
An Optimal k-Exclusion Real-Time Locking Protocol
Motivated by Multi-GPU Systems∗

Glenn A. Elliott and James H. Anderson
Department of Computer Science, University of North Carolina at Chapel Hill

Abstract

Graphics processing units (GPUs) are becoming increas-
ingly important in today’s platforms as their increased gen-
erality allows for them to be used as powerful co-processors.
In previous work, we have found that GPUs may be in-
tegrated into real-time systems through the treatment of
GPUs as shared resources, allocated to real-time tasks
through mutual exclusion locking protocols. In this pa-
per, we present an optimal k-exclusion locking protocol for
globally-scheduled job-level static-priority (JLSP) systems.
This protocol may be used to manage a pool of GPU re-
sources in such systems.

1 Introduction

The widespread adoption of multicore technologies in
the computing industry has prompted research in a wide
variety of computing fields with the goal of better under-
standing how to exploit multicore parallelism for greater
levels of performance. In the field of real-time systems,
multicore technologies have led to the revisiting of prob-
lems that have had well understood uniprocessor solutions.
This research has found that uniprocessor techniques are of-
ten no longer valid or suffer from significant inefficiencies
when applied directly to multiprocessor platforms. As a
result, new algorithms for scheduling and synchronization
and new methods of analysis have been developed. How-
ever, the topic of k-exclusion synchronization has only re-
cently been considered for real-time multiprocessor appli-
cations [4]. k-exclusion locking protocols can be used to ar-
bitrate access to pools of similar or identical resources, such
as communication channels or I/O buffers. k-exclusion ex-
tends ordinary mutual exclusion (mutex) by allowing up to
k tasks to simultaneously hold locks (thus, mutual exclusion
is equivalent to 1-exclusion). In this paper, we present a new

∗Work supported by NSF grants CNS 0834270, CNS 0834132, and
CNS 1016954; ARO grant W911NF-09-1-0535; AFOSR grant FA9550-
09-1-0549; and AFRL grant FA8750-11-1-0033.

protocol for implementing k-exclusion locks in multiproces-
sor real-time systems.

The commonality of resource pools is enough to moti-
vate our investigation of k-exclusion protocols for such sys-
tems. However, we are specifically driven to study such pro-
tocols due to their application to another new technology:
general-purpose computation on graphics processing units
(GPGPU). In prior work, we showed that mutual exclusion
locks may be used to integrate individual GPUs into real-
time multiprocessor systems.

The use of mutual exclusion locks naturally complements
the state of current GPU technology and resolves many tech-
nical challenges arising from both hardware and software
constraints [6], thus allowing guarantees on predictable ex-
ecution as required by real-time systems. For example, cur-
rent technology does not allow the preemption of program
code executing on a GPU. Thus, once a task has commenced
using a GPU, it must finish using the GPU before another
task may make use of it. This can easily result in priority
inversions with respect to CPU scheduling. From this per-
spective, there is little to distinguish the GPU, which is an
I/O device, from a traditional resource. The use of a real-
time locking protocol may be used to bound the durations of
priority inversions.

In addition to the fundamental limitations imposed by
non-preemption, GPUs (because they are I/O devices) are
managed by closed-source device drivers that are currently
not designed for real-time applications. This introduces
a number of challenges [6]. However, the use of mutual
exclusion locks to arbitrate access to a GPU prevents the
closed-source driver from invoking its own resource arbitra-
tion mechanisms (such as unbounded spinning on the CPU).
Thus, the use of real-time mutual exclusion locks with GPUs
simultaneously addresses issues caused by non-preemption
and largely prevents the GPU driver from introducing non-
real-time behaviors.

This resource-based methodology can be extended to
systems with multiple GPUs through the use of k-exclusion
locks to protect pools of GPU resources. Such an approach
may maximize GPU utilization as it avoids the need to stat-
ically assign real-time tasks to use individual GPUs. In this

paper, we present an optimal k-exclusion protocol that can
be used to realize this approach in globally-scheduled real-
time systems. At this time, we see GPU computation to be
more relevant to soft real-time computing than hard real-
time computing, due to difficult unresolved timing analysis
issues affecting the latter on multicore platforms. Thus, our
focus on global scheduling is motivated by the fact that a va-
riety of global schedulers are capable of ensuring bounded
deadline tardiness with no utilization loss [9]. Such sched-
ulers are particularly well-suited for supporting soft real-
time workloads. However, this attention to soft real-time
applications does not preclude the use of the locking pro-
tocol presented in this paper in systems with hard real-time
constraints.

Prior Work. k-exclusion locking protocols for real-time
systems has been investigated before. Chen [5] presented
techniques to adapt several common uniprocessor mutex
protocols to derive uniprocessor k-exclusion locks. How-
ever, the use of such techniques in a multiprocessor environ-
ment requires that tasks and resources be statically bound to
individual processors. This static partitioning may place un-
desirable limits on maximum system utilization. Further,
optimal partitioning is NP-hard in the strong sense [10],
even without consideration of resource locality.

