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Abstract

Multicore platforms are predicted to become significantly
larger in the coming years. Given that real-time workloads
will inevitably be deployed on such platforms, the scalabil-
ity of the scheduling algorithms used to support such work-
loads warrants investigation. In this paper, this issue is con-
sidered and an empirical evaluation of several global and
partitioned scheduling algorithms is presented. This evalua-
tion was conducted using a Sun Niagara multicore platform
with 32 logical CPUs (eight cores, four hardware threads
per core). In this study, each tested algorithm proved to be
a viable choice for some subset of the workload categories
considered.

1 Introduction
Most major chip manufacturers have embraced multicore
technologies as a way to continue performance improve-
ments in their product lines, given the heat and thermal
problems that plague single-core chip designs. To date, sev-
eral manufacturers have released dual-core chips, Intel and
AMD each have quad-core chips on the market, and Sun’s
Niagara and more recent Niagara 2 systems have eight-core
chips with multiple hardware threads per core. In the future,
per-chip core counts are expected to increase significantly.
Indeed, Intel has announced plans to release chips with as
many as 80 cores by 2011 [20].

With the arrival of multicore chips such as those just
mentioned, multiprocessors are becoming commonplace in
both servers and personal machines. This has led to renewed
interest in multiprocessor real-time scheduling. In work on
this topic, the greatest focus (by far) has been on algorith-
mic issues. While clearly important, such research must be
augmented by experimental efforts that address implementa-
tion concerns. To facilitate this, our research group recently
developed a Linux extension called LITMUSRT (LInux
Testbed for MUltiprocessor Scheduling in Real-Time sys-
tems), which allows different (multiprocessor) scheduling
algorithms to be linked as plugin components [13, 16, 28].
LITMUSRT has been used by our research group to conduct
empirical evaluations of a variety of different scheduling
policies [10, 11, 13] and synchronization protocols [12, 14].
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Focus of this paper. All of the studies just cited were con-
ducted using a conventional (not multicore) four-processor1

Intel SMP. While such a platform is probably sufficient
for drawing valid conclusions about current multicore de-
signs (as most have modest per-chip core counts), it is not
large enough to expose scalability weaknesses that may
arise as larger platforms become more common. It is also
not sufficient for drawing conclusions about platforms that
are architecturally very different from current Intel designs.
Additionally, many multicore architectures have hardware
features that make them quite different from conventional
SMPs. Perhaps the most important such difference is the
presence of on-chip shared caches, which can lessen task
migration overheads.

Motivated by these observations, we present in this paper
a case-study comparison of several multiprocessor schedul-
ing algorithms that was conducted using a Sun UltraSPARC
T1 “ Niagara” multicore platform. The Niagara is an inter-
esting test platform for several reasons. First, it has 32 log-
ical CPUs (eight cores and four hardware threads per core)
and thus would certainly qualify as a “large” platform to-
day. Second, it has features that are likely to be common in
future multicore designs, such as hardware multi-threading
and on-chip shared-cache support—in the case of the Ni-
agara, a 3 MB L2 cache that is shared by all eight cores.
Finally, each core on the Niagara is based on a RISC-like
design that is quite different from current Intel designs.

In the study described herein, scheduling algorithms are
compared on the basis of real-time schedulability, assuming
runtime overheads as measured under LITMUSRT on our
Niagara test platform. Our usage of this particular test plat-
form has enabled several commonly-raised questions to be
addressed for the first time. For example: It is often claimed
that global algorithms (see below) will not scale well with
increasing processor counts due to run-queue length and
contention—if the focus is schedulability, is this true? It is
likewise often claimed that Pfair algorithms (again, see be-
low) are not practical because they potentially migrate tasks
frequently—on a multicore platform with shared caches, is
this true? In addition to addressing these and other ques-
tions, we also report on changes made to LITMUSRT to re-
base it to the Linux 2.6.24 kernel (from 2.6.20) and to port it

1We use the terms “core” and “processor” somewhat interchangeably.
We often use “core” to emphasize that we are referring to a processor that
is one of several on a single chip.



to the Niagara machine. Given the nature of the case study
presented here, it is important to acknowledge that the scope
of this paper is specifically limited to LITMUSRT as imple-
mented on the Niagara. While we do comment on larger
multicore chips that we expect other manufacturers such as
Intel to release in the future, such comments must naturally
be regarded as somewhat speculative at this point.

Scheduling algorithms considered. In this paper, we
consider the schedulability of sporadic task systems. A spo-
radic task repeatedly generates work to schedule in the form
of sequential jobs. A sporadic task system can be scheduled
via a partitioned, global, or clustered approach. Under par-
titioning, tasks are statically assigned to processors and each
processor is scheduled separately. Under global scheduling,
all jobs are scheduled using a single run queue, and inter-
processor migration is allowed. In a clustered approach,
tasks are partitioned onto clusters of processors, and within
each cluster, assigned tasks are globally scheduled [3, 15].

In our study, we considered the global PD2 Pfair al-
gorithm [27] and partitioned, global (preemptive and non-
preemptive), and clustered variants of the earliest-deadline-
first (EDF) algorithm. Regarding schedulability, we consid-
ered both hard real-time systems wherein deadlines should
not be missed, and soft real-time systems wherein bounded
deadline tardiness is permissible. As explained later, the al-
gorithms considered in our study were selected for both the-
oretical and pragmatic reasons.

Our methodology. The focus of this study is to compare
the aforementioned algorithms in terms of schedulability
considering real-world overheads. This was done via a four-
phase approach: (i) we ported LITMUSRT to our Niagara
platform and implemented the algorithms under investiga-
tion; (ii) once the system was stable, we ran several hundred
(synthetic) task sets with randomly generated parameters on
the test machine and recorded over 70 GB of raw system
overhead samples; (iii) we analyzed the recorded overhead
samples and distilled expressions for average and worst-case
overheads; and (iv) we conducted simulations in which the
schedulability of randomly-generated task sets was checked,
with the overheads determined in Step (iii) taken into ac-
count, using the best schedulability tests currently known
for each tested algorithm.

