
An Empirical Comparison of Global, Partitioned, and Clustered
Multiprocessor EDF Schedulers∗

Andrea Bastoni, Björn B. Brandenburg, and James H. Anderson
Department of Computer Science, University of North Carolina at Chapel Hill

Abstract
As multicore platforms become ever larger, overhead-
related factors play a greater role in determining which
real-time scheduling algorithms are preferable. In this pa-
per, such factors are investigated through an empirical com-
parison of global, partitioned, and clustered EDF schedul-
ing algorithms on a 24-core Intel system. On this platform,
global EDF proved to be a non-viable choice for hard real-
time systems, while clusters of size six practically approxi-
mated global approaches. For soft real-time systems, clus-
tered EDF scheduling algorithms proved to be particularly
effective. This study suggests that future global scheduling
research should focus on small-to-medium multicore plat-
forms rather than large platforms.

1 Introduction
In future multicore chip designs, per-chip core counts are

expected to increase significantly. Evidence of this can be

seen in recent announcements by major chip manufactur-

ers. For example, Intel recently presented plans for a many-

core platform that features more than 50 cores per chip [19].

Even now, rather large, complex platforms exist. Examples

include AMD’s “Magny-Cours” Opteron processors, with

12 cores per chip, and Intel’s “Beckton” Xeon processors,

with eight multi-threaded cores per chip.

In this paper, we consider the question on how to best

schedule implicit deadlines sporadic tasks on such large

platforms where timing constraints may be either hard or

soft. The soft real-time constraint considered in this paper

is that deadline tardiness be bounded.

Multiprocessor scheduling approaches. Two basic ap-

proaches exist for scheduling real-time tasks on multipro-

cessor platforms. In the partitioned approach, each task is

statically assigned to a single processor and migration is not

allowed; in the global approach, tasks can freely migrate

and execute on any processor. On large multiprocessor plat-

forms, such as those mentioned above, both approaches suf-

fer drawbacks that limit achievable processor utilizations.

∗Work supported by AT&T and IBM Corps.; NSF grants CNS 0834270

and CNS 0834132; ARO grant W911NF-09-1-0535; and AFOSR grant FA

9550-09-1-0549.

On a platform with m cores, partitioning algorithms require

that a bin-packing-like problem be solved to assign tasks

to processors. Because of such bin-packing connections,

restrictive caps on total utilization are generally required

to ensure timing constraints, for both hard real-time (HRT)

and soft real-time (SRT) systems. Most global approaches

require similar caps in the HRT case, but in the SRT case,

many global algorithms ensure bounded deadline tardiness,

as long as total utilization is at most m [16]. However, due

to contention for the global run queue and non-negligible

migration overheads among processors, global approaches

can have high overheads in practice.

As a compromise that aims to alleviate limitations of

partitioned and global algorithms, clustered scheduling has

been proposed [3, 13]. This approach exploits the grouping

of cores around different levels of shared caches. The plat-

form is partitioned into clusters of cores that share a cache

and tasks are statically assigned to clusters (like in parti-

tioning), but are globally scheduled within each cluster.

Cluster-size guidelines have been given in [13], but these

guidelines refer to SRT systems only and are based on mea-

surements taken using an architecture simulator. Indeed,

when implementing clustered algorithms on real systems,

many unanswered questions exist. What is the best shared

cache level to use for clustering? Will the chosen clus-

ter size perform equally well for HRT and SRT systems?

How does the impact of various preemption- and migration-

related overheads compare to scheduling overheads? In this

paper, we answer these questions by empirically compar-

ing implementations of global, partitioned, and clustered
earliest-deadline-first (G-EDF, P-EDF, C-EDF) schedul-

ing algorithms on a large multiprocessor platform.

Prior work. Fundamental questions concerning the viabil-

ity of supporting sporadic real-time workloads on symmet-

ric multi-processor (SMP) and multicore platforms under
consideration of real-world overheads have been tackled

at UNC in several different studies. To facilitate this line

of research, a real-time Linux extension called LITMUSRT

(LInux Testbed for MUltiprocessor Scheduling in Real-

Time systems) was developed. LITMUSRT allows dif-

ferent (multiprocessor) scheduling algorithms to be imple-

mented as plugin components [14, 18]. To the best of our

knowledge, LITMUSRT is the only (published) real-time

OS where both global and clustered real-time schedulers

are supported.

In the first study [14], Calandrino et al. evaluated

five well-known multiprocessor real-time scheduling algo-

rithms on a four-processor (non-multicore) 32-bit 2.7 GHz

Intel Xeon SMP platform. On this small SMP platform,

with relatively large private L2 caches, each tested algo-

rithm proved to be the preferred choice in some of the tested

scenarios. In particular, global algorithms outperformed

partitioned algorithms in supporting SRT workloads.

In a second study [11], Brandenburg et al. analyzed the

scalability of several global, partitioned, and clustered algo-

rithms including the EDF variants mentioned above. This

evaluation was conducted on a much larger and slower mul-

ticore platform: a SUN Niagara with a small single shared

L2 cache and 32 logical processors, each with an effective

speed of 300 MHz. As before, each tested algorithm was

found to perform better than the others for some subset of

the considered scenarios. Particularly, it was observed that

global algorithms are heavily affected by run-queue-related

overheads. C-EDF exhibited schedulability in the HRT

case that is intermediate between G-EDF and P-EDF. In

the SRT case, C-EDF generally exhibited the best schedu-

lability, as well as lower tardiness than G-EDF.

In a third study [9], Brandenburg and Anderson

evaluated seven possible implementations of G-EDF in

LITMUSRT on the above-mentioned Niagara platform.

Tradeoffs involving implementation approaches were found

to significantly impact schedulability.

The idea of a clustered approach to ameliorate limita-

tions of partitioned and global approaches on large mul-

tiprocessor platforms was introduced by Calandrino et
al. [13] and Baker and Baruah [3]. Notably, Calandrino et
al. presented guidelines for defining clusters for SRT work-

loads. Empirical results were obtained by them using the

SESC architecture simulator for a 64-core platform.

Shin et al. [25] presented a study concerning virtual clus-

ters. Virtual clusters can share processors of the underlying

platform, while physical clusters are completely indepen-

dent. In this paper, we focus on physical clusters only.

Contributions. Questions regarding the implementation

of clustered algorithms and the performance of such algo-

rithms in comparison to global and partitioned algorithms

have not been fully answered by previous studies. In [13],

clustering is considered only in the context of SRT sys-

tems and the presented evaluation is based on an architec-

ture simulator. In [11], due to architectural limitations, only

one cluster size could be considered. If multiple levels of

shared cache exist, it is not clear which level should be used

for clustering. Additionally, preemption/migration costs are

assumed in [11] based on a fixed per-job working set size.

It is not clear whether similar conclusions would have been

reached for other cost choices.