Much more recently, Brandenburg et al. presented an
extension to the O(m) Locking Protocol (OMLP) to sup-
port k-exclusion locks on cluster-scheduled multiproces-
sors [4].1 While the k-OMLP may be applied to globally-
scheduled systems (since a globally-scheduled system is a
degenerate case of a cluster-scheduled system where there
is only one cluster), real-time tasks not requiring one of the
k resources may still experience delays in execution. These
delays are artifact behaviors that are required in clustered
scheduling, but not necessarily in global scheduling. Such
delays may not be particularly harmful, in terms of schedu-
lability, when the k-OMLP is used to protect resources with
short protection durations (as may be the case with internal
data structures), but may be extremely detrimental in sys-
tems using GPUs. This is due to the fact that protection
durations (i.e., critical section lengths) for GPU resources
may be very long, on the order of tens of milliseconds to
even several seconds [6]. Thus, it is desirable to develop
a k-exclusion protocol for globally-scheduled systems that
does not affect the execution of non-GPU-using tasks. Note
that such a protocol can be applied in a clustered setting if
GPUs are statically allocated to clusters (in which case, clus-
ters can be scheduled independently).

To find inspiration for an efficient k-exclusion lock-
ing protocol for real-time systems, one may also look at

1To the best of our knowledge, this is the first work investigating the
k-exclusion problem in globally-scheduled real-time multiprocessor sys-
tems.

k-exclusion protocols from the distributed algorithms liter-
ature, where research has been quite thorough (see, e.g., [1,
13]). However, such protocols were designed for the use in
throughput-oriented systems for which predictability is not
a major concern.

The use of resource locks is not the only approach that
may be taken to integrate GPUs into a real-time system. A
heterogeneous processor-scheduling algorithm may sched-
ule dissimilar processors. However, existing approaches,
such as [2, 8, 12], are problematic in multi-GPU systems
due to one or more of the following constraints: (i) they
cannot account for non-preemptive GPU execution; (ii) they
require that tasks be partitioned among types of proces-
sors yet our GPU-using tasks must make use of both CPU
and GPU processors; (iii) they statically assign GPU-using
tasks to GPUs; (iv) they place restrictions on how GPUs
may be shared among tasks; and (v) they place limits on
the number of CPUs and GPUs. Heterogeneous processor-
scheduling approaches may better express the parallel exe-
cution of CPU and GPU code (which is not captured when
GPUs are treated as shared resources instead of processors),
though they may place too many constraints on some sys-
tems. Of course, further research in this direction is clearly
merited, though we leave this to future work.

Contributions. In this paper, we present a new real-
time k-exclusion locking protocol for globally-scheduled
real-time multiprocessor systems. This protocol is asymp-
totically optimal under suspension-oblivious schedulability
analysis [3]. Our protocol is designed with real-time multi-
processor systems with multiple GPUs in mind. This leads
us to use techniques that (i) minimize the worst-case wait
time a task experiences to receive a resource, as this helps
meet timing constraints; (ii) do not cause non-resource-
using tasks to block; (iii) yield beneficial scaling character-
istics of worst-case wait time with respect to resource pool
size, since pool size directly affects system processing ca-
pacity in the GPU case; and (iv) increase CPU availability
through the use of suspension-based methods, which aids
in meeting timing constraints in practice. While our focus
is on GPUs as resources, our protocol may still be used to
efficiently manage pools of generic resources, offering im-
provements over the k-OMLP on globally-scheduled sys-
tems.

Organization. The rest of this paper is organized as fol-
lows. In Sec. 2, we describe the task model upon which our
locking protocol is built. In Sec. 3, we discuss what it means
for a locking protocol to be “optimal” in a globally sched-
uled system and how it might be achieved. In Sec. 4, we dis-
cuss how even an informed approach can lead to sub-optimal
characteristics in a k-exclusion locking protocol. We also

present our k-exclusion locking protocol and prove its op-
timal characteristics in this same section. We end in Sec. 5
with concluding remarks and avenues for future work.

2 Task Model

We consider the problem of scheduling a mixed task set
of n sporadic tasks, T = {T1, . . . , Tn}, on m CPUs with
one pool of k resources. A subset TR ⊂ T of the tasks
require use of one of the system’s k resources. We assume
k ≤ m. A job is a recurrent invocation of work by a task,
Ti, and is denoted by Ji,j where j indicates the jth job of Ti

(we may omit the subscript j if the particular job invocation
is inconsequential). Each task Ti is described by the tuple
Ti(ei, li, di, pi). The worst-case CPU execution time of Ti,
ei, bounds the amount of CPU processing time a job of Ti

must receive before completing. The critical section length
of Ti, li, denotes the length of time task Ti holds one of the
k resources. For tasks Ti /∈ TR, li = 0. The deadline, di, is
the time after which a job is released by when that job must
complete. Arbitrary deadlines are supported in this work.
The period of Ti, pi, measures the minimum separation time
between job invocations for task Ti.

We say that a job Ji is pending from the time of its release
to the time it completes. A pending job Ji is ready if it may
be scheduled for execution. Conversely, if Ji is not ready,
then it is suspended. Throughout this paper, we assume that
the tasks in T are scheduled using a job-level static-priority
(JLSP) global scheduler.

A job Ji,j (of a task Ti ∈ TR) may issue a resource re-
quest Ri,j for one of the k resources. Requests that have
been allocated a resource (resource holders) are denoted by
Hx, where x is the index of the particular resource (of the k)
that has been allocated. Requests that have not yet been al-
located a resource are pending requests. Motivated by com-
mon GPU usage patterns, we assume that a job requests a
resource at most once, though the analysis presented in this
paper can be generalized to support multiple, non-nested,
requests. We let bi denote an upper bound on the duration a
job may be blocked.