Summary of results. In the first part of the paper, we de-
scribe our efforts to port LITMUSRT to the Linux 2.6.24
kernel and our Niagara platform, and comment on a few
newly-added extensions. In the second part of the paper we
present our experimental results. As in the prior SMP-based
study [16], we found that for each tested algorithm, sce-
narios exist in which it is a viable choice. Partitioned EDF
usually performed best for hard real-time systems; clustered
EDF usually performed best for soft real-time systems. Per-
haps most surprisingly, a “staggered” variant of PD2 (see

Sec. 2) was among the best performing algorithms overall.
Its good performance is due to the theoretical optimality of
PD2, which counterbalances the higher runtime overheads
of Pfair algorithms. This result calls into question the com-
mon belief that global algorithms are not viable on platforms
with more than just a few processors.

We present these findings later in Sec. 4 after first provid-
ing needed background in Sec. 2 and describing our modifi-
cations to LITMUSRT in Sec. 3.

2 Background
We consider the scheduling of a system of sporadic tasks,
T1, . . . , TN , onm processors. The jth job (or invocation) of
task Ti is denoted T j

i . Such a job T j
i becomes available for

execution at its release time, r(T j
i ). Each task Ti is specified

by a worst-case (per-job) execution cost, e(Ti), and period,
p(Ti). Job T j

i should complete execution by its absolute
deadline, r(T j

i ) + p(Ti); otherwise, it is tardy. The spacing
between job releases must satisfy r(T j+1

i ) ≥ r(T j
i )+p(Ti);

if it further satisfies r(T j+1
i ) = r(T j

i ) + p(Ti), then Ti is
called periodic. Task Ti’s utilization or weight reflects the
processor share it requires and is given by e(Ti)/p(Ti). In
this paper, we assume that tasks are independent and do not
self-suspend.

Scheduling. A hard real-time (HRT) system is considered
to be schedulable iff it can be shown that no job deadline
is ever missed. A soft real-time (SRT) system is considered
(in this paper) to be schedulable iff it can be shown that
deadline tardiness is bounded. Any algorithm for checking
schedulability necessarily depends on the scheduling algo-
rithm being used and must be designed to account for over-
heads that arise in practice, such as context-switching times,
cache-related overheads, etc. Such overheads are typically
accounted for by inflating per-job execution costs.

As noted earlier, multiprocessor real-time scheduling al-
gorithms can follow a partitioned, global, or clustered ap-
proach. Below, we describe the representative algorithms
from each category considered in our study. Note that we do
not consider static-priority algorithms in this paper. This is
intentional: such algorithms are inferior to those described
below from the standpoint of schedulability generally [17],
and cannot guarantee bounded tardiness without severely re-
stricting overall utilization in the SRT case [19].

EDF scheduling. In EDF scheduling algorithms, jobs are
scheduled in order of increasing deadlines, with ties broken
arbitrarily. In this paper, we consider a clustered preemptive
EDF algorithm, denoted C-EDF, in which tasks are par-
titioned onto clusters of processors and those within each
cluster are scheduled globally within it. We also consider
two special cases of C-EDF: partitioned EDF, denoted P-
EDF, where each cluster consists of only one processor, and
global EDF, denoted G-EDF, where all processors form
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Figure 1: (a) G-EDF, (b) G-NP-EDF, and (c) PD2 schedules of a two-processor system with three tasks: T1, with an execution cost
of 1.5 and period of 3.0, T2 with an execution cost of 2.0 and a period of 3.0, and T3 with an execution cost of 4.0 and a period of 6.0.

one cluster. In addition to these preemptive algorithms,
we consider non-preemptive G-EDF, denoted G-NP-EDF.
Non-preemptive algorithms allow task migrations, but once
a job commences execution on a processor, it runs to com-
pletion on that processor without preemption. Thus, jobs
may not migrate.

Partitioning algorithms require that a bin-packing prob-
lem be solved to assign tasks to processors. As a result, there
exist task systems with total utilization slightly higher than
m/2 that no such algorithm can schedule, even if bounded
deadline tardiness is allowed [19]. Thus, under P-EDF, re-
strictive caps on total utilization are required to ensure tim-
ing constraints, for both HRT and SRT systems. Similar
caps are required for G-EDF in the HRT case. However, in
the SRT case, G-EDF ensures bounded deadline tardiness,
as long as total utilization is at mostm [19]. The same is true
of G-NP-EDF, which is significant, because under it, over-
heads are lower (since jobs do not migrate). C-EDF was
proposed as a compromise between P-EDF and G-EDF for
large multicore platforms in which some cores share a high-
level cache, while others share only a low-level cache (or no
cache) [15]. In such a platform, it is best to consider each set
of cores that share a high-level cache to be a “cluster.” In this
way, lower migration costs can be ensured than for G-EDF
and the bin-packing limitations of P-EDF are ameliorated.
Regarding the latter, note that each cluster is viewed as a
bin; thus, clustering increases bin sizes and decreases the
number of bins, which makes bin-packing easier.

Pfair scheduling. Pfair scheduling algorithms [6, 26] can
be used to optimally schedule HRT (and thus SRT) systems,
provided all timing parameters are multiples of the system’s
quantum size. The term “optimal” means that no deadline is
missed when scheduling any feasible system (i.e., any sys-
tem with total utilization at most m). In a Pfair algorithm, a
job T j

i of a task Ti of weight wt(Ti) is scheduled one quan-
tum at a time in a way that approximates an ideal allocation
in which it receivesL·wt(Ti) time over any interval of length
L within [r(T j

i ), r(T j
i ) + p(Ti)). This is accomplished by

sub-dividing each task into a sequence of quantum-length
subtasks, each of which must execute within a certain time
window, the end of which is its deadline. Subtasks are
scheduled on an EDF basis, and tie-breaking rules are used
in case of a deadline tie. A task’s subtasks may execute on
any processor, but not at the same time (tasks are sequen-
tial). In this paper, we consider the PD2 [1, 26] algorithm,
which is the most efficient known optimal Pfair algorithm,
and a variant of it called staggered PD2 (S-PD2) [23]. Un-
der PD2 (and most other Pfair algorithms), quanta are as-
sumed to align across processors, i.e., all processors cross
the same quantum boundary at the same time. With S-
PD2, quanta are staggered across processors, i.e., quantum
boundaries are spread out evenly across a full quantum. Un-
der both PD2 and S-PD2, if a task is allocated a quantum
when it requires less execution time, the unused part of the
quantum is “wasted.” In contrast, under the EDF schemes
considered above, such a task would relinquish its assigned
quantum “early,” allowing another task to be scheduled.