In this paper, we present an empirical comparison of

G-EDF, P-EDF, and C-EDF where clustering issues, run-

time overheads, and cache-related costs are explicitly con-

sidered. Overheads were measured on a large (by today’s

standards) 24-core Intel Xeon platform with a three-level

cache hierarchy that enables the evaluation of two different

cluster sizes (at the L2 and L3 cache levels). Scheduling

algorithms are compared on the basis of real-time schedu-
lability, assuming measured runtime overheads and cache-

access costs. Furthermore, in contrast to previous stud-

ies, proposed real-time schedulability tests are compared to

“brute-force” tests to assess their pessimism. Finally, this is

the first in-depth study to use a new approach for address-

ing preemption/migration costs that allows a wide range of

tradeoffs involving such costs to be considered.

Our major findings are as follows: (i) in the HRT

case, G-EDF was never preferable on our platform, and

P-EDF outperformed all other tested algorithms even as-

suming unrealistically high preemption costs; (ii) proposed

HRT schedulability analysis for global and clustered ap-

proaches was significantly more pessimistic than corre-

sponding “brute-force” tests, which in turn were inferior to

P-EDF analysis; (iii) in the HRT case, “less global” ap-

proaches (P-EDF and C-EDF-L2, which clusters at the

L2 level) were consistently better than “more global” ap-

proaches (G-EDF and C-EDF-L3, which clusters at the L3

level); (iv) bin-packing issues were mostly negligible for

clusters of size six; (v) C-EDF (both L2 and L3 variants)

proved to be particularly effective in the SRT case. Given

these results, we believe that future global scheduling re-

search should focus on devising better schedulability anal-

ysis for small-to-medium multicore platforms rather than

large multicore platforms.

In the sections that follow, we provide needed back-

ground (Sec. 2), discuss methodology and architectural

considerations related to overhead measurement (Sec. 3),

present our schedulability experiments and our findings

(Sec. 4), and conclude (Sec. 5).

2 Background

We focus herein on the scheduling of a system of sporadic
tasks, T1, . . . , Tn, on m identical processors P1, . . . , Pm.

Each task Ti is specified by its worst-case execution time ei

and its period pi. The jth job of task Ti is denoted T j
i . Such

a job T j
i becomes available for execution at its release time

rj
i and should complete by its deadline rj

i + pi; otherwise

it is tardy. The spacing between rj
i and rj+1

i must satisfy

rj+1
i ≥ rj

i + pi. A tardy job T j
i does not alter rj+1

i , but

T j+1
i cannot execute until T j

i completes. Task Ti’s utiliza-
tion, ei/pi, reflects the processor share it requires; the sum∑n

i=1 ei/pi denotes the total utilization of the system.

Scheduling. A HRT system is considered to be schedu-
lable iff it can be shown that no job deadline is ever

missed. A SRT system is considered (in this paper) to be

schedulable iff it can be shown that deadline tardiness is

bounded. Methodologies for checking schedulability nec-

essarily depend on the evaluated scheduling algorithm and

overheads that arise in practice, such as context-switching

times, cache-related delays, etc. Such overheads are typi-

cally accounted for by inflating per-job execution costs.

We investigate G-EDF, P-EDF, and C-EDF as rep-

resentatives of different multiprocessor approaches in the

class of preemptive, priority-driven, work-conserving real-

time scheduling algorithms.1 In EDF scheduling algo-

rithms, jobs are scheduled in order of increasing deadlines,

with ties broken arbitrarily. In C-EDF, tasks are stati-

cally assigned to fixed-sized clusters and globally sched-

uled within each cluster. P-EDF and G-EDF can be seen

as special cases of C-EDF: in P-EDF, each cluster consists

of only one core, while in G-EDF, all cores form one clus-

ter. If m > 1, deadline misses can occur under each EDF
variant in feasible systems (i.e., systems with total utiliza-

tion at most the number of processors). Therefore, restric-

tive caps on total utilization are required under each con-

sidered scheduling approach to ensure timing constraints in

the HRT case. In contrast, G-EDF ensures bounded tardi-

ness in the SRT case as long as the system is not overuti-

lized [15]. C-EDF was proposed as a compromise be-

tween these two approaches for large multicore platforms

where a hierarchy of cache memories is employed. On such

platforms, caches are organized in levels where the fastest

(and usually smallest) caches are denoted as level-1 (L1)

caches, with deeper caches (L2, L3, etc.) being successively

larger and slower. Generally, L1 caches are private per-

core caches, while L2 and L3 caches are shared among a

progressively larger number of cores. In C-EDF, all cores

that share a specific cache level (L2 or L3) are defined to

be a cluster; tasks are allowed to migrate within a cluster,

but not across clusters. Clustering lowers migration costs

and lessens run-queue contention in comparison to G-EDF,

and eases bin-packing problems associated with P-EDF. In

particular, bin packing becomes easier because clustering

results in fewer, larger bins. Under C-EDF, deadline tardi-

ness is bounded if the total utilization of the tasks assigned

to each cluster is at most the number of cores per cluster. We

use the notation C-EDF-L2 (C-EDF-L3) when we wish to

specifically indicate that each cluster is defined to include

all cores that share an L2 (L3) cache.

LITMUSRT. As mentioned in Sec. 1, LITMUSRT is a

real-time extension of the Linux kernel. The version of

LITMUSRT used in this study was obtained by rebasing

to the Linux 2.6.32 kernel (from 2.6.24) and porting to the

1“Work-conserving” is interpreted with regard to a cluster (resp., parti-

tion) under C-EDF (resp., P-EDF).

P1

P2
T x

1T y
2

T z
3 T y

2

context switchrelease schedule

IPI latency

T z
3csr r

cscsr

cs

cs

cs

p2

rx
1

p1

p3

rz
3 ry

2 5 10 150

Figure 1: Example G-EDF schedule with overheads for three

jobs (T x
1 , T y

2 , T z
3), where (ei, pi)i = (2.5, 8)1, (6, 11)2, and

(6.5, 12)3, on two processors (P1, P2). Large up-arrows denote

interrupts, small up-arrows denote job releases, down-arrows de-

note job deadlines, T-shaped arrows denote job completions, and

wedged boxes denote overheads (which are magnified for clarity).

Job releases occur at rz
3 = 1.5, ry

2 = 3.9, and rx
1 = 6.5.

x86 64 architecture. In LITMUSRT, scheduling policies

are implemented as plugins that can be activated at run-

time (see [11] for an in-depth description). LITMUSRT

supports both event- and quantum-driven scheduling, but in

this study, we only consider event-driven scheduling.

From the previous version of LITMUSRT, the C-EDF
plugin has undergone several modifications to better sup-

port runtime clustering around specific cache levels. In the

current version, C-EDF can automatically detect the cache

hierarchy of the majority of recent CPU models and can

automatically identify which cores share a specific cache

level. Identifying this topology is non-trivial in Linux as

the assignment of cpu-id numbers does not necessarily re-

flect the system’s cache layout. The current C-EDF imple-

mentation supports runtime cluster-size changes (when no

real-time workload is present).