In this paper, we consider locking protocols where a job
Ji suspends if it issues a request Ri that cannot be imme-
diately satisfied. In such protocols, priority-sharing mecha-
nisms are commonly used to ensure bounded blocking du-
rations. Priority inheritance is a mechanism where a re-
source holder may temporarily assume the higher priority of
a blocked job that is waiting for the held resource. Another
common technique is priority boosting, where a resource
holder temporarily assumes a maximum system scheduling
priority. The priority of a job Ji in the absence of priority-
sharing is the base priority of Ji. We call the priority with
which Ji is scheduled the effective priority of Ji.

3 Definition of Optimality

Generally speaking, a job of a real-time task is blocked
from execution when it attempts to acquire a resource from
some set of resources of which there are none currently
available; the job must wait until said resource becomes
available. Schedulability analysis requires that these block-
ing durations be of bounded length to ensure that timing
constraints, such as completing by a given deadline, are
met. In [3], this definition of blocking was refined for JLSP
globally-scheduled multiprocessor systems, allowing for a
definition of optimality in blocking duration to be made.

It was observed that a real-time job is “blocked” only if it
waits for a resource when it would otherwise be scheduled.
When a job lacks sufficient priority to be scheduled, it makes
no difference in terms of analysis if it is suspended implicitly
by the scheduler or if it is suspended while waiting for a
resource. The effect is the same: the job is not scheduled. It
is only the duration of time that a job would be scheduled,
but otherwise cannot due to waiting, that must be considered
by analysis. In such cases there is a priority inversion since
a lower-priority job may be scheduled in the blocked job’s
place. Thus, this refined definition of blocking is termed
priority inversion blocking, or pi-blocking. The method to
bound the time a job may experience pi-blocking depends
upon the scheduling algorithm used and its analysis.

Assuming jobs suspend from execution (instead of
busy-waiting) while waiting for a resource, the analytical
method used to determine the effect of pi-blocking may
be suspension-oblivious or suspension-aware. Suspension-
oblivious analysis treats delays caused by pi-blocking as ad-
ditional execution time, factoring into task utilization and
thus into task set utilization as well. This treatment con-
verts a set of dependent tasks into a task set of indepen-
dent tasks with greater execution requirements. This is a
safe conversion, but may be pessimistic if pi-blocking de-
lays are long. In contrast, suspension-aware analysis does
not treat pi-blocking delays as processor demand. Unfortu-
nately, most known multiprocessor schedulability analysis
techniques for JLSP global schedulers, such as the global
earliest-deadline-first (G-EDF) algorithm, that account for
blocking delays are suspension-oblivious.

It was shown in [3] that under suspension-oblivious anal-
ysis, a job Ji is not pi-blocked if there exist at least m pend-
ing higher-priority jobs, where m is the number of system
CPUs. Because suspensions are analytically treated as ex-
ecution time under suspension-oblivious analysis, even sus-
pended jobs of higher-priority can eliminate priority inver-
sions with respect to lower-priority jobs. If it can be shown
in the analysis of a locking protocol that there exist at least
m higher-priority suspended jobs that are waiting for a re-
source, then lower-priority jobs also waiting for a resource
do not experience any pi-blocking. Such an example is illus-

scheduled

suspended, pi-blocked

scheduled with resource

suspended, not pi-blocked

release

deadline

completion

J
1

J
2

J
3

t1 t2

Figure 1. Job J3 does not experience
pi-blocking on the interval [t1, t2] under
suspension-oblivious analysis for this two-
processor system scheduled by G-EDF. Job
J2 is scheduled on this interval while job J1
is analytically considered to be scheduled. Job
J3 is not pi-blocked because it does not have
sufficient priority to be scheduled (analyti-
cally), whether it waits for a resource or not.

trated in Fig. 1 for a two-processor system scheduled under
G-EDF with a single shared resource. As depicted, the pres-
ence of pending jobs J1 and J2 on the interval [t1, t2] pre-
vents J3 from incurring any pi-blocking under suspension-
oblivious analysis.

The OMLP, as well as the locking protocol presented in
this paper, are specifically designed to exploit this charac-
teristic of suspension-oblivious analysis. Through this anal-
ysis, it was further shown in [3] that a mutex locking proto-
col may be considered optimal under suspension-oblivious
analysis if the maximum duration of pi-blocking per re-
source request is O(m)—a function of fixed system resource
parameters and not the number of resource-using tasks. In
a k-exclusion locking protocol, we may hope to do better.
Intuitively, we would like to obtain a bound of O(m/k), so
pi-blocking durations scale with the inverse of k (another
fixed system parameter). Indeed, the k-OMLP achieves this
bound when there exists only one pool of k resources, as is
the case with our GPU system. However, as stated earlier,
the k-OMLP is not suitable for our use on a JLSP globally-
scheduled system with GPUs due to the excessive block-
ing costs charged to non-GPU-using tasks. Still, any effi-
cient k-exclusion locking protocol we develop for a JLSP
globally-scheduled system should be O(m/k).