Example. To see some of the differences in the algo-
rithms described above, consider Fig. 1, which depicts two-
processor G-EDF, G-NP-EDF, and PD2 schedules for a
system of three tasks, T1, T2, and T3, as defined in the fig-
ure’s caption. There are several things worth noting here.
First, these three tasks cannot be partitioned onto two pro-
cessors, so this system is not schedulable under P-EDF (so
we do not depict a schedule for this case). (Recall that C-
EDF generalizes both G-EDF and P-EDF.) Second, under
each of G-EDF and G-NP-EDF a deadline is missed. Third,
in the G-NP-EDF schedule in inset (b), task T2’s second job
cannot execute at time 3 since T3’s job must execute non-
preemptively (there is actually a deadline tie here). Fourth,
each task has the same window structure in inset (c). For
tasks T2 and T3, this is easily explained: a task’s window
structure is determined by its weight and both of these tasks
have a weight of 2/3. As for task T1, under Pfair scheduling,
windows are defined by assuming that each task’s execution
cost is an integral number of quanta. Thus, we must round



up T1’s cost to 2.0, giving it a weight of 2/3. Because of this,
some quanta allocated to task T1 are only half-used.

Earlier experimental study. In the earlier SMP-based
study [16], all of the algorithms described above were con-
sidered, except C-EDF. In this prior study, P-EDF and PD2

tended to be the best choices for HRT workloads. This is due
to the lower runtime overheads of P-EDF (because tasks do
not migrate and processors are scheduled using uniprocessor
algorithms) and the optimality of PD2. For SRT workloads,
G-EDF and G-NP-EDF were usually preferable. This is be-
cause these algorithms do not require restrictive utilization
caps in this case, and on the platform considered in [16],
were found to have lower runtime overheads than Pfair al-
gorithms. In this paper, we seek to re-examine these algo-
rithms on a “large” multicore platform with shared caches
and also determine the viability of clustered approaches.

3 Implementation

Before presenting our experimental results, we briefly dis-
cuss our efforts in re-basing LITMUSRT to Linux 2.6.24,
porting it to the Niagara, and adding clustered-scheduling
support.

LITMUSRT design. The pre-existing LITMUSRT code
base that was modified is based on Linux 2.6.20. A detailed
description of that LITMUSRT version can be found in [13].
Here, we provide a brief description. LITMUSRT has been
implemented via changes to the Linux kernel and the cre-
ation of user-space libraries. Since LITMUSRT is concerned
with real-time scheduling, most kernel changes affect the
scheduler and timer-interrupt code. The kernel modifica-
tions can be split into roughly three components. The core
infrastructure consists of modifications to the Linux sched-
uler, as well as support structures and services such as trac-
ing and priority queues. The scheduling policies are imple-
mented as scheduler plugins that provide functions that im-
plement needed scheduling-related methods. Finally, a col-
lection of system calls provides an API for real-time tasks
to interact with the kernel. This basic structure has been re-
tained in the new version of LITMUSRT. Some of the more
notable changes are discussed next.

Integrating with the new Linux scheduler. The new
Linux scheduler, introduced in version 2.6.23, selects a
task to schedule by traversing a list of scheduling classes
and selecting the highest-priority task from the first non-
idle class. In stock Linux, there are three classes: POSIX
RT, CFS, and IDLE (listed in order of decreasing priority).
We integrated LITMUSRT within Linux by inserting a new
LITMUSRT scheduling class as the top scheduling class.
Thus, jobs scheduled by LITMUSRT always have higher
priority than other (background) jobs.

While scheduling classes provide a basic extension
mechanism, implementing global schedulers is still diffi-
cult because Linux fundamentally assumes partitioning—
all changes to a task’s state are serialized through the lock
that protects the run queue where the task resides (there is
one run queue per processor). Thus, in order for a task
to migrate, two run queue locks (source and target run
queue) must be held. The LITMUSRT core needs to mi-
grate a task when a global scheduler plugin selects a real-
time task that has executed previously on a different proces-
sor. However, the Linux scheduler acquires the local (tar-
get) run queue lock before invoking the scheduling classes.
If the LITMUSRT migration code were to simply acquire
the source’s run queue lock, then deadlock could quickly
ensue. Instead, the local run queue’s lock must be released
before both locks can be acquired together (in a specific or-
der). This creates a race window, between the invocation of
the active plugin and the actual context switch, in which the
state of both local tasks and the migrating task can change.
For example, if the previously-scheduled task blocked (pos-
sibly due to loading shared libraries, etc.) and resumes in
the short time while its run queue lock is available, then
it may not be noticed by the scheduler and be “forgotten”
(i.e., it may never be scheduled again) since the stock Linux
scheduler does not expect tasks to resume while scheduling
is in progress (the run queue lock normally protects against
this scenario). Such untimely task state changes and similar
races can be detected (and properly handled) by examining
the state of the involved tasks prior to releasing and after
reacquiring the local run queue lock.

Job releases. Sporadic job releases are now controlled
through the use of the high-resolution timers that were intro-
duced in version 2.6.16 of Linux. Such timers allow events
to occur at an exact time as the result of a timer interrupt.
The times at which events can be specified to occur is limited
only by the precision and accuracy of the underlying timer
hardware. As a result, job releases can now occur within a
few hundred nanoseconds of any specified release time, and
periods do not have to be a multiple of the quantum size.