In the comparison of G-EDF implementations given

in [9], the best performing implementation — which makes

use of coarse-grained locking to synchronize ready-queue

accesses — used dedicated interrupt handling (i.e., a sin-

gle core is exclusively reserved for interrupt processing).

In the present study, dedicated interrupt handling was not

used. This choice was made to allow a better comparison

between G-EDF and C-EDF. Dedicated interrupt handling

prevents the scheduling of real-time jobs on the CPU that

manages interrupts, and this imposes unacceptable limita-

tions on small clusters.

Overheads. In LITMUSRT, tasks are delayed by six major

sources of overhead, four of which are illustrated in Fig. 1.

When a job is released, release overhead is incurred, which

is the time needed to service the interrupt routine that is

responsible for releasing jobs at the correct times. When-

ever a scheduling decision is made, scheduling overhead is

incurred while selecting the next process to execute and re-

queuing the previously-scheduled process. Switching the

execution stack and processor registers causes a context-
switch overhead. These overhead sources occur in sequence

in Fig. 1, on processor P1 at time 1.5 when T z
3 is released,

and again on processor P2 at time 3.9 when T y
2 is released.

Inter-processor interrupt (IPI) latency is a source of over-

head that occurs when a job is released on a processor that

differs from the one that will schedule it. This situation is

depicted in Fig. 1, where at time 6.5, T x
1 is released on P1,

which triggers a preemption on P2 by sending an IPI. Tick
overhead (the time needed to manage the interrupt timer)

occurs to a very limited extent under event-driven schedul-

ing and is therefore not shown in Fig. 1. On real systems,

preemption and migration overhead (or delay) account for

any costs due to a loss of cache affinity. Preemption (resp.,

migration) overhead is incurred when a preempted job later

resumes execution on the same (resp., different) processor.

These overheads are analyzed in more depth below.

3 Overhead Measurements

In Sec. 4, we report on schedulability experiments that were

conducted with real overheads considered. In this section,

we describe how such overheads were determined.

Runtime overheads and cache-related preemption and

migration delays can be accounted for in scheduling anal-

ysis by inflating per-task execution costs. For the algo-

rithms of interest in this paper, overheads that occur be-

fore or after a job is scheduled can be accounted for by

extending the job’s execution: a job incurs two schedul-

ing and context-switching overheads [21] and one preemp-

tion/migration overhead.2 Similar accounting can be done

for IPI latencies and a job’s own release overhead. An in-

depth discussion of these techniques is presented in [15].

Accounting for release overheads due to other jobs is more

problematic as their occurrence is interrupt-based. A de-

tailed discussion of this topic can be found in [12].

We measured runtime overheads and preemp-

tion/migration delays in LITMUSRT on an Intel Xeon

L7455 system. The L7455 is a 24-core 64-bit uniform

memory access (UMA) machine with four physical sock-

ets. Each socket contains six cores running at 2.13 GHz.

All cores in a socket share a unified 12-way set associative

12 MB L3 cache, while groups of two cores share a unified

12-way set associative 3 MB L2 cache. Each core also

includes an 8-way set associative 32 KB L1 data cache and

an identical L1 instruction cache. The three-level cache

hierarchy of our machine allowed us to set two cluster

sizes for C-EDF. In the first configuration, C-EDF-L2,

cores are grouped around L2 caches and the platform is

partitioned into 12 clusters of two cores each. The second

configuration, C-EDF-L3, groups cores around L3 caches,

partitioning the platform into four six-core clusters.

2Any lack of cache-affinity in a newly-released job Ji is already ac-

counted for in ei. Therefore, only the preempted job (if any) must be

considered.

3.1 Kernel Overheads
Measuring kernel overheads is not as straightforward as it

may seem. The Linux kernel contains several sources of

unpredictability (such as interrupt handling and priority in-

version) and our hardware platform (as the vast majority

of platforms on which Linux runs) lacks the determinism

expected in HRT environments. Nonetheless, it has been

claimed that Linux can handle a large and important subset

of real-time applications [22] and LITMUSRT objectives

are in accordance with this claim. Despite advances made

in recent years to bound migration delays and analyze inter-

ferences due to shared hardware resources [24, 27], it is cur-

rently very difficult to determine verifiable worst-case over-

head bounds. In fact, on multicore platform with a complex

hierarchy of shared caches, current timing analysis tools are

not yet able to analyze complex interactions between tasks

that arise due to atomic operations, bus locking, and bus and

cache contention [26]. Thus, kernel overheads must be de-

termined experimentally, through a repeated measurement

process. We used Feather-Trace [10], a light-weight cycle-

counter-based tracing tool to obtain such overheads, follow-

ing the same methodology previously described in [9, 11].

A small number of samples collected in the measurement

process may be “outliers,” due to the lack of determinism

noted above. To account for this, before computing maxima

and averages, we applied a 1.5 interquartile range (IQR)

outliers removal technique.3

For each algorithm, runtime overheads were obtained by

measuring the system’s behavior for periodic task sets. As

G-EDF and P-EDF are a special case of C-EDF, task sets

were defined per-cluster, using a single cluster of size 24 for

G-EDF, 24 clusters of size one for P-EDF, and so on. Per-

cluster task-set sizes were defined to range over [10, 350]

for G-EDF (task-set sizes are equal to the total number of

tasks in this case), over [1, 15] for P-EDF, over [3, 50] for

C-EDF-L3, and over [1, 20] for C-EDF-L2. The granular-

ity of each range is defined by steps that were sized variably

to achieve higher resolution when the total number of tasks

is at most 60 (the majority for task sets for the distributions

presented in Sec. 4 have sizes in the range [1,60]).

For each task-set size, we measured 10 task sets gener-

ated randomly (with uniform light utilizations and moderate

periods4; see Sec. 4), for a total of 550 task sets. Each task

set was traced for 60 seconds. In total, more than 35 GB

of trace data and 500 million individual overhead measure-

ments where obtained during more than 20 hours of trac-

ing. After removing outliers as discussed above, we com-

puted average- and worst-case overheads for each plugin

as a function of task-set size, which resulted in 12 graphs.

3According to this technique, an outlier is a sample that falls more than

1.5 IQR below the first quartile or above the third quartile. NIST [23]

suggests the use of IQR as a standard technique for removing outliers.
4We further verified that overheads measured using task sets generated

with uniform medium utilizations yielded similar results.

Due to space constraints, we only discuss here the two rep-

resentative graphs shown in Fig. 2 (a complete set of graphs

for all measured kernel overheads can be found in [5]). In-

set (a) of the figure shows worst-case scheduling overheads

(measured in μs) as a function of the total number of tasks.

The most notable trend here is the high scheduling overhead

(up to 200 μs) incurred by G-EDF compared to the over-

head experienced by C-EDF and P-EDF (less than 30 μs).