4 Locking Protocols

Developing an efficient k-exclusion protocol for JLSP
globally-scheduled systems is a non-trivial process.
Through the development of an O(m/k) k-exclusion
locking protocol, we found that some initial assumptions
did not hold. We will now explain the development process
we went through to arrive at an optimal k-exclusion locking
protocol.

4.1 A Single Queue
A classic result from Operations Research states that a

single wait-queue is the most efficient method for ordering
resource requests for a pool of resources [11]. Without pre-
senting the details of this result, we may come to understand
this to be true intuitively. Consider the case where a sepa-
rate queue is used for each resource. There may exist an
“unlucky” request, Ri, that is enqueued behind a job that
uses a resource for a very long duration. In the meantime,
other requests, including those made after Ri, are quickly
processed on the other queues, yet the unlucky request con-
tinues to wait. To make a colloquial analogy, this is much
like the frustration one may feel at the checkout line in a
grocery store. You may find yourself stuck behind someone
who needs a dozen price checks on their items, while you
watch others quickly pass through the remaining lines. It
is impossible for a request to be forced to wait on a long-
running job when a single queue is used. Hence, the single
queue reduces overall wait time for all participants.

The Bank Algorithm [7] (not to be confused with Dijk-
stra’s Banker’s Algorithm) is a non-real-time k-exclusion
locking protocol built upon the single-queue principle. It
is so named due to its likeness to the single queue com-
monly used at a bank. Suppose we built a real-time locking
protocol based upon the Bank Algorithm. There would be
one FIFO queue for k resources. We can ensure no pend-
ing request is blocked unboundedly through priority inher-
itance. For our real-time Bank Algorithm, let each of the
k resource holders (if that many exist) inherit a unique pri-
ority, if that priority is greater than its own, from the set of
the k highest-priority pending requests (if that many exist).
Thus, at least one resource holder is scheduled with an ef-
fective priority no less than that of any pending request. In
the worst-case scenario for the highest-priority pending re-
quest, Ri, all pending resource requests ahead of Ri are seri-
alized through a single resource, while the remaining k − 1
resources remain held. This may occur since these k − 1
resource holders do not inherit a priority from Ri and may
not be scheduled. This case is depicted in Fig. 2. With a
little work, it is possible to combine methods from the Bank
Algorithm and the OMLP to arrive at an Ω(m − k) lock-
ing protocol. However, this still falls short of our desired
O(m/k).

Hk

...

H
1

H
2Ri

inheritance

RlRj

Figure 2. Pending requests ahead of Ri may
be serialized through a single resource when
a single wait-queue is used. Depicted above,
Ri is the highest-priority request and re-
source holder H1 inherits Ri’s priority. The
remaining k−1 resource holders inherit prior-
ity from pending requests with priorities less
than Ri. The resource holders that do not in-
herit from Ri are not guaranteed to release
their resource before Ri acquires one, thus all
pending requests ahead of Ri may be forced
to serialize on the resource held by H1. In
the worst-case, Ri may have to wait for n − k
requests to complete before obtaining a re-
source.

In a non-real-time context, it is implicitly assumed that
all resource holders execute simultaneously. However, this
guarantee cannot be maintained in our real-time system
since the priority of the highest-priority job can only be in-
herited by a single resource holder.2 It appears that for tra-
ditional sporadic real-time systems, a single queue approach
will not yield an optimal bound for worst-case pi-blocking
time because it is possible for resource requests to be-
come serialized on a single resource. We must develop a
k-exclusion locking protocol where execution progress can
be guaranteed for all resource holders.

4.2 An Optimal k-Exclusion Global Locking Protocol
The Optimal k-Exclusion Global Locking Protocol

(O-KGLP) is a k-exclusion locking protocol that achieves
the desired O(m/k) bound. In the previous section, we
noted that a straightforward application of OMLP tech-
niques to the k-exclusion problem results in Ω(m − k)
pi-blocking time. While this is optimal with respect to the
number of CPUs, it does not fully exploit the greater paral-
lelism offered by the existence of k resources. The O-KGLP
offers better scaling behavior with respect to both the num-
ber of processors and resources.

2We have considered algorithms where a single priority is inherited by
multiple resource holders. However, we found that this breaks the sporadic
task model since multiple jobs may execute concurrently with the same
inherited priority. Different schedulability tests are required to analyze such
a method.

Structure. The O-KGLP uses k + 1 job queues to orga-
nize resource requests. k FIFO queues, of length m/k, are
assigned to each of the k resources. One priority queue (or-
dered by job priority) is used if there are more than m jobs
contending for the use of a protected resource. The priority
queue holds the “overflow” from the fixed-capacity FIFO
queues. We denote the FIFO queues as FQx and the priority
queue as PQ.

Rules. Let queued(t) denote the total number of queued
jobs in the PQ and FQs at time t. The rules governing queu-
ing behavior and priority inheritance are as follows:

O1 When job Ji requests a resource at time t0,

O1.1 Ri enqueues on the shortest FQx if queued(t0) <
m, else

O1.2 Ri is added to PQ.

O2 All queued jobs are suspended except the jobs at the
heads of the FQs, which are resource holders. All re-
source holders are ready to execute.

