (k = 2). Our task set consists of 30 tasks; half of the tasks are resource-using with a

period of pusing = 30, execution time of eusing = 2, and critical section length of lusing = 0.5;

the remaining tasks are non-resource-using with a period of pnon-using = 10 and execution

time of enon-using = 1. Blocking terms for each protocol are calculated using the algorithms

given in Appendix A.

Table 1 presents schedulability analysis results. Blocking time for resource-using tasks is

the greatest under the k-FMLP, with busing = 3.5. Under the O-KGLP it is less: busing = 3.0.

Blocking time for resource-using tasks is the least under the CK-OMLP, with busing = 1.5.

While non-resource-using tasks experience no blocking under the k-FMLP and O-KGLP, these

tasks experience blocking of bnon-using = 1.0 under the CK-OMLP. However, with all blocking

terms considered, the task set is only schedulable under the O-KGLP since total task set

utilization is 4.0.
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6 Schedulability Experiments

To better understand the schedulability properties of the O-KGLP, we randomly generated

task sets with varying characteristics. Soft real-time schedulability under global earliest-

deadline-first scheduling was determined, as described in [11] for tasks with relative dead-

lines equal to periods (di = pi), using the detailed blocking analysis presented in Sec. 5. We

focus our attention on soft real-time schedulability since global schedulers (the only type

the O-KGLP supports) are capable of ensuring bounded deadline tardiness in sporadic task

systems with no utilization loss [14]. Schedulability was also tested under different locking

protocols for comparison. These were Brandenburg et al.’s clustered CK-OMLP, mentioned

in Sec. 4, and the k-FMLP and enhanced O-KGLP, discussed in Sec. 5.

Experimental Setup. The task set characteristics varied by per-task utilization, resource

pool size (k), critical section length, and number of resource-using tasks in a task set. Uti-

lization intervals determine the range of utilization for individual tasks and were [0.01, 0.1]

(light), [0.1, 0.4] (medium), and [0.5, 0.9] (heavy). The pool size, k ∈ {2, 4, 6, 8}, determines

the number of times a resource was replicated in each scenario. Critical section intervals

determine the range of critical section lengths for resource-using tasks and were (0%, 2%]

(very short), (0%, 10%] (short), [10%, 25%] (moderate), and [50%, 75%] (long), where crit-

ical section length is a percentage of ei. The moderate and long intervals are inspired by

GPU-usage patterns [9], while very short and short intervals may be common to other shared

resources. Percentage number intervals determine the number of tasks in a task set that use

a resource protected by the k-exclusion lock and vary in increments of 10% from 0% to 100%.

Each experimental scenario was defined by any permutation of these four parameters for an

eight CPU system, yielding a total of 480 scenarios.

We generated random task sets for each scenario in the following manner. First, we

selected a total system utilization cap uniformly in the interval (0, 8] capturing the possible

system utilizations on a platform with eight CPUs. We then generated tasks by making
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selections uniformly from the intervals in each scenario. Per-task utilization was selected from

the scenario’s utilization interval. Task periods were selected from the range [3ms, 33ms], a

common range for multimedia applications. Execution times were derived from the selected

utilization and period. We added the generated tasks to a task set until the set’s total

utilization exceeded the utilization cap, at which point the last-generated task was discarded.

Next, we selected tasks for TR from the task set; we determined the number of resource-using

tasks by selecting a percentage from the percentage number interval of the scenario. A

critical section length for each resource-using task was selected from the scenario’s critical

section interval. Bounds on pi-blocking were computed using detailed analysis for each tested

locking protocol. As per suspension-oblivious analysis, task execution times were inflated

by its bound on pi-blocking (i.e., einflatedi = ei + bi), prior to performing the soft real-time

schedulability test. We tested a total of 5,000,000 task sets for each scenario.

Results. A selection of results that demonstrate observable trends across all scenarios is

presented here.

Observation 1. The O-KGLP can schedule more task sets than the k-FMLP when there

are a large number of resource-using tasks. The O(n/k) pi-blocking experienced under the

k-FMLP grows with task set size. In contrast, the asymptotic optimality of the O-KGLP

becomes evident when there are a large number of resource-using tasks. This can be seen in

Fig. 8, where the small per-task utilizations lead to task sets made up of many light weight

tasks. However, as the number of resource-using tasks decreases, schedulability under the

standard O-KGLP matches, or performs marginally worse, than the k-FMLP for the reasons

discussed at the end of Sec. 5. This is observable in Fig. 9.