Scheduling overhead for G-EDF sharply increases with the

number of tasks, as the contention and the length of the

global run queue increases. Such overhead is likely due

to the cost of frequent cache line migrations (“cache-line

bouncing”) and heavy contention for the global run-queue

lock among all cores. Interestingly, scheduling overhead for

the C-EDF variants and P-EDF are similar.

Fig. 2 (b) shows worst-case release overheads as a func-

tion of the total number of tasks. As before, G-EDF over-

head is remarkably higher than those of the other plugins.

Again, this is mostly due to cache-line-bouncing effects and

to the higher contention for the global run queue. Inter-

estingly, P-EDF overhead is markedly lower than C-EDF
overhead and C-EDF-L3 overhead is more dependent on

the number of tasks.

We used monotonic piecewise linear interpolation to de-

rive upper bounds for each plugin and for each overhead as

a function of the task set size. These upper bounds were

used in the schedulability experiments described in Sec. 4.

For the few overheads where the measurements did not re-

veal a conclusive trend, we assumed a constant value equal

to the maximum observed value.

3.2 Cache-Related Delays
When a job resumes execution after a preemption or a mi-

gration, it is likely to suffer additional cache misses (and

thus extra delays) due to the perturbation of caches while

the job was not scheduled [20]. In such a situation, we say

that the job has lost cache affinity. Cache-related delays

clearly depend on task working set sizes (WSSs) and pos-

sibly on the scheduling algorithm and on the task set size

(TSS), but their measurement is a difficult problem [11].

In a recent paper [6], we conducted a detailed investi-

gation of cache-related preemption and migration delays

(CPMD) and proposed two methods for their empirical

measurement. The schedule-sensitive method aims to de-

tect dependencies of CPMD on the scheduling policy and

on TSS. In this method, delays are recorded on-line by exe-

cuting (under the desired scheduling policy) test cases with

a wide range of TSSs and WSSs. The main drawback of

this method is that it is not possible to control when a pre-

emption or a migration will happen, and therefore many of

the recorded delays are discarded as invalid (e.g., a job may

not be preempted at all, or may be preempted prematurely,

thus preventing a complete and valid measurement to be

taken). The synthetic method overcomes this problem by

P-EDF C-EDF-L2 C-EDF-L3 G-EDF
[1] [2] [3] [4]

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250 300 350 400

ov
er

he
ad

 (
us

)

number of tasks

worst-case scheduling overhead

[4]

[3][2][1]

(a)

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250 300 350 400

ov
er

he
ad

 (
us

)

number of tasks

worst-case release overhead

[4]

[3]
[1] [2]

(b)

Figure 2: Sample worst-case overhead measurements. The

graphs show worst-case measured overheads (in μs) as function

of task set size. (a) Scheduling overhead. (b) Release overhead.

achieving finer control over the measurement process by ar-

tificially triggering preemptions and migrations of a single

task. Under this method, a fixed-priority scheduling pol-

icy (such as POSIX SCHED FIFO) is employed and a sin-

gle highest-priority task repeatedly accesses working sets

of different sizes. In the synthetic method, preemptions and

various types of migrations are explicitly controlled and a

high number of CPMD measurements of each kind are col-

lected. As this method does not depend on the scheduling

policy employed, it cannot detect dependencies on TSS.

In [6], we measured CPMDs using both methods for

many combinations of TSSs and WSSs, for different

read/write ratios, and in two system configurations (with or

without a background workload consisting of low-priority

cache-polluter jobs). The platform used in that study is the
same Intel Xeon platform used in this paper. Our experi-

ments showed that CPMD depends on preemption length,

but does not depend on task set size. Our findings also

showed that on our platform, CPMD in a system under

load is only predictable for WSSs that do not thrash the
L2 cache. Furthermore, preemption and migration delays

do not differ significantly for a system under load. These

two trends can be clearly seen in Fig. 3, which reports CP-

MDs obtained with the synthetic method in a system with

a background cache-polluting workload. The figure shows

average CPMD as a function of WSS, assuming a read/write

ratio of 75/25. CPMD values are shown (in a bar chart) for

preemptions and the different kinds of migrations that can

preemption
migration through a shared L2 cache

migration through a shared L3 cache
migration through main memory

 1

 10

 100

 1000

 10000

4 16 (L1) 64 256 1024 (L2)4096 (L3)

ca
ch

e-
re

la
te

d
de

la
ys

 (
us

)

working set size (kilobytes)

measured average overhead (25.00% writes)

Figure 3: CPMD delays obtained with the synthetic method in

a system with high cache contention. The graphs show average

CPMD (in μs) for preemptions and different types of migrations

as a function of WSS (in KB). The error bars indicate one standard

deviation.

take place on our platform: migrations through L2 cache,

through L3 cache, and through main memory. As can be

seen in Fig. 3, when the WSS approaches the size of the L2

cache (3072 KB), the standard deviation, depicted as error

bars in the figure, becomes very large (note that the scale is

logarithmic) and therefore overhead measurements are very

imprecise. Furthermore, Fig. 3 shows that there is no sub-

stantial difference between preemption and migration costs

in a system under load.

4 Schedulability Experiments
We compared G-EDF, P-EDF, C-EDF-L2, and C-EDF-
L3 on the basis of schedulability, which was assessed by

generating task sets at random using distributions similar to

those proposed by Baker [2]. An algorithm’s schedulability
(HRT or SRT) is defined as the fraction of generated task

sets that are schedulable (HRT or SRT) under it. Similarly

to [9, 11, 14], we used three period and six utilization dis-

tributions. Task utilizations were generated using three uni-

form and three bimodal distributions. The ranges for the

uniform distributions were [0.001, 0.1] (light), [0.1, 0.4]

(medium), and [0.5, 0.9] (heavy). For the three bimodal dis-

tributions, utilizations uniformly ranged over either [0.001,

0.5) or [0.5, 0.9] with respective probabilities of 8/9 and 1/9

(light), 6/9 and 3/9 (medium), and 4/9 and 5/9 (heavy). Task

periods were generated similarly, using three uniform distri-

butions with ranges [3ms, 33ms] (short), [10ms, 100ms]

(moderate), and [50ms, 250ms] (long). All periods were

chosen to be integral.

Tasks were created by choosing utilizations and periods

from their respective distributions and computing execution

costs. Each task set was generated by creating tasks un-

til the total utilization exceeded a specified cap (varied be-

tween 1 and 24) and by then discarding the last-added task,

to allow for some slack for overheads.

4.1 Performance Metric
Prior to testing schedulability, task parameters were inflated

to account for the overheads described in Sec. 3. Maximum

overheads were used in the HRT case, while average over-

heads were used in the SRT case. As noted in [9, 11, 14],

kernel overheads should be accounted for after a task set

has been generated, as such overheads are mostly TSS-

dependent. In contrast, CPMDs are independent of TSS,

but correctly devising a bound for these overheads requires

knowledge of task’s WSS [6]. Anticipating realistic WSS

distributions is a non-trivial problem, and therefore, previ-

ous studies [9, 11, 14] focused on selected WSSs. In con-

trast, instead of assuming specific WSSs and deriving corre-

sponding cache-related delays, in this study we account for

such delays by adopting a WSS-agnostic approach [6]. In

this approach, CPMD is an additional parameter of the task

generation procedure and schedulability becomes a func-

tion of two variables: the cap U on total utilization and the

CPMD D. Schedulability can therefore be studied assum-

ing a broad range of values for D (and thus WSS).