O3 The effective priority of a resource holder, Hx, at
time t is inherited from either the highest-priority re-
quest in FQx, or from a unique request among the k
highest-priority pending requests in the PQ, whichever
has greater priority. Each FQ claims one unique request
(if available) from the k highest-priority pending request
in PQ, whether or not Hx inherits priority from it.

O4 When Hx frees a resource, its request is dequeued
from FQx and the next request in FQx, if one exists,
is granted the newly available resource.3 Further, the
claimed unique request (if it exists) from amongst the k
highest-priority requests in the PQ is moved to FQx.

Let us define several simplifying identifiers. Let PQHP

(for “high priority”) denote the set of min(k, |PQ|) highest-
priority pending requests in the PQ. Let Ux denote the
unique request in PQHP associated with Hx by Rule O3. Fi-
nally, let PQLP (for “low priority”) denote the set of requests
in PQ that are not in PQHP. Fig. 3 depicts the queue structure
of the O-KGLP and inheritance relations.

In our initial analysis of the O-KGLP, we make the fol-
lowing assumption:

A1 Ux is never evicted from PQHP by the arrival of new,
higher-priority, requests.

3As an implementation optimization, if FQx is left empty by the de-
queue of Hx, then the highest-priority pending request in the remaining
FQs may be “stolen” (removed from its queue and enqueued onto FQx)
and granted the free resource, if such a request exists. This technique may
reduce the observed average time jobs are blocked in a real system, but does
not improve upon the worst case.

FQ1

FQ2

FQ
k

H1

H2

H
k

...
PQ

PQHP

max inheritance

m/k

PQLP

Figure 3. Queue structure and priority inheri-
tance relations used by the O-KGLP.

This important property is guaranteed by ensuring that Ux

always has a sufficient effective priority to remain in PQHP.
The mechanisms used to realize Assumption A1 are ex-
plained in detail later in this paper.

Before bounding the worst-case pi-blocking time a job
using the O-KGLP may experience, let us define the term
progress. We say a pending request Ri makes progress at
time instant t if every Hx, ahead of Ri on any path through
the queues that Ri may take before obtaining a resource,
is scheduled with an effective priority no less than that of
Ri. If Ri is pi-blocked for a bounded time bi, then Ri is no
longer pi-blocked after bi time of progress.

Progress is ensured with relative ease through priority
sharing mechanisms (inheritance, boosting, etc.) in com-
mon locking protocols where a request can only follow a
single path. However, progress is more difficult to ensure
when more than one path may be taken, as is the case in the
O-KGLP due to its use of k FQs. We now explain how this
is done in the O-KGLP.

Blocking Analysis. Ji may be pi-blocked during three
different phases as its request traverses the queues in the
O-KGLP. The first phase is the duration from when Ri en-
ters the PQ until it joins the set PQHP. The second phase
takes place from the time Ri joins PQHP to the time it is
moved to an FQ. Finally, the last phase is measured from
the time Ri enqueues on an FQ to the point Ri reaches
the head of this FQ. We denote pi-blocking in each phase
as bLQ, bHQ, and bFQ, respectively. The worst-case time
Ji may be pi-blocked using the O-KGLP is equal to the
sum of the maximum pi-blocking durations in each phase:
bi = bLQ

i + bHQ
i + bFQ

i . These phases are depicted in Fig. 4.
The number of tasks,

∣∣TR
∣∣, using the same O-KGLP lock

determines whether a job may experience blocking in each
of these three phases. For example, if

∣∣TR
∣∣ ≤ k, then no

job is ever pi-blocked (bi = 0) since every request can be
trivially satisfied simultaneously. If k <

∣∣TR
∣∣ ≤ m, then

FQ1

FQ2

FQ
k

H1

H2

H
k

...
PQ

PQHPPQLP

t0

t1

t2 t3

time

t0 t1 t2 t3

Figure 4. Job Ji may experience pi-blocking in
three time intervals: first in the interval [t0, t1),
from when Ji’s request, Ri, enters the PQ to
when the request joins the set PQHP; next, in
the interval [t1, t2), which is the duration Ri

is in PQHP; and finally, in the interval [t2, t3),
which is the time Ri must wait in an FQ until
it receives a resource.

a job only experiences bFQ pi-blocking since all possible si-
multaneous requests can be held in the FQs. Similarly, bFQ

and bHQ contribute to total pi-blocking when m <
∣∣TR

∣∣ ≤
m + k. A job can only experiences pi-blocking in every
phase when

∣∣TR
∣∣ > m + k. Let us compute the worst-case

pi-blocking a job Ji may experience starting with bFQ and
working our way backwards through the queue structures.

Lemma 1. A job Ji may be pi-blocked by at most

min

(
m
k − 1,

⌊
|TR|−1

k

⌋)
lower-priority jobs while en-

queued on FQx.

Proof. Progress is ensured for any Ri in FQx since Hx is
always scheduled with an effective priority no less than Ji
by Rule O3. Thus bFQ

i can be bounded by the total time
required to complete every request ahead of Ri in FQx.