Observation 2. The enhanced O-KGLP offers better schedulability than both the k-FMLP

and standard O-KGLP. As expected by construction, schedulability is better under the en-

hanced O-KGLP than either the k-FMLP or standard O-KGLP. Schedulability under the

enhanced O-KGLP tightly follows that of the k-FMLP in Fig. 9 and the standard O-KGLP in
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Figure 8: Schedulability under the O-KGLP is better than the k-FMLP when there are many
resource-using tasks. This is the case in this scenario, where task sets are made up of many tasks
(since per-task utilization is light) and the percentage of resource-using tasks is high (over 90%).
However, the CK-OMLP does perform better than the O-KGLP in this scenario since there are few
non-resource using tasks.
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Figure 9: Schedulability under the k-FMLP can be better than the O-KGLP when there are fewer
resource-using tasks, as is the case in this scenario with medium per-task utilizations. Schedulability
under the CK-OMLP is poor in comparison to both the k-FMLP and O-KGLP since non-resource-
using tasks experience pi-blocking, despite the fact that non-resource-using tasks make up no more
than 20% of each task set.
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Figure 10: The enhanced O-KGLP may offer better schedulability than exclusively the k-FMLP or
standard O-KGLP.

37



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5  6  7  8

R
a

ti
o

 o
f 
S

c
h

e
d

u
la

b
le

 T
a

s
k
 S

e
ts

 (
s
o

ft
)

CPU Utilization (prior inflations)

k = 4; % Resc. Using [50%, 60%]; % Crit. Sec. [50%, 75%]; Util. [0.5, 0.9]; Per. [3ms, 33ms]

[1] k-FMLP
[2] CK-OMLP

[3] O-KGLP
[4] O-KGLP (enhanced)

[2] [1, 3, 4]

Figure 11: Schedulability under the CK-OMLP is very poor when there are many non-resource using
tasks and critical sections are very long. This is the case in this scenario where non-resource-using
tasks make up between 40% to 50% of each task set, and critical sections are a large percentage,
between 50% and 75%, of execution time of tasks with heavy utilizations.

Fig. 8. This is because either the k-FMLP or the standard O-KGLP consistently outperforms

the other in these cases. However, the enhanced O-KGLP offers better schedulability than

either of these in Fig. 10, where neither the k-FMLP nor the standard O-KGLP consistently

outperforms the other. In this case, some task sets are schedulable under the k-FMLP but not

the standard O-KGLP, while other task sets of relatively equal total (non-inflated) utilization

are schedulable under the standard O-KGLP but not the k-FMLP. Thus, the schedulability

curve of the enhanced O-KGLP does not always tightly track that of either the k-FMLP or

standard O-KGLP. This is because the likelihood that a given task set is schedulable under

the enhanced O-KGLP is no less than that under the k-FMLP or standard O-KGLP, and may

be greater than either.
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Observation 3. The CK-OMLP may outperform both the O-KGLP and k-FMLP when

many tasks are resource-using and critical sections are short, but the CK-OMLP performs very

poorly, otherwise. Under the CK-OMLP, resource-using jobs can experience pi-blocking from

2dm/ke − 1 resource requests and non-resource-using jobs can experience pi-blocking from

dm/ke resource requests. The CK-OMLP performs poorly when there are a large number of

non-resource-using jobs or when critical sections are large since these jobs may also experience

pi-blocking. The poor performance of CK-OMLP is evident in Fig. 11.

Recall that our motivation for developing the O-KGLP has been to support multi-GPU

systems, where critical sections are large. Thus, the CK-OMLP is not a good choice to protect

GPUs in globally-scheduled JLSP systems.

The CK-OMLP can perform well in some scenarios, however. Under the CK-OMLP,

pi-blocking of non-resource-using jobs becomes less harmful as their number decreases, and

the CK-OMLP outperforms the O-KGLP and k-FMLP when there are a large number of

resource-using jobs and critical sections are short, as seen in Fig. 8. The performance of the

k-FMLP is poor in this scenario due the the large number of tasks (it is not asymptotically

optimal). The O-KGLP performs poorly by comparison since resource-using jobs can be

pi-blocked by at most 2dm/ke+ 2 resource requests: three more than under the CK-OMLP.

7 Conclusion

In this paper, we have presented the first real-time k-exclusion locking protocol designed

specifically for globally-scheduled JLSP systems. We discussed several approaches to de-

veloping an efficient k-exclusion locking protocol and showed that even informed methodol-

ogy may lead to sub-optimal results. This discussion exposed specific problems that must

be resolved by an asymptotically optimal solution. We then developed the O-KGLP and

demonstrated that it is asymptotically optimal. Unlike some non-optimal k-exclusion lock-

ing protocols, worst-case blocking time under the O-KGLP is not a function of task set size,
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but rather the number of system CPUs and scales inversely with the number of resources.

The O-KGLP improves upon prior k-exclusion locking protocols that are not asymptotically

optimal or that adversely affect non-resource-using tasks. We carried out schedulability

experiments to compare the O-KGLP and other k-exclusion locking protocols. It was demon-

strated that the asymptotic optimality of the O-KGLP often leads to improved schedulability,

especially for multi-GPU applications.

In future work, we will evaluate the O-KGLP as a part of the schedulability analysis in a

larger study that will evaluate various CPU scheduler and GPU locking protocol configura-

tions for use in real-time multiprocessor systems with multiple GPUs. This work will include

an implementation of the O-KGLP and a study of its runtime performance. An efficient im-

plementation should use data structures that keep the runtime complexity of enforcing the

various rules of the O-KGLP low. Further, this implementation must be done within an oper-

ating system environment where there are strict limitations on dynamic memory allocation.