While the WSS-agnostic method is appealing for its

avoidance of a specific WSS bias, presenting schedulability

results for this approach poses some practical problems. In

particular, displaying results for the two-variable (U and D)

schedulability function requires 3D graphs. As such plots

need to display at least four curves (one for each tested al-

gorithm), the resulting graphs may be very difficult to in-

terpret. To overcome this limitation, we proposed a new

aggregate performance metric [6].

Weighted schedulability [6]. Let S(U, D) ∈ [0, 1] denote

an algorithm’s schedulability for a given U and D, and let

Q denote a set of evenly-spaced utilization caps (e.g., in

our setup, Q = {1.0, 1.25, 1.50, . . . , 24}). Then weighted
schedulability W (D) is defined as

W (D) =

∑
U∈Q U · S(U, D)

∑
U∈Q U

.

Weighting individual schedulability results by U reflects

the intuition that high-utilization task systems have higher

“value” since they are more difficult to schedule. This met-

ric reduces schedulability results to a 2D (and thus easier to

interpret) plot without fixing a particular WSS or a specific

utilization cap. Furthermore, it exposes ranges of CPMD

where a particular scheduler is competitive. W (D) can re-

veal interesting tradeoffs that cannot be easily inferred from

fixed-CPMD schedulability. This is illustrated in the fol-

lowing example.

Fig. 4 shows a comparison between fixed-CPMD

schedulability results and W (D) results. Both insets re-

fer to SRT schedulability and were obtained for the short-

period/heavy-utilization case.5 Fig. 4(a) indicates the frac-

tion of generated task sets each algorithm successfully

5This case is interesting since video playback and interactive games of-

P-EDF C-EDF-L2 C-EDF-L3 G-EDF
[1] [2] [3] [4]

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25

ra
tio

 o
f s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

[s
of

t]

task set utilization cap (prior to inflation)

CPMD = 500.00; utilization uniformly in [0.5, 0.9]; period uniformly in [3, 33]

[1] [2]

[3]

[4]

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000

w
ei

gh
te

d
sc

he
du

la
bi

lit
y

[s
of

t]

cache-related preemption/migration delay (in us)

utilization uniformly in [0.5, 0.9]; period uniformly in [3, 33]

[3]
[4]

[2]

[1]

(b)

Figure 4: Comparison of fixed-CPMD and W (D) schedulability.

The graphs show SRT schedulability for the uniform heavy utiliza-

tion distribution with short periods. (a) Schedulability as function

of U for CPMD = 500μs. (b) W (D) schedulability as function of

CPMD. Note the different X-axis in each inset.

scheduled, as a function of total utilization and assuming

a fixed D of 500μs. As can be observed in Fig. 3, this

cache-related delay is the average delay experienced by

tasks with a WSS of 512 KB on our platform for both pre-

emptions and migrations when the system is under load. As

can be seen, C-EDF-L3 is the best performing algorithm.

C-EDF-L2 and P-EDF exhibit similar, but worse, perfor-

mance. These trends arise if D = 500μs for both preemp-

tion and migration costs, but if preemptions were consider-

ably cheaper than migrations, would P-EDF perform better

than C-EDF-L3? Fig. 4 (a) does not give any insight as to

how to answer this question.

In contrast, the W (D) graph in Fig. 4 (b) provides an

immediate answer. Inset (a) collapses to four distinct points

(one for each algorithm) at D = 500 in inset (b). In-

set (b) indicates weighted schedulability as a function of

CPMD D. In this plot, the curve for C-EDF-L3 reveals that

for D ≤ 600μs, C-EDF-L3 is superior to P-EDF. There-

fore, if the cost of migrations is less than 600μs, C-EDF-L3
should be preferred to P-EDF, even if the cost of preemp-

tions is 0μs (the interested reader is referred to [6] for a

more in-depth survey of weighted schedulability). We be-

lieve that weighted schedulability plots are a valuable aid

that may help practitioners to select an appropriate real-

ten fall into the period range [3ms, 33ms], and high-definition multimedia

processing is likely to cause heavy utilizations.

time scheduler to use, basing the choice on actual measured

CPMD values.

4.2 Schedulability Tests

In this study, we chose to vary D over [0μs, 2000μs]. This

range of values seems reasonable on a platform like ours,

where (as noted in Sec. 3) cache-related delays are non-

predictable for WSSs that exceed the size of L2 cache and

the average-case delay for a 1024 KB WSS in a system un-

der load is approximately 1000μs.

Schedulability was checked for different categories of

task systems under P-EDF, G-EDF, C-EDF-L2, and C-
EDF-L3. For P-EDF and both variants of C-EDF, we de-

termined whether each task set could be partitioned using

the worst-fit decreasing heuristic. Under P-EDF, HRT and

SRT schedulability differ only in the use of maximum or av-

erage overheads: under partitioning, if tardiness is bounded,

then it is zero, so the only way to schedule a SRT task set is

to view it as hard. Under C-EDF, schedulability for each

cluster was checked by applying the appropriate G-EDF
test (HRT or SRT) within the cluster.

HRT schedulability under G-EDF (C-EDF) was deter-

mined by testing whether a given task set (cluster) passes

at least one of five major sufficient — but not necessary —

HRT schedulability test [1, 4, 7, 8, 17]. For SRT schedula-

bility, since G-EDF can guarantee bounded deadline tardi-

ness if the system is not overloaded [15], only a check that

total utilization is at most m (the number of processors) is

required.

In this study, we further compared HRT schedulabil-

ity results with results obtained from “brute-force” (BF)

schedulability tests. In such a test, simulation (with over-

heads considered) is used to produce a periodic schedule,

and a task set is deemed to be unschedulable if any dead-

line misses are found. Given the very large hyperperiods of

the generated task sets, exhaustive simulations were infea-

sible. Thus, each task set was simulated for 60 seconds or

until a deadline miss was found. Results from such BF tests

represent an upper bound on schedulability for each tested

algorithm: task sets claimed unschedulable by a BF test

are certainly not schedulable, while a BF test may wrongly

claim as schedulable task sets that miss a deadline at a later

point in the schedule, or that exhibit deadline misses only

under non-periodic arrival sequences. Note that, since EDF
is optimal on uniprocessors, a BF test is not of interest for

P-EDF: if a task set can be successfully partitioned onto

individual processors, then no job will miss a deadline, and

simulating a schedule is therefore pointless. For each algo-

rithm, and for each (U, D) pair, we compared W (D) and

BF (except for P-EDF) by testing 1,000 task sets. Consid-

ering a spacing of 0.25 for U and a spacing of 100μs for D,

more than 7.5 million task sets were evaluated.