In the worst case, while Ri is on FQx, it may be pre-
ceded by m

k − 1 requests before it reaches the head of FQx

and Ji receives a resource. However, if k <
∣∣TR

∣∣ ≤ m,
then Ji may be pi-blocked by fewer requests. In this case
there may be as many as

∣∣TR\{Ti}
∣∣ requests already in the

FQs when Ji issues Ri at time t0. Load-balancing these pre-
ceding requests evenly across the k FQs (by Rule O1.1), the

shortest FQ at time t is at most
⌊
|TR\{Ti}|

k

⌋
in length since

the length of any FQ may only deviate from the average FQ

length by more than one. Thus,
⌊
|TR|−1

k

⌋
upper-bounds

the number of lower-priority jobs that may pi-block Ji when
k <

∣∣TR
∣∣ | ≤ m.

Lemma 2. Ji experiences pi-blocking while Ri is queued
on FQx of at most

bFQ
i = min

(
m

k
− 1,

⌊∣∣TR
∣∣− 1

k

⌋)
· lmax (1)

where lmax denotes the longest critical section of any task.

Proof. Ji experiences worst-case pi-blocking when the jobs
that pi-block it have the longest possible critical sections.
By Lemma 1 and by upper-bounding critical section lengths
with lmax, the proof follows.

Lemma 3. Ji may only be pi-blocked for the duration of one
critical section while its request is in the set PQHP. Thus,

bHQ
i = lmax (2)

in the worst case.

Proof. By Assumption A1, a request Ri cannot be evicted
from PQHP. By Rule O3, there exists some FQx such that
Hx is scheduled with an effective priority no less than that
of Ji while Ri is in PQHP, thus progress is guaranteed. Fur-
ther, Ri will be removed from the PQ and placed onto FQx

immediately after Hx releases its resource. It may take
up to lmax time until Hx complete its critical section, thus
bHQ
i = lmax.

We now present a derivation of bLQ
i by placing an up-

per bound on the number of lower-priority jobs that may
pi-block Ji while Ri is in the PQ and not in PQHP. Recall
from Sec. 3 that a job is not pi-blocked at any time instant
under (suspension-oblivious analysis) if there exist at least
m pending higher-priority jobs.

Lemma 4. Progress is guaranteed for any request, Ri,
pending in PQLP.

Proof. Assumption A1 ensures that each Ux ∈ PQHP has a
priority no less than that of Ri ∈ PQLP. Thus, by Rule O3,
each Hx is scheduled with an effective priority greater than
Ri while Ri ∈ PQLP. Hence, progress for Ri is guaranteed
for any path that Ri may take, even though the particular FQ
Ri will traverse has yet to be determined.

Lemma 5. Job Ji, with request Ri ∈ PQLP, is pi-blocked
for at most m

k · l
max time. Thus,

bLQ
i =

m

k
· lmax. (3)

Proof. A job is not pi-blocked under suspension-oblivious
analysis when there exist at least m other pending higher-
priority jobs. By Lemma 4, all the resource holders in the
FQs are scheduled with an effective priority at least that of

Ri while Ri ∈ PQLP. Consequently, all potential lower-
priority requests in the FQs when Ji issued Ri at time t0
(see Fig. 4) will be satisfied in at most m

k · l
max time if Ri

continues to remain in PQLP. If Ri is in PQLP after t0 + m
k ·

lmax time (which is possible since new requests with a higher
priority than Ri may be issued before Ri is moved to PQHP),
then, by Rule O4 (and Assumption A1), all m requests in the
FQs must have a higher priority than Ri, and Ji is no longer
pi-blocked.

It may appear that we have arrived at an O(m/k)
k-exclusion locking protocol since each component of bi is
either O(m/k) (bFQ

i and bLQ
i) or O(1) (bHQ

i). However, our
proofs for these bounds are founded upon the assumption
that each request, once in PQHP, remains so until it is moved
to an FQ. Our bound for bHQ

i breaks if we allow evictions.
Consider the following scenario, which is depicted in Fig. 5.

Suppose at time t0, Hx has just received a resource and
Hx inherits the priority of Ri, the highest priority request in
the PQ. At time t1 = t0 + (lmax − ε0), k new requests with
priorities greater than Ri are issued, and Ri is evicted from
PQHP. At time t2 = t1 + ε1, Hy completes and releases its
resource. Consequently, one of the new requests is moved to
FQy and Ri rejoins the set PQHP. By Rule O3, Ri is claimed
by Hy , though Hy does not inherit the priority of Ri since
the newer request that just entered FQy has greater priority.
At this point, the lmax − ε progress Ri had accrued before
eviction has been lost.

Still, perhaps the number of times Ri can be evicted,
while Ri remains pi-blocked, can bounded by an O(m/k)
term in a similar fashion to bLQ

i . After all, it seems rea-
sonable that higher-priority requests should be able to enter
the FQs ahead of Ri. Unfortunately, so may lower-priority
request. Continuing the scenario above (soon after Ri has
rejoined PQHP), at time t3 = t2 +ε2 all resource holders ex-
cept Hy complete and the requests of PQHP\Ri (which have
higher priority than Ri) are moved to the FQs, and requests
with priorities less than Ri join PQHP. At time t4 = t3 + ε3,
once again all resource holders except Hy complete, only
now lower-priority requests are moved onto the FQs and Ri

remains in PQHP. Finally, at time t5 = t4+ε4, another batch
of new k higher-priority requests is issued, evicting Ri from
PQHP once again. This cycle may repeat with requests of
lower priority than Ri entering any FQ, so we cannot prove
the presence of m pending higher-priority jobs as is required

FQ1

FQx

FQk

H1

Hx

Hk

...