Quantum alignment. In Linux, a quantum is defined to
be the interval between two ticks, which are periodic timer
interrupts. In LITMUSRT, the quantum length is set at 1ms.
Some scheduling policies implemented in LITMUSRT (e.g.,
PD2) require that quanta are aligned across CPUs. This pro-
vides a unified and consistent notion of time across the sys-
tem. The Linux kernel uses high-resolution timers (when
such hardware is available) to set up a periodic tick on each
CPU in such a way that interrupts are uniformly distributed
over the first half of the tick length—the result is a form of
staggered quanta. We modified the tick initialization code
to optionally have ticks occur at the same time on each
CPU, resulting in aligned quanta, or to stagger them evenly



across entire quanta. The choice between aligned or stag-
gered quanta is made at boot time.

Clustered scheduling. Clustered scheduling was imple-
mented as a hybrid of the existing G-EDF and P-EDF plug-
ins. Individual ready queues are used as in P-EDF, but with
one ready queue per cluster. Within each scheduling do-
main, the G-EDF implementation is used to make schedul-
ing decisions. In the current implementation, a cluster con-
sists of the four hardware threads of one core (since they
share an L1 cache). In the rest of the paper, references to
“C-EDF” are assumed to refer to this variant. In a future
version, we plan to support runtime changes to the cluster
size (when there is no real-time workload present).

Other LITMUSRT updates. Various other updates have
taken place since the last revision of LITMUSRT. These up-
dates include the following. First, we now allow scheduling
policies to be changed without rebooting whenever there is
no real-time workload present. Second, task execution costs
and periods are now specified in nanoseconds, so that more
accurate methods of handling job releases and task overruns
can be employed (such as the use of high-resolution timers
for job releases, discussed earlier). Third, for increased
timing accuracy, the notion of time used in LITMUSRT is
now that provided by the high-resolution timers. Fourth,
we now allow both processes and threads to be used to de-
fine LITMUSRT tasks—processes have independent address
spaces, while threads share the same address space. Fifth,
we rewrote the PD2 plugin to enable sporadic job releases
(previously, only periodic tasks were supported). Sixth, we
implemented FIFO ticket locks for the sparc64 architec-
ture (stock Linux provides ticket locks only on Intel’s x86
architecture). Seventh, we introduced proper support for
synchronous and asynchronous task-system initialization.
The new API allows real-time tasks to finish their initializa-
tion and then wait for the task-system release (phases can be
specified for tasks to support asynchronous releases). In pre-
vious versions of LITMUSRT, a more ad hoc approach was
used that involved transitioning the system between non-
real-time and real-time mode.

Niagara-related challenges. In performing the above
changes, several Niagara-related challenges arose. First,
several Linux tools that are typically used for debugging
were either not available or broken on the Niagara. (These
problems will hopefully be fixed in mainline Linux soon.)
Most notable was lockdep, a debugging facility that de-
tects potential causes of kernel deadlock at runtime. An
alternative is to use netconsole, which allows debug-
ging messages to be sent to another machine before the local
console freezes (bugs in scheduling code often bring down
the system before any debug output can be written locally).
However, netconsole could not be reliably used due to
memory management bugs in the underlying network driver.

Second, the Niagara uses a weak memory consistency
model. To deal with this, memory barrier instructions had to
be added to the existing LITMUSRT code. Finally, the dif-
ferent architecture, higher degree of parallelism, and slower
core speeds of the Niagara (as compared to our prior SMP
testbed) caused several race conditions to be exposed that
were actually present in the pre-existing LITMUSRT code
base (but never triggered in testing). Dealing with all of
these various issues was made more challenging by the lack
of good debugging support.

4 Experiments
In this section, we report on the results of experiments con-
ducted using LITMUSRT to compare the scheduling algo-
rithms introduced previously. We compared these algo-
rithms on the basis of both schedulability and tardiness, un-
der consideration of various overheads determined empiri-
cally on our test platform.

4.1 Overheads
In real systems, task execution times are affected by the fol-
lowing sources of overhead. At the beginning of each quan-
tum, tick scheduling overhead is incurred, which is the time
needed to service a timer interrupt. When a job is released,
release overhead is incurred, which is the time needed to
service the interrupt routine that is responsible for releasing
jobs at the correct times. Whenever a scheduling decision is
made, a scheduling overhead is incurred, which is the time
taken to select the next job to schedule. Whenever a job is
preempted, context-switching overhead is incurred, as is ei-
ther preemption or migration overhead; the former term in-
cludes any non-cache-related costs associated with the pre-
emption, while the latter two terms account for any costs
due to a loss of cache affinity. Preemption (resp., migration)
overhead is incurred if the preempted job later resumes exe-
cution on the same (resp., a different) processor.

Limitations of real-time Linux. To satisfy the strict def-
inition of HRT, all worst-case overheads must be known in
advance and accounted for. Unfortunately, this is currently
not possible in Linux, and it is highly unlikely that it ever
will be.2 This is due to the many sources of unpredictability
within Linux (such as interrupt handlers and priority inver-
sions within the kernel), as well as the lack of determinism
on the hardware platforms on which Linux typically runs.
The latter is especially a concern, regardless of the OS, on
multiprocessor platforms. Indeed, research on timing anal-
ysis has not matured to the point of being able to analyze

2By “Linux,” we mean modified versions of the stock Linux kernel
with improved real-time capability, not paravirtualized variants such as
RTLinux [29] or L4Linux [22], where real-time tasks are not actually Linux
tasks. Stronger notions of HRT can be provided in such systems, at the ex-
pense of a more restricted and less familiar development environment.



Plugin Tick AVG Schedule AVG Context Switch AVG Release AVG
PD2 4.336 + 0.026N 4.667 2.597 + 0.001N —

S-PD2 2.169 + 0.016N 4.247 2.539 + 0.001N —
G-EDF 2.080 + 0.002N 11.836 + 0.056N 7.550 5.840 + 0.127N
C-EDF 2.863 6.080 + 0.010N 3.174 16.533
P-EDF 2.059 + 0.002N 2.678 + 0.008N 4.728 + 0.005N 3.952 + 0.005N

Plugin Tick WC Schedule WC Context Switch WC Release WC
PD2 11.271 + 0.301N 31.720 3.107 + 0.010N —

S-PD2 4.838 + 0.321N 43.182 3.219 + 0.003N —
G-EDF 3.043 + 0.003N 55.284 + 0.263N 29.233 45.025 + 0.314N
C-EDF 3.230 14.758 + 0.011N 6.077 30.347
P-EDF 2.727 + 0.002N 8.565 + 0.014N 14.917 + 0.036N 4.727 + 0.009N

Table 1: Measured average (SRT) and worst-case (HRT) kernel overheads, in µs. N is the number of tasks. In our PD2 and S-PD2

implementation, periodic tasks do not incur release overheads (see Sec. 4.4).

complex interactions between tasks due to atomic opera-
tions, bus locking, and bus and cache contention. Despite
these observations, there are now many advocates of using
Linux to support applications that require some notion of
real-time execution. As noted by McKenney [25],

I believe that Linux is ready to handle applications
requiring sub-millisecond process-scheduling and
interrupt latencies with 99.99+ percent proba-
bilities of success. No, that does not cover ev-
ery imaginable real-time application, but it does
cover a very large and important subset.