P-EDF W(D) C-EDF-L2 W(D) C-EDF-L3 W(D) G-EDF W(D) C-EDF-L2 BF C-EDF-L3 BF G-EDF BF
[1] [2] [3] [4] [5] [6] [7]

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000

w
ei

gh
te

d
sc

he
du

la
bi

lit
y

[h
ar

d]

cache-related preemption/migration delay (in us)

utilization uniformly in [0.001, 0.1]; period uniformly in [10, 100]

[1]

[5]

[2]
[6]

[3] [7] [4]

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000

w
ei

gh
te

d
sc

he
du

la
bi

lit
y

[h
ar

d]

cache-related preemption/migration delay (in us)

util. bimodially in [0.001, 0.5] (8/9) and [0.5, 0.9] (1/9); period uniformly in [10, 100]

[1]

[5]

[6]

[3]

[4]

[7] [2]

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000

w
ei

gh
te

d
sc

he
du

la
bi

lit
y

[h
ar

d]

cache-related preemption/migration delay (in us)

utilization uniformly in [0.1, 0.4]; period uniformly in [10, 100]

[4]

[3]

[7]

[2]

[1] [5] [6]

(c)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000

w
ei

gh
te

d
sc

he
du

la
bi

lit
y

[h
ar

d]

cache-related preemption/migration delay (in us)

util. bimodially in [0.001, 0.5] (6/9) and [0.5, 0.9] (3/9); period uniformly in [10, 100]

[1]

[5]

[3]

[4]

[2]

[6] [7]

(d)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000

w
ei

gh
te

d
sc

he
du

la
bi

lit
y

[h
ar

d]

cache-related preemption/migration delay (in us)

utilization uniformly in [0.5, 0.9]; period uniformly in [10, 100]

[7]

[4]
[1,2,3,5,6]

(e)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000

w
ei

gh
te

d
sc

he
du

la
bi

lit
y

[h
ar

d]

cache-related preemption/migration delay (in us)

util. bimodially in [0.001, 0.5] (4/9) and [0.5, 0.9] (5/9); period uniformly in [10, 100]

[1]

[4]

[2]

[3]

[7] [5] [6]

(f)

Figure 5: HRT weighted schedulability for moderate periods as a function of cache-related preemption/migration cost for various

utilization distributions. (a) Uniform light. (c) Uniform medium. (e) Uniform heavy. (b) Bimodal light. (d) Bimodal medium. (f) Bimodal

heavy. Recall that CPMD is the extra delay a job incurs due to a loss of cache affinity when resuming execution after a preemption or

a migration. Note that these graphs allow meaningful comparisons between different x-coordinates — e.g., a particular workload may

incur only 200μs CPMD under C-EDF and 400μs under G-EDF (see Sec. 4.1 for an in-depth explanation of weighted schedulability).

4.3 Results

HRT W (D) results for the moderate period distributions

are shown in Fig. 5. The first column of the figure (in-

sets (a,c,e)) gives results for the three uniform distribu-

tions (light, medium, heavy) and the second column (in-

sets (b,d,f)) gives results for the three bimodal distributions.

The plots indicate both W (D) and BF test results for D
ranging over [0, 2000μs]. Weighted schedulability results

for the SRT case are shown in Fig. 6, which is organized

similarly to Fig. 5. Due to space constraints, other graphs

(over 700 of them) are not shown here but can be found in

the extended version of the paper [5].

Observation 1. G-EDF is never preferable for HRT on our
platform. In fact, Fig. 5 shows that the W (D) curve for P-
EDF dominates the BF curves of all the other algorithms in

most graphs, independently of preemption/migration costs.

The BF test is optimistic and represents an upper bound on

the schedulability of G-EDF and C-EDF. Therefore, even

if a perfect G-EDF feasibility test (i.e., a test that never

wrongly claims a schedulable task set as unschedulable)

were employed, G-EDF would still not be preferable to P-
EDF in most cases, even when assuming unrealistically low

P-EDF C-EDF-L2 C-EDF-L3 G-EDF
[1] [2] [3] [4]

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000

w
ei

gh
te

d
sc

he
du

la
bi

lit
y

[s
of

t]

cache-related preemption/migration delay (in us)

utilization uniformly in [0.001, 0.1]; period uniformly in [10, 100]

[1]

[2]

[3]

[4]

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000

w
ei

gh
te

d
sc

he
du

la
bi

lit
y

[s
of

t]

cache-related preemption/migration delay (in us)

util. bimodially in [0.001, 0.5] (8/9) and [0.5, 0.9] (1/9); period uniformly in [10, 100]

[3] [2]

[4]

[1]

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000

w
ei

gh
te

d
sc

he
du

la
bi

lit
y

[s
of

t]

cache-related preemption/migration delay (in us)

utilization uniformly in [0.1, 0.4]; period uniformly in [10, 100]

[1]

[4]

[3] [2]

(c)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000

w
ei

gh
te

d
sc

he
du

la
bi

lit
y

[s
of

t]

cache-related preemption/migration delay (in us)

util. bimodially in [0.001, 0.5] (6/9) and [0.5, 0.9] (3/9); period uniformly in [10, 100]

[3] [2]

[1]

[4]

(d)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000

w
ei

gh
te

d
sc

he
du

la
bi

lit
y

[s
of

t]

cache-related preemption/migration delay (in us)

utilization uniformly in [0.5, 0.9]; period uniformly in [10, 100]

[4]

[3]

[2]

[1]

(e)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000

w
ei

gh
te

d
sc

he
du

la
bi

lit
y

[s
of

t]

cache-related preemption/migration delay (in us)

util. bimodially in [0.001, 0.5] (4/9) and [0.5, 0.9] (5/9); period uniformly in [10, 100]

[3]

[1]

[2]

[4]

(f)

Figure 6: SRT weighted schedulability for moderate periods as a function of cache-related preemption/migration cost for various uti-

lization distributions. (a) Uniform light. (c) Uniform medium. (e) Uniform heavy. (b) Bimodal light. (d) Bimodal medium. (f) Bimodal

heavy. Recall that CPMD is the extra delay a job incurs due to a loss of cache affinity when resuming execution after a preemption or a

migration. As noted in Fig. 5, these graphs allow meaningful comparisons between different x-coordinates.

CPMD for G-EDF. In other words, existing P-EDF analy-

sis is superior to any yet-to-be developed G-EDF analysis

in most of the considered scenarios. This strongly calls into

question the viability of G-EDF as a HRT scheduler.

Observation 2. Pessimistic HRT schedulability analysis
strongly impacts C-EDF. Fig. 5 shows that both C-EDF-L2
and C-EDF-L3 are never preferable to P-EDF when using

existing analysis (W (D) curves). Furthermore, even when

assuming perfect analysis, C-EDF-L2 and C-EDF-L3 re-

main inferior to P-EDF in most cases. In fact, the C-EDF
upper bound indicated by the BF curves is inferior to P-
EDF in all but inset (c) of Fig. 5.