This can make the implementation of even relatively simply data structures challenging.
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A Algorithms for Detailed Blocking Analysis

This appendix presents pseudocode for the algorithms used to compute blocking terms for

the k-FMLP, O-KGLP, and CK-OMLP in Secs. 5 and 6. The algorithms make use of tardiness

bounds to provide support for soft real-time blocking analysis. It is assumed that variables

T , TR, m, and k are in a global scope and are thus not passed as routine parameters. It is

also assumed that attributes of task Ti, such as pi, ei, li, and bi, are in scope with Ti. That

is, for example, bi is short-hand for Ti.b or b(Ti).

Algorithm 1 computes blocking terms for the O-KGLP and is derived from the detailed

analysis presented in Sec. 5. Algorithm 2 computes blocking terms for the k-FMLP and is

derived from the online appendix of [10]. Finally, Algorithm 3 computes blocking terms for

the CK-OMLP and is derived from [5].
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Algorithm 1 Calculates bi under the O-KGLP for each task in task set.

1: procedure OKGLP-Compute-Blocking
2: for each Ti ∈ T do
3: if Ti /∈ TR then
4: bi ← 0 . Ti is not resource-using.
5: else if

∣∣TR
∣∣ ≤ k then

6: bi ← 0 . Request trivially satisfied.
7: else
8: criticalSections ← [ ]
9: numSections← 0
10: if

∣∣TR
∣∣ ≤ m+ k then

11: for each Tj ∈ TR\{Ti} do
12: criticalSections[numSections]← lj
13: numSections← numSections+ 1

14: maxTerms ←
⌊ ∣∣TR

∣∣−1

k

⌋
. Equation (7).

15: else
16: for each Tj ∈ TR\{Ti} do
17: tif ←

⌈
pi+xi+pj+xj

pj

⌉
. Equation (9).

18: for c← 0 to tif− 1 do
19: criticalSections[numSections]← lj
20: numSections← numSections+ 1

21: maxTerms ← 2
⌈
m
k

⌉
+ 2 . Equation (6).

22: Sort-Descending(criticalSections)
23: terms ← Min(maxTerms, numSections)
24: bi ← 0
25: for c← 0 to terms− 1 do
26: bi ← bi + criticalSections[c]
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Algorithm 2 Calculates bi under the k-FMLP for each task in task set.

1: procedure KFMLP-Compute-Blocking
2: for each Ti ∈ T do
3: if Ti /∈ TR then
4: bi ← 0 . Ti is not resource-using.
5: else if

∣∣TR
∣∣ ≤ k then

6: bi ← 0 . Request trivially satisfied.
7: else
8: criticalSections ← [ ]
9: numSections← 0
10: for each Tj ∈ TR\{Ti} do
11: criticalSections[numSections]← lj
12: numSections← numSections+ 1

13: Sort-Descending(criticalSections)

14: terms ←
⌊ ∣∣TR

∣∣−1

k

⌋
15: bi ← 0
16: for c← 0 to terms− 1 do
17: bi ← bi + criticalSections[c]
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Algorithm 3 Calculates bi under the CK-OMLP for each task in task set.

. Blocking computed in two phases: resource blocking and then donation blocking.

. bri and bdi denotes resource and donation blocking for task Ti, respectively.
1: procedure CKOMLP-Compute-Blocking
2: for each Ti ∈ T do
3: CKOMLP-Resource-Blocking(Ti)
4: CKOMLP-Donation-Blocking(Ti)
5: bi ← bri + bdi

. Resource blocking only affects resource-using tasks.
6: procedure CKOMLP-Resource-Blocking(Ti)
7: if Ti /∈ TR then
8: bri ← 0 . Ti is not resource-using.
9: else if

∣∣TR
∣∣ ≤ k then

10: bri ← 0 . Request trivially satisfied.
11: else
12: criticalSections ← [ ]
13: numSections← 0
14: for each Tj ∈ TR\{Ti} do
15: tif ← Min(

⌈
pi+xi+pj+xj

pj

⌉
, 2) . Soft real-time, interference capped at 2.

16: for c← 0 to tif− 1 do
17: criticalSections[numSections]← lj
18: numSections← numSections+ 1

19: Sort-Descending(criticalSections)
20: terms ← Min(

⌈
m
k

⌉
− 1, numSections)

21: bri ← 0
22: for c← 0 to terms− 1 do
23: bri ← bri + criticalSections[c]

. Donation blocking affects all tasks.
24: procedure CKOMLP-Donation-Blocking(Ti)
25: doneeDurations ← [ ]
26: numDurations← 0
27: for each Tj ∈ TR\{Ti} do
28: doneeDurations[numDurations]← brj + lj
29: numDurations← numDurations+ 1

30: if numDurations = 0 then
31: bdi ← 0
32: else
33: bdi ← Max(doneeDurations)
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