Our objectives in designing LITMUSRT are in agreement
with McKenney’s viewpoint.

Measuring overheads. Given the comments above about
timing analysis, overheads must be determined experimen-
tally. Doing so is not as easy as it may seem. In particular, in
repeated measurements of some overhead, a small number
of samples may be “outliers.” This may be due to a variety
of factors, such as warm-up effects in the instrumentation
code and the various non-deterministic aspects of Linux it-
self noted above. In light of this, we determined each over-
head term by discarding the top 1% of measured values, and
then taking the maximum (for HRT) or average (for SRT) of
the remaining values. This same approach was used previ-
ously in [14]. We believe that this is approach is reasonable,
given the way in which Linux-based systems are likely to be
used in supporting real-time workloads. Moreover, the ob-
tained overheads should be more than sufficient for obtain-
ing a valid comparison of different scheduling approaches,
which is our main focus.

All overheads were measured on the Sun Niagara (Ul-
traSPARC T1) system mentioned earlier. The Niagara is a
64-bit machine containing eight cores on one chip running
at 1.2 GHz. Each core supports four hardware threads. On-
chip caches include a 16K (resp., 8K) four-way set associa-
tive L1 instruction (resp., data) cache per core, and a shared,
unified 3 MB 12-way set associative L2 cache. Our test sys-
tem is configured with 16 GB of off-chip main memory. In

contrast to Sun’s upcoming Niagara-successor “Rock,” our
first-generation Niagara does not employ advanced cache-
prefetching technology.

Below, we discuss the overheads that were measured.
In this discussion, G-NP-EDF is not considered because
it shares a common implementation with G-EDF (non-
preemptivity is enabled by simply setting a flag [13]) and
thus they have the same overheads.

Kernel overheads. We obtained kernel overheads by en-
abling aligned quanta and measuring the system’s behavior
for periodic task sets consisting of between 50 and 450 tasks
in steps of 50. For each scheduling algorithm and task-set
size, we measured ten task sets generated randomly (as de-
scribed in Sec. 4.2), for a total of 90 task sets per scheduling
algorithm. Each task set was traced for 30 seconds. We
repeated the same experiments with staggered quanta. In
total, more than 45 GB of trace data and 600 million indi-
vidual overhead measurements were obtained during more
than seven hours of tracing.

For each overhead term, we plotted all measured values
for both aligned and staggered quanta as a function of task-
set size (discarding outliers, as discussed above). We noted
that average overheads were substantially less for staggered
quanta. This is due to reduced bus/lock contention in this
case (since kernel invocations become more spread out).
Given that we assume average overheads for SRT systems,
we opted to use average overheads obtained with staggered
quanta for SRT systems (except for PD2). Staggering causes
an additional quantum of potential tardiness, which we re-
garded to be of negligible impact. As tardiness should be
zero in HRT systems, worst-case overheads were defined
assuming aligned quanta (except for S-PD2). When plot-
ted, most overheads showed a clear linear trend. To cap-
ture these trends, we computed expressions for maximum
and average values using linear regression analysis. For the
few overheads where measurements did not reveal a conclu-
sive trend, we assumed a constant value equal to the max-
imum observed value. All kernel overhead expression so
computed are shown in Table 1.



Overall Preemption Intra-Cluster Migr. Inter-Cluster Migr.
Algorithm AVG WC AVG WC AVG WC AVG WC

PD2 172.05 681.11 131.46 649.43 141.82 654.22 187.62 681.11
S-PD2 89.396 104.13 86.214 103.37 87.844 103.44 90.233 104.13
G-EDF 73.047 375.44 95.196 375.44 73.454 326.82 72.592 321.14
C-EDF 67.047 171.62 78.507 171.62 64.772 167.34 — —
P-EDF 72.362 139.12 72.362 139.12 — — — —

Table 2: Measured average (SRT) and worst-case (HRT) preemption and migration costs, in µs. Note that, while PD2, S-PD2, and G-
EDF are not clustered algorithms, we still distinguish between migrations within a cluster (staying on the same core) and across clusters
(moving to a different core). In our schedulability experiments, the “overall” figures were used since in global algorithms it is generally
not possible to predict if a preempted task will migrate.

Preemption and migration overheads. To measure the
impact of losing cache affinity, we ran a number of task sets
under LITMUSRT in which each job repeatedly accesses a
64K working set (WS) while maintaining a 75/25 read/write
ratio. We found that 64K WS sizes produced significant
differences in the overheads measured for each algorithm.
We considered larger WS sizes to be unreasonable given the
memory access times and shared cache size of our platform.
Smaller WS sizes would likely result in smaller overheads
and better overall performance for global policies, but are
not considered here—thus, our experiments could be seen
as being biased towards partitioning.

After the first access by a job of its entire WS, subsequent
references are cache-warm, until a preemption or migration
occurs. Tasks were instrumented to detect and record these
situations and the corresponding access times for the entire
WS. The time to reference the WS immediately after resum-
ing execution, minus the time to reference the WS when it
is cache-warm, gives the cost of the preemption or migra-
tion (depending on whether the corresponding job resumed
on a different CPU) that occurred. In total, over 105 mil-
lion preemption and migration overheads were recorded for
task sets consisting of between 50 and 450 tasks run for 60
seconds each. Again, we measured a total of 90 task sets
per scheduling algorithm. (Aligned quanta were used for
all algorithms except S-PD2. Quantum placement does not
affect preemption behavior in EDF schemes.) As noted ear-
lier, we determined overheads for HRT (resp., SRT) systems
by taking the maximum (resp., average) of the recorded val-
ues after discarding the top 1% of measured values. In the
case of preemption/migration overheads, we also discarded
any value that clearly was not correctly measured (e.g., due
to a preemption while measuring an overhead).