Observation 3. Among non-partitioned approaches, C-
EDF-L2 is superior in the HRT case. The W (D) and BF

test results (Fig. 5, all insets) indicate that C-EDF-L2 per-

forms consistently better than C-EDF-L3 and G-EDF (or,

at most, comparably, inset (e)). This confirms the idea that

“more global” EDF schedulers are inferior in the HRT case.

This observation, together with Obs. 1 and Obs. 2

above, suggests that future improvements in G-EDF analy-

sis (which is used to evaluate intra-cluster C-EDF schedu-

lability) should focus on enhancing schedulability bounds
for small-to-medium clusters. Nonetheless, our results in-

dicate that even major improvements in G-EDF analysis

could only lead to modest gains in HRT schedulability. In

fact, as noted in Obs. 2, even perfect G-EDF analysis would

make C-EDF-L2 preferable to P-EDF only in a small sub-

set of the considered scenarios (Fig. 5 (c)).

Observation 4. Conservative HRT schedulability analysis
heavily underestimates the performance of global sched-
ulers in high-variance utilization distribution scenarios. In

the HRT case, the gap between W (D) and BF is small for

uniform light and heavy utilizations (Fig. 5(a,e)). In con-

trast, in the uniform medium and in all bimodal cases, the

W (D) results are significantly inferior to the BF results

(Fig. 5, insets (b,c,d,f)). In such cases (which are perhaps

more representative of real-world workloads), task utiliza-

tions may vary greatly. Existing G-EDF analysis is un-

able to fully characterize such variations and therefore the

W (D) results for G-EDF and C-EDF are noticeably lower

than the BF results. Instead, when utilization is uniformly

light, all task sets are comprised of many small tasks, which

are significantly affected by overheads. In this context, all

algorithms perform poorly, and conservative schedulability

bounds are quite close (Fig. 5(a)). In the uniform heavy

utilization case, overheads have a minor impact on the few

large tasks that compose each task set. Nonetheless, given

their utilizations, such task sets are difficult to schedule and

W (D) correctly approximates BF (Fig. 5(e)).

Observation 5. Bin-packing limitations are mostly negli-
gible for clusters of size six. If the system is not overuti-

lized, G-EDF is optimal for SRT (i.e., G-EDF guarantees

bounded tardiness for any task set with total utilization at

most m); therefore, if a task set can be partitioned under C-
EDF, then it is schedulable for SRT. Since the schedulabil-

ity test for SRT is not pessimistic, Fig. 6 (which reports SRT

W (D) results) reveals a tradeoff between bin-packing and

overheads. When bin-packing limitations are not an issue

(because all task utilizations are small — Fig. 6(a)), lower

overheads favor P-EDF and C-EDF-L2 over C-EDF-L3
and G-EDF. Instead, bin-packing limitations clearly affect

P-EDF when task utilizations are heavy: Fig. 6(e,f) shows

that a small increase in cluster size (from one core — P-
EDF— to two cores — C-EDF-L2) is sufficient to boost

performance. In particular, Fig. 6 shows that bin-packing

is not a limitation for C-EDF-L3: W (D) curves for C-
EDF-L3 are as high as G-EDF curves in all insets. Since

bin-packing problems become easier with larger and fewer

bins, clusters of size six (or larger) are sufficient to avoid
bin-packing limitations in the majority of the tested sce-
narios. Previous studies based on an architecture simula-

tor [13] have shown that a cluster size of four may be suffi-

cient to avoid bin-packing issues, but, due to the topology of

our platform, such cluster size is not desirable. Given such

results, we believe that future work on improving SRT tar-

diness bounds should focus on platforms with at most four

to eight cores.

Observation 6. The C-EDF approaches are superior to
the other algorithms in the SRT case. In the majority of

the tested scenarios (Fig. 6), C-EDF-L3 and C-EDF-L2
usually performed better than G-EDF and P-EDF even

under moderate-to-high migration costs and low preemp-

tion costs. For example, in Fig. 6(b), the C-EDF-L3 and

C-EDF-L2 curves are as high as the P-EDF curve even

assuming 200μs for migrations and 0μs for preemptions!

C-EDF-L3 generally exhibits slightly higher schedulability

than C-EDF-L2, while both C-EDF approaches have lower

overheads than G-EDF.

Most of the points made above have not been noted in

prior studies; those that have strengthen earlier findings [11]

by eliminating a specific WSS bias.

5 Conclusion
In this paper, we presented an empirical comparison of G-
EDF, P-EDF, and C-EDF (with two cluster sizes) mul-

tiprocessor real-time scheduling algorithms on a large 24-

core Intel platform. Scheduling algorithms were compared

on the basis of real-time schedulability, assuming measured

runtime overheads and cache-related delays. In contrast

with previous studies, schedulability test results were com-

pared to results from simulation-based “brute force” tests

to assess the pessimism of the currently-available tests. A

new aggregate performance metric (weighted schedulabil-
ity) was used to easily compare schedulability results for a

wide range of cache-related delays and to clearly expose the

range of CPMDs in which a particular scheduler is compet-

itive. To the best of our knowledge, this study is the first to

present a comparison of C-EDF real-time schedulability for

multiple cluster sizes assuming real hardware overheads.

Our results indicate that G-EDF is never preferable for

HRT. In most of the considered scenarios, existing P-EDF
analysis was superior not only to existing G-EDF analy-
sis, but also to optimistic upper bounds for any yet-to-be-
developed G-EDF analysis. Furthermore, if the cost of mi-

grations is non-negligible, then the high schedulability gap

between P-EDF and the other tested algorithms calls into

question the benefits of migrations for EDF scheduling al-

gorithms in the HRT case on large multicore platforms. In

the HRT case, C-EDF-L2 performed best among the non-

partitioned algorithms, although the pessimism of G-EDF
analysis (particularly for workloads with high-variance uti-

lization distribution) strongly impacted C-EDF. Our re-

sults also show that, practically speaking, bin-packing lim-
itations are negligible for clusters of size six. Therefore,

our findings suggest that future HRT global scheduling re-
search should focus on small/medium-sized platforms. In

the SRT case, the C-EDF approaches (C-EDF-L3 in partic-

ular) were superior to all other evaluated algorithms. Thus,

future work on tardiness bounds under G-EDF should focus

on low processor counts (four to eight), as they are encoun-

tered under C-EDF during intra-cluster analysis.

Limitations. The topology and the cache layout of the

platform used in our experiments prevented us from test-

ing cluster sizes different from two (C-EDF-L2) and six

(C-EDF-L3). It would be interesting to extend the experi-

ments proposed in this paper using platforms with a differ-

ent cache layout (e.g., on platforms that enable cluster sizes

of four/eight) or using an architecture simulator (e.g., to test

the impact of an additional cache level).