...

PQHP

...

...
Ri

FQ1

FQx

FQk

H1

Hx

Hk

...

...

PQHP

...

...

Ri

PQLP

Rh

Rh

Rh

FQ1

FQx

FQk

H1

Hy

Hk

...

...

PQHP

...

...
Ri Rh

Rh

Rh

FQ1

FQx

FQk

H1

Hy

Hk

...

...

PQHP

...

...
Ri Rh

Rl

Rl

Rh

Rh

FQ1

FQx

FQk

H1

Hy

Hk

...

...

PQHP

...

...
Ri Rh

Rl

Rl

Rl

Rl

Rh

Rh

FQ1

FQx

FQk

H1

Hy

Hk

...

...

PQHP

...

...

Ri

PQLP

Rh

Rh

Rh

Rh

Rl

Rl

Rh

Rh

t0

t2

t4 t5

t3

t1

Figure 5. Unbounded pi-blocking for bHQ
i if

evictions from PQHP are allowed. t0: Ri is in
PQHP and Hx inherits the priority of Ri. t1:
Ri is evicted from PQHP by the arrival of k
higher-priority requests. t2: Resource holder
Hy completes; Ri rejoins PQHP. t3: All re-
source holders other than Hy complete. t4:
Once again, all resource holders other than
Hy complete. t5: Ri is evicted once again
from PQHP by the arrival of k higher-priority
requests. There are lower-priority requests in
FQs (except for FQy, which may through repe-
titions of this scenario), so we cannot bound
the time Ri is pi-blocked while in PQHP.

to end pi-blocking under suspension-oblivous analysis.4

Merely disallowing PQHP evictions will not resolve these
issues since doing so trades one k-exclusion problem (re-
sources) for another (the FQs). Since we cannot disallow
the arrival of new higher-priority requests, another mecha-
nism is required to maintain our O(1) bound for bHQ

i . We
will introduce three additional rules inspired by priority do-
nation to maintain A1.

Developed by Brandenburg et al. [4], priority donation
is priority inheritance technique that allows for the bound-
ing of pi-blocking on cluster-scheduled systems. At a high
level, jobs with higher priorities may temporarily suspend
and donate their priority to resource holders. The technique
uses nine rules to achieve bounded pi-blocking on cluster-
scheduled systems. However, our problem domain differs
from that of [4] since: (i) all jobs under consideration are
already suspended and (ii) we are “scheduling” positions in
queues instead of scheduling actual CPUs. This greatly sim-
plifies the donation process. In addition to these simplifica-
tions, donation in the O-KGLP only affects tasks that make
use of protected k resources, so donation is isolated to these
participating tasks. Non-resource-using tasks do not partic-
ipate and cannot experience pi-blocking as a result. This ad-
dresses the limitation discussed earlier in Sec. 1 that arrises
when the k-OMLP is used in a globally-scheduled system.

Additional Rules. The following additional rules allow us
to maintain Assumption A1.

D1 (Precedes Rule O1.2) If the arrival of Ri in the PQ
would cause the eviction from PQHP of a request Ux,
based upon the effective priority of Ux, then the priority
of Ri is donated to Ux, Ri is held from entering the PQ,
and Ji suspends. Resource holder Hx may transitively
inherit the new effective priority of Ux.

D2 Ri ceases to donate its priority to Ux when either

D2.1 Ux enters FQx, or

D2.2 the arrival of a new request Rh would cause the
eviction of Ux with the effective priority of Ri, in
which case Rh replaces Ri as a donor to Ux.

D3 Ri enqueues immediately on the PQ after Ri ceases to
be a priority donor. This action takes place before the set

4One might suggest that requests from PQHP be dequeued in priority-
order to avoid lower-priority requests from preceding Ri. However, doing
so can result in an unbounded scenario when

∣∣PQHP
∣∣ < k. Suppose there

is a single request Rl in PQHP and resource holder Hx inherits a priority
from Rl. After lmax − ε time, a higher-priority request Rh is issued and
joins PQHP; likewise, resource holder Hy inherits a priority from Rh. Soon
thereafter, Hx releases its resource, causing Rh to be dequeued from the
PQ (priority-order) and moved to FQx. The progress Rl made has been
lost. Further, because Rh arrived after Rl, Rl cannot assume the brief
progress made by Rh. This scenario can recurr and Rl makes no progress
while in PQHP.

PQHP is re-evaluated, since this event may be triggered
by a request in PQHP enqueuing on an FQ.

Let us now show that Assumption A1 holds.

Lemma 6. Ux is never evicted from PQHP by the arrival of
new, higher-priority, requests in PQ.

Proof. A request Rd that could cause Ux to be evicted from
PQHP is prevented from entering the PQ while Rd donates
its priority to Ux instead. By Rule D1 and D2, Rd is one
of the k highest-priority requests in the PQ and any donors.
Since Ux has the effective priority of Rd, Ux must have one
of the k highest effective priorities among requests in only
the PQ.

Blocking Analysis Revisited. Jobs that donate their pri-
ority experience an additional source of pi-blocking since
donor requests are delayed from entering the PQ.