Table 2 indicates that the preemption and migration over-
heads are considerably higher than in the Intel platform con-
sidered in the earlier SMP study [16]. The Niagara does not
perform any branch prediction or attempt to hide costs due to
memory latency or pipeline stalls by allowing out-of-order
instruction execution. Hardware multi-threading is intended
as the main mechanism for alleviating these costs. How-
ever, while hardware multi-threading may increase overall
throughput, it does not improve the performance of a single
sequential task. These costs, combined with the low per-

core clock frequencies relative to most Intel platforms, cause
the Niagara to execute tasks much slower than any current
Intel platform even in the absence of preemptions and mi-
grations.

Note that, while the Niagara contains a shared on-chip
lower-level cache, the size of this cache (3 MB) is quite
small relative to those in the latest Intel multicore chips,
where shared caches are often 2-3 MB per-core (e.g., four
cores might share a 12 MB cache). Thus, the impact of
a shared cache on migration costs is relatively small, even
with 64K per-job WS sizes, since cache affinity can be lost
after relatively short preemptions. Additionally, contention
for the bus and memory subsystem appears to be a major
source of overhead—this is especially apparent when com-
paring the worst-case overheads of PD2 and S-PD2. In
PD2, all preempted jobs access their WS at the same time
upon resuming (or beginning) execution, since all proces-
sors make scheduling decisions at the same time, and this
results in significant worst-case contention on such a large
platform.

In the average case, the overheads under each EDF algo-
rithm are similar. We believe that the fluctuations in this
case are due to the variation in the task sets that are run
under each algorithm, and the non-determinism associated
with attempting to measure these overheads within user-
space tasks (these were the only overheads that could not
be measured entirely within the kernel). In the case of PD2,
contention appears to have an impact even on average-case
results—since scheduling decisions are only made at quan-
tum boundaries, the chance that multiple tasks resume exe-
cution at the same time increases significantly, resulting in
a corresponding increase in contention and overheads. In
S-PD2, scheduling decisions are evenly distributed across
each quantum, which reduces contention both in the worst
and average cases, resulting in lower overheads as compared
to PD2. It also results in the lowest worst-case overhead
overall, as it is the only approach that forces scheduling de-
cisions, and thus the times that jobs resume after being pre-
empted, to be evenly distributed over time—this keeps con-
tention low in all cases.

Interestingly, for G-EDF and C-EDF, the cost of a pre-
emption is slightly more than the cost of a migration. We
believe that this is due to the length of time that a job is



preempted. Preemption lengths were longer when a task
resumed on the same CPU (instead of a different CPU),
and longer preemption lengths cause a greater loss of cache
affinity and hence higher overheads. This makes sense un-
der G-EDF and C-EDF: a job that is preempted will only
migrate to another CPU if one becomes available before
its current CPU is again available. Thus, when a job mi-
grates, the total length of its preemption is reduced. In G-
EDF in particular, an inability to migrate to another CPU
to resume execution upon being preempted is rare on such
a large platform, so such scenarios had a small impact on
overall average-case costs. Interestingly, these trends were
not observed for PD2 or S-PD2—since preemption lengths
did not vary much for these algorithms, the bus and mem-
ory subsystem contention costs associated with migrations
remain the dominant factor. Preemption lengths tend to be
more uniform in these algorithms, due to the way in which
jobs are scheduled as subtasks that only become eligible a
fixed amount of time after a job release. As a final obser-
vation, note that costs are larger overall for algorithms that
allow migrations, due to an increase in contention that im-
pacts the preemption and migration overheads of all jobs,
even those that do not migrate.

4.2 Experimental Set-Up
We determined the schedulability of randomly-generated
task sets under each tested algorithm, for both HRT and SRT
systems, using the overheads listed in Sec. 4.1. We used dis-
tributions proposed by Baker [2] to generate task sets. Task
periods were uniformly distributed over [10ms, 100ms].
Task utilizations were distributed differently for each ex-
periment using three uniform and three bimodal distribu-
tions. The ranges for the uniform distributions were [0.001,
0.1] (light), [0.1, 0.4] (medium), and [0.5, 0.9] (heavy). In
the three bimodal distributions, utilizations were distributed
uniformly over either [0.001, 0.5) or [0.5, 0.9] with re-
spective probabilities of 8/9 and 1/9 (light), 6/9 and 3/9
(medium), and 4/9 and 5/9 (heavy). Task execution costs ex-
cluding overheads were calculated from periods and utiliza-
tions (and may be non-integral). Each task set was created
by generating tasks until a specified cap on total utilization
(that varied between 1 and 32) was reached and by then dis-
carding the last-added task, thereby allowing some slack to
account for overheads. Sampling points (on average spaced
0.13 apart) were chosen such that sampling density is high
in areas where curves change rapidly. For each distribution
and each sampling point, we generated 2000 task sets, for a
total of over 8.5 million task sets.

Schedulability tests. Schedulability was checked using
schedulability tests that were augmented to account for the
overheads listed in Sec. 4.1. Overheads were accounted for
using standard techniques for inflating task execution costs
(see [18] for an in-depth discussion). With the exception of

C-EDF and G-EDF, the schedulability tests used in our ex-
periments (which we briefly summarize below) are the same
as those used in the earlier SMP-based study [16].

For PD2 and S-PD2, we simply checked if total utiliza-
tion, including overheads, is at most m. Note that, under
both Pfair schemes, execution costs must be rounded up to
integral values after overheads are included. Additionally,
for HRT correctness, periods must be reduced by one since
sporadic releases only take effect at quantum boundaries.
To compensate for the worst-case delay due to staggering
under S-PD2, task periods must be further reduced by m−1

m
(in HRT systems). Period reduction is not required for SRT
correctness since it introduces only constant tardiness.