Our G-EDF and C-EDF implementations make use of

locks to synchronize accesses to the ready queue. This in-

evitably causes overheads due to contention for the ready

queue. Although it would be interesting to repeat the study

described in this paper using a non-blocking ready-queue

implementation, to the best of our knowledge, all published

algorithms that support non-blocking priority queues re-

quire either bounded priority ranges (G-EDF requires un-

bounded priorities) or multi-word compare-and-swap in-

structions (not supported by our hardware). Furthermore,

for a non-blocking implementation of G-EDF to be useful

in real-time systems, strong progress guarantees would be

required, and ensuring such guarantees without greatly sac-

rificing efficiency is not easy.

Future Work. There are numerous directions for future

work. First, we would like to evaluate the impact of dy-

namic workload changes, especially on the C-EDF vari-

ants, in order to give guidelines on the best cluster size

to use in such contexts. Second, we would like to inves-

tigate the impact of non-preemptable critical sections and

synchronization on schedulability. Third, we would like

to investigate C-EDF approaches within mixed HRT/SRT

contexts. Finally, we would like to tackle the problem of

designing a non-blocking G-EDF scheduler.

References
[1] T. Baker. Multiprocessor EDF and deadline monotonic schedulabil-

ity analysis. In Proc. of the 24th IEEE Real-Time Sys. Symp., pp.

120–129, 2003.

[2] T. Baker. A comparison of global and partitioned EDF schedulability

tests for multiprocessors. Technical Report TR-051101, Florida State

University, 2005.

[3] T. Baker and S. Baruah. Schedulability analysis of multiprocessor

sporadic task systems. In Handbook of Real-Time and Embedded
Sys.. Chapman Hall/CRC, 2007.

[4] S. Baruah. Techniques for multiprocessor global schedulability anal-

ysis. In Proc. of the 28th IEEE Real-Time Sys. Symp., pp. 119–128,

2007.

[5] A. Bastoni, B. Brandenburg, and J. Anderson. An empirical com-

parison of global, partitioned, and clustered multiprocessor real-

time schedulers. Extended version of this paper. Available at

http:// www.cs.unc.edu/ ˜anderson/papers.html.

[6] A. Bastoni, B. Brandenburg, and J. Anderson. Cache-related pre-

emption and migration delays: Empirical approximation and impact

on schedulability. In Proc. of the 6th Int’l Workshop on Operating
Sys. Platforms for Embedded Real-Time Apps., pp. 33–44, 2010.

[7] M. Bertogna, M. Cirinei, and G. Lipari. Improved schedulability

analysis of EDF on multiprocessor platforms. In Proc. of the 17th
Euromicro Conf. on Real-Time Sys., pp. 209–218, 2005.

[8] M. Bertogna, M. Cirinei, and G. Lipari. Schedulability analysis of

global scheduling algorithms on multiprocessor platforms. IEEE
Trans. on Parallel and Distributed Sys., 20(4):553–566, 2009.

[9] B. Brandenburg and J. Anderson. On the implementation of global

real-time schedulers. In Proc. of the 30th IEEE Real-Time Sys.
Symp., pp. 214–224, 2009.

[10] B. Brandenburg and James H. Anderson. Feather-trace: A light-

weight event tracing toolkit. In In Proc. of the Third Int’l Workshop
on Operating Sys. Platforms for Embedded Real-Time Apps., pp. 61–

70, 2007.

[11] B. Brandenburg, J. Calandrino, and J. Anderson. On the scalability

of real-time scheduling algorithms on multicore platforms: A case

study. In Proc. of the 29th IEEE Real-Time Sys. Symp., pp. 157–169,

2008.

[12] B. Brandenburg, H. Leontyev, and J. Anderson. Accounting for in-

terrupts in multiprocessor real-time systems. In Proc. of the 15th
IEEE Int’l Conf. on Embedded and Real-Time Computing Sys. and
Apps., pp. 273–283, 2009.

[13] J. Calandrino, J. Anderson, and D. Baumberger. A hybrid real-time

scheduling approach for large-scale multicore platforms. In Proc. of
the 19th Euromicro Conf. on Real-Time Sys., pp. 247–256, 2007.

[14] J. Calandrino, H. Leontyev, A. Block, U. Devi, and J. Anderson.

LITMUSRT: A testbed for empirically comparing real-time mul-

tiprocessor schedulers. In Proc. of the 27th IEEE Real-Time Sys.
Symp., pp. 111–123, 2006.

[15] U. Devi. Soft Real-Time Scheduling on Multiprocessors. PhD thesis,

University of North Carolina, Chapel Hill, North Carolina, 2006.

[16] U. Devi and J. Anderson. Tardiness bounds under global EDF

scheduling on a multiprocessor. Real-Time Sys., 38(2):133–189,

2008.

[17] J. Goossens, S. Funk, and S. Baruah. Priority-driven scheduling

of periodic task systems on multiprocessors. Real-Time Sys., 25(2-

3):187–205, 2003.

[18] UNC Real-Time Group. LITMUSRT homepage. http://www.cs.

unc.edu/ ˜anderson/litmus-rt.

[19] Intel Corp. Intel Unveils New Product Plans for High- Performance

Computing. http://www.intel.com/pressroom/archive/releases/

2010/20100531comp.htm, 2010.

[20] F. Liu, F. Guo, Y. Solihin, S. Kim, and A. Eker. Characterizing and

modeling the behavior of context switch misses. In Proc. of the 17th
Int’l Conf. on Parallel Architectures and Compilation Techniques,

pp. 91–101, 2008.

[21] J. Liu. Real-Time Sys.. Prentice Hall, 2000.

[22] P. McKenney. Shrinking slices: Looking at real time for

Linux, PowerPC, and Cell. http://www.ibm.com/developerworks/

power/library/pa-nl14-directions.html, 2005.

[23] NIST/SEMATECH. e-Handbook of Statistical Methods. http://

www.itl.nist.gov/div898/handbook/, 2010.

[24] S. Schliecker, M. Negrean, and R. Ernst. Bounding the shared re-

source load for the performance analysis of multiprocessor systems.

In Design, Automation Test in Europe Conf. Exhibition, pp. 759–764,

2010.

[25] I. Shin, A. Easwaran, and I. Lee. Hierarchical scheduling frame-

work for virtual clustering of multiprocessors. In Proc. of the 20th
Euromicro Conf. on Real-Time Sys., pp. 181–190, 2008.

[26] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing,

D. Whalley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra,

F. Mueller, I. Puaut, P. Puschner, J. Staschulat, and P. Stenström. The

worst-case execution-time problem—overview of methods and sur-

vey of tools. ACM Trans. on Embedded Computing Sys., 7(3):1–53,

2008.

[27] J. Yan and W. Zhang. WCET analysis for multi-core processors with

shared L2 instruction caches. In Proc. of the 14th IEEE Real-Time
and Embedded Technology and Apps. Symp., pp. 80–89, 2008.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