Lemma 7. A job Ji may experience pi-blocking due to do-
nation bound by

bD
i = 2 · lmax. (4)

Proof. Donation may introduce pi-blocking in addition to
bFQ, bHQ, and bLQ in two ways: (i) a job may experience pi-
blocking while it acts as a donor; and (ii) when its request is
delayed by lower-priority requests in PQHP, which receive a
donated priority. Let us first bound the duration of (i).

The donor relationship is established at request initiation,
so once a donor ceases to be a donor, it can never be a donor
again. Thus, bounding the duration of donation will bound
the length of pi-blocking caused by donation.

A donor Rd donates its priority to a donee Ux. By Rule
D1, this priority is transitively inherited by resource holder
Hx. Thus, Hx makes progress with respect to the priority
of Rd; Hx will hold its resource for no longer than lmax time
while Rd is pi-blocked. Therefore, Ux will be dequeued
onto FQx in no later than lmax time while Rd is pi-blocked,
at which point the donor relationship is terminated and Rd

joins the PQ.
A request Ri may enter PQLP while requests with lower

base priorities have a higher effective priority, thus leading
to the pi-blocking (ii). Ri can be pi-blocked only while its
priority is among the top m. Thus, while Ri is pi-blocked as
in (ii), each request in PQHP has an effective priority among
the top m, and hence so does each Hx (through inheritance).
Thus, Ri can be pi-blocked for a duration of at most lmax due
to scenario (ii).

With all the building blocks in place, we may now derive
the total pi-blocking a job using the O-KGLP may experi-
ence, which is given by

bi = bD
i + bLQ

i + bHQ
i + bFQ

i . (5)

We can now show that the O-KGLP is optimal with
O(m/k) pi-blocking.

Theorem 1. The O-KGLP is optimal with O(m/k) pi-
blocking.

Proof. The maximum pi-blocking, bi, a job Ji may ex-
perience when issuing a request for a resource under the
O-KGLP is given by Equation(5). The component terms
bD
i and bHQ

i are both O(1), while the terms bLQ
i and bFQ

i are
O(m/k). Thus combined, bi is O(m/k). This is asymptot-
ically optimal because scenarios can be easily constructed
wherein worst-case pi-blocking is Ω(m/k) under any proto-
col.

5 Conclusion

In this paper, we have presented the first real-time
k-exclusion locking protocol designed specifically for
globally-scheduled JLSP systems. The O-KGLP is asymp-
totically optimal with respect to the number of system CPUs
and also scales inversely with additional resources.

In future work, we will evaluate the performance of the
O-KGLP as a part of the schedulability analysis in a larger
study that will evaluate various CPU scheduler and GPU
locking protocol configurations for use in real-time multi-
processor systems with multiple GPUs.

References

[1] J. Anderson and Y. Kim. Shared-memory mutual exclusion:
Major research trends since 1986. Distributed Computing,
16:2003, 2001.

[2] S. Baruah. Feasibility analysis of preemptive real-time sys-
tems upon heterogeneous multiprocessor platforms. In Pro-
ceedings of the 25th IEEE Real-Time Systems Symposium,
pages 37–46, 2004.

[3] B. Brandenburg and J. Anderson. Optimality results for mul-
tiprocessor real-time locking. In Proceedings of the 31st IEEE
Real-Time Systems Symposium, 2010.

[4] B. Brandenburg and J. Anderson. Real-time resource-sharing
under clustered scheduling: Mutex, reader-writer, and k-
exclusion locks. In Proceedings of the 11th International
Conference on Embedded Software, 2011. To appear.

[5] M.-I. Chen. Schedulability analysis of resource access con-
trol protocols in real-time systems. PhD thesis, University of
Illinois at Urbana-Champaign, 1992.

[6] G. Elliott and J. Anderson. Globally scheduled real-time sys-
tems with GPUs. In Proceedings of the 18th Real-Time and
Network Systems, 2010.

[7] M. Fischer, N. Lynch, J. Burns, and A. Borodin. Distributed
FIFO allocation of identical resources using small shared
space. ACM Trans. Program. Lang. Syst., 11(1):90–114,
1989.

[8] P. Gai, L. Abeni, and G. Buttazzo. Multiprocessor DSP
scheduling in system-on-a-chip architectures. In Proceed-
ings of the 14th EuroMicro Conference on Real-Time Systems,
pages 231–238, 2002.

[9] H. Leontyev and J. Anderson. Generalized tardiness bounds
for global multiprocessor scheduling. Real-Time Systems,
44(1):26–71, 2010.

[10] J. Leung and J. Whitehead. On the complexity of fixed-
priority scheduling of periodic, real-time tasks. Performance
Evaluation, 2(4):237–250, 1982.

[11] P. M. Morse. Queues, Inventories, and Maintenance: The
Analysis of Operational System with Variable Demand and
Supply. Wiley, 1958.

[12] R. Pellizzoni and G. Lipari. Holistic analysis of asynchronous
real-time transactions with earliest deadline scheduling. Jour-
nal of Computer and System Sciences, 73:186–206, March
2007.

[13] M. Raynal and D. Beeson. Algorithms for mutual exclusion.
MIT Press, 1986.

	Introduction
	Task Model
	Definition of Optimality
	Locking Protocols
	A Single Queue
	An Optimal k-Exclusion Global Locking Protocol

	Conclusion