For P-EDF and C-EDF, we determined whether each
task set could be partitioned using the first-fit decreasing
heuristic. Under P-EDF, HRT and SRT schedulability dif-
fer only in the use of maximum or average overheads: un-
der partitioning, if tardiness is bounded, then it is zero, so
the only way to schedule a SRT task set is to view it as
hard. Under C-EDF, schedulability within each cluster was
checked by applying the appropriate G-EDF test(s) (HRT
or SRT) within the cluster (see below). There exists a cyclic
dependency between partitioning a task set and accounting
for overheads. In our experiments, we first tried to partition
and then inflate for overheads. If the inflation caused a pro-
cessor (or cluster) to become over-utilized, we then tried to
first inflate and then partition. Not that testing HRT schedu-
lability by partitioning gives P-EDF a significant advantage
since this method is considerably less pessimistic than ap-
plying closed-form tests.

New HRT schedulability tests for G-EDF have been pub-
lished since the prior SMP-based study [16]. There now are
five major sufficient (but not necessary) HRT schedulability
tests for G-EDF [4, 5, 7, 8, 21]. Interestingly, for each of
these tests, there exist task sets that are deemed schedulable
by it but not the others [5, 8]. Thus, HRT schedulability un-
der G-EDF and C-EDF was determined by testing whether
a given task set passes at least one of these five tests. We
omit G-NP-EDF from our HRT schedulability results be-
cause there currently exists no good HRT schedulability test
for it. For SRT schedulability, since G-EDF and G-NP-
EDF can guarantee bounded deadline tardiness if the system
is not overloaded [18], only a check that total utilization is
at most m is required.

4.3 Schedulability Results

HRT schedulability results are shown in Fig. 2. The first col-
umn of the figure (insets (a)–(c)) gives results for the three
uniform distributions (light, medium, heavy) and the second
column (insets (d)–(f)) gives results for the three bimodal
distributions. The plots indicate the fraction of the generated
task sets each algorithm successfully scheduled, as a func-
tion of total utilization. In the HRT case, aligned quanta are
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Figure 2: Hard real-time schedulability under various per-task weight distributions. (a) Uniform light. (b) Uniform medium. (c)
Uniform heavy. (d) Bimodal light. (e) Bimodal medium. (f) Bimodal heavy.



assumed for all algorithms except for S-PD2.

There are several things to notice here. First, PD2 ex-
hibits untenable performance due to its high preemption and
migration costs. By preempting and scheduling subtasks at
the same instant on all processors, PD2 exposes the off-chip
memory bandwidth to be a critical bottleneck. In contrast,
S-PD2—specifically designed to avoid bus contention—
exhibits consistently good performance, suggesting that its
slight tradeoff in optimality for reduced runtime overheads
yields a viable alternative to partitioning. Second, G-EDF
is consistent as well, but consistently poor. In the HRT case,
the schedulability tests used for G-EDF are inferior to those
used for the other schemes. Moreover, it suffers from high
worst-case scheduling and migration costs. The former is
especially significant when many light tasks are present (in-
sets (a) and (d)) because in such cases there are compara-
tively more tasks overall. Third, P-EDF performs best, ex-
cept when many heavy tasks are present (inset (c)). P-EDF
benefits from low run-time overheads but suffers from bin-
packing issues, which are somewhat ameliorated by using
a bin-packing heuristic, instead of a closed-form test. Note
that it outperforms S-PD2 except for when most tasks are
very heavy (inset (c)). Finally, notice that C-EDF exhibits
performance that is intermediate between G-EDF and P-
EDF, as might be expected.

Schedulability results for the SRT case are shown in
Fig. 3, which is organized similarly to Fig. 2. In the SRT
case, staggered quanta are assumed for all algorithms except
PD2, which we have included for the sake of completeness.
Again, there are several interesting things to notice. First,
G-EDF is very negatively impacted by its higher schedul-
ing overheads. This can be seen clearly in insets (a), (b), and
(d). In these cases, most tasks are light, which means that
the overall number of tasks is high. Note that, in contrast
to the HRT case, G-EDF is not negatively impacted here by
the schedulability test used for it. Second, G-NP-EDF does
not exhibit significantly better performance than G-EDF (in
fact, the graphs almost coincide in inset (a)). This strongly
suggests that preemption and migration costs are not the lim-
iting factor for the G-EDF family of scheduling algorithms
(as implemented in LITMUSRT). Rather, they are limited by
scheduling overheads. Third, P-EDF performs correspond-
ingly poorly when task utilizations are high (inset (c)), due
to bin-packing problems. Note that, for P-EDF, the only
difference between Figs. 2 and 3 is that worst-case over-
heads are assumed in the former, and average-case in the
latter. Fourth, C-EDF performs best in most cases (insets
(b) and (d)-(f)), since it has lower runtime overheads than
G-EDF and does not suffer from bin-packing limitations as
severe as P-EDF. Consequently, its performance degrades
when there are either very many light tasks (inset (a)) or
mostly heavy tasks (inset (c)), but not as much as the perfor-
mance of G-EDF and P-EDF, respectively. Fifth, S-PD2

is usually among the better performing algorithms and the
only algorithm that does not exhibit pathological scenarios.
While PD2 performs significantly better than in the HRT
case, it is usually among the worst algorithms. This is due
to PD2 using aligned quanta and hence having higher over-
heads.

In the SRT case, tardiness is also of interest. Fig. 4
shows the average of the per-task worst-case tardiness
bounds (computed using formulas in [19]) for the scenario
in Fig. 3(b). (PD2, S-PD2, and P-EDF are not shown, be-
cause assuming staggered quanta, tardiness under each is at
most one or two quanta.) As seen, tardiness is highest under
G-NP-EDF and lowest under C-EDF. The “stair-step” pat-
tern for C-EDF is due to a ceiling operator in the tardiness-
bound expression.

4.4 Discussion

While PD2 and G-EDF (and correspondingly G-NP-EDF)
are both global algorithms, they are implemented quite dif-
ferently in LITMUSRT. Our G-EDF implementation is
mostly event-based. Job releases are implemented by us-
ing one-shot Linux high-resolution timers. Moreover, the
scheduler may be invoked from different processors in re-
acting to these and other events. This design enables arbi-
trary task periods to be supported and job releases to be very
accurately timed. One timer is used for each release time; if
multiple releases coincide (e.g., at a hyperperiod boundary)
one timer is shared and only one release event is handled by
the scheduler, which enables merging the released jobs into
the ready queue in O(logN) time. In contrast, a simpler
implementation that does not share timers has to perform
O(N) individual merges. We found that sharing timers re-
duces measured worst-case release overheads significantly
(in some cases by up to 50 percent). However, our experi-
ments revealed that G-EDF still suffers from high overheads
due to long queue lengths and lock-contention. We are cur-
rently investigating approaches to mitigate these sources of
overhead.

In contrast, the PD2 plugin is very much time-driven.
The scheduling logic is contained mostly in the tick han-
dler, which is invoked at every quantum boundary. Since
PD2 scheduling decisions are made at well-known times, a
master-slave approach is used where only one processor (the
master) schedules the next quantum; this eliminates any po-
tential run-queue contention. Moreover, queue-merge op-
erations can be performed to add newly-released work to
the run queue in O(logN) time. Such a design also has
the advantage that strictly-periodic execution does not re-
quire per-release timers. However, one downside of the PD2

implementation is that a sporadic job can experience up to
one quantum of delay (the time to the next quantum bound-
ary) before it becomes eligible for scheduling. (Since PD2

and S-PD2 are realized by the same implementation, similar
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Figure 3: Soft real-time schedulability under various per-task weight distributions. (a) Uniform light. (b) Uniform medium. (c)
Uniform heavy. (d) Bimodal light. (e) Bimodal medium. (f) Bimodal heavy. (Please note the different scale of (a). Also, note that the
G-EDF and G-NP-EDF curves nearly coincide.)



comments apply to S-PD2.)
Given that S-PD2 has much higher tick overheads than

G-EDF, and since ticks occur frequently, one might expect
G-EDF to outperform S-PD2 for SRT systems. However,
our experiments show that this is not the case. In fact, G-
EDF is only competitive in scenarios with low task counts
(e.g., insets (c), (e), and (f) of Fig. 3). This is due to the
manner in which release overheads are accounted for in
schedulability analysis. Linux’s high-resolution timers are
interrupt-based, and since interrupts always preempt a real-
time task, a job can—in the worst case—be delayed by job
releases from all other tasks. Since the standard analysis
for interrupts [24] inflates execution costs on a per-task ba-
sis, this amounts to an overhead penalty of O(N2). This is
less of an issue for P-EDF and C-EDF since their analysis
only needs to account for interrupts from (fewer) local tasks.
Also, due to reduced lock contention, release overheads are
significantly lower with partitioned algorithms. Since PD2

does not use high-resolution timers (apart from the periodic
tick), it avoids these interrupt overheads altogether.

In our initial attempt at porting LITMUSRT to the Ni-
agara, all run queues were implemented using linked lists.
However, such an implementation quickly proved to be un-
tenable for several of the global algorithms. Experiments
showed that a simple traversal of a 500-element list can take
up to 50µs on the Niagara—clearly too much considering
that the PD2 plugin may have to perform 32 traversals ev-
ery 1000µs. Such problems necessitated a switch to bino-
mial heaps. This reduced scheduling costs significantly (in
benchmarks, most heap operations required at most 0.5µs)
and illustrates how sensitive global algorithms are to the
manner in which run queues are supported.

We speculate that the results of this paper may extend
to other multicore platforms where rather simple cores are
used (as is the case in some embedded platforms). However,
performance trends may be very different on platforms with
cores of the complexity of x86-like architectures, which
have features designed to hide memory latencies. On such a
platform, preemption and migration costs may be very dif-
ferent from that seen on our test platform. However, if com-
panies like Intel really do intend to produce chips with 80
cores as noted earlier, it remains to be seen if this can be
done without resorting to simpler core designs. Note that
the use of simpler core designs will likely result in higher
execution costs and hence task utilizations. This does not
bode well for P-EDF. On the other hand, we are doubtful
that global algorithms can scale to such high core counts.
Thus, we expect clustered algorithms to offer the best per-
formance.

5 Conclusion
This paper has presented a case-study comparison of sev-
eral multiprocessor real-time scheduling algorithms on a Ni-
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agara platform. To the best of our knowledge, this study is
the first attempt by anyone to assess the scalability of such
algorithms based upon empirically-derived overheads. The
major conclusions of our study are as follows: (i) for HRT
workloads on the Niagara, S-PD2 and P-EDF are generally
the most effective approaches; (ii) for SRT workloads on the
Niagara, there is no single best overall algorithm, although
S-PD2 and C-EDF seem to be less susceptible to patho-
logical scenarios than the other tested algorithms; (iii) for
multicore platforms with on-chip shared caches, preemption
and migration costs can still be considerably more costly
in algorithms that allow migrations if caches are small or
memory bandwidth is limited; (iv) quantum-staggering can
be very effective in reducing such costs; (v) for global ap-
proaches, scheduling overheads are greatly impacted by the
manner in which run queues are implemented. Although P-
EDF fared relatively well in our study, we note that, in other
work, we have found that partitioning approaches are more
negatively impacted (in terms of schedulability) by task-
synchronization requirements [12, 14] and runtime work-
load changes [9]. Such concerns have not been considered
in this paper.

There are numerous directions for future work. First, we
would like to re-consider how run-queue support for global
algorithms is provided in LITMUSRT. In particular, we
would like to determine whether run-queue overheads can
be lessened through the use of more clever data structures
or more efficient synchronization techniques. Second, in re-
lated work, we have investigated the impact synchroniza-
tion has on schedulability in work involving a conventional
SMP [12, 14]; we would like to repeat that study on the Ni-
agara. Third, we would like to repeat any Niagara-based
studies we conduct on an Intel platform of comparable size,
when one is available. In all of these studies, we would also
like to consider the impact of dynamic workload changes.
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