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Abstract
Semi-partitioned real-time scheduling algorithms extend
partitioned ones by allowing a (usually small) subset of
tasks to migrate. The first such algorithm to be proposed
was directed at soft real-time (SRT) sporadic task systems
where bounded deadline tardiness is acceptable. That al-
gorithm, called EDF-fm, is able to fully utilize the under-
lying hardware platform’s available capacity. Moreover, it
has the desirable practical property that migrations are
boundary-limited, i.e., they can only occur at job bound-
aries. Unfortunately, EDF-fm requires restrictions on per-
task utilizations, and thus is not optimal. In this paper, a new
boundary-limited, semi-partitioned algorithm is presented
for SRT systems that is the first such algorithm to be opti-
mal. This algorithm, called EDF-os, is similar to EDF-fm
but utilizes several new mechanisms that obviate the need
for per-task utilization restrictions. Prior overhead-aware
schedulability experiments are augmented herein to include
EDF-os. In these experiments, EDF-os proved to be better
than all other tested alternatives in terms schedulability in
almost all considered scenarios. It also proved capable of
ensuring very low tardiness bounds. In fact, in most consid-
ered scenarios, tardiness bounds under it were near zero.

1 Introduction
Multiprocessor real-time scheduling algorithms may follow
a partitioned or global approach or some hybrid of the
two. Under partitioned scheduling, tasks are statically as-
signed to processors, while under global scheduling, they
are scheduled from a single run queue and hence may mi-
grate. When comparing different scheduling approaches,
one criterion is optimality, i.e., the ability to correctly sched-
ule (without timing constraint violations) any task system
for which a correct schedule exists. In the case of implicit-
deadline (see Sec. 2) sporadic task systems, optimality can
be achieved via global scheduling, but not partitioning;
however, global scheduling entails higher runtime over-
heads. When designing a hybrid approach, the goal is usu-
ally to attain optimal or near-optimal behavior but with less
overhead than a truly global approach.

One such hybrid approach is semi-partitioned schedul-
ing, which extends partitioned scheduling by allowing those

∗Work supported by NSF grants CNS 1016954, CNS 1115284, CNS
1218693, and CNS 1239135; and ARO grant W911NF-09-1-0535.

tasks that cannot be feasibly assigned to processors to mi-
grate. Semi-partitioned scheduling was first proposed for
supporting soft real-time (SRT) sporadic task systems for
which bounded deadline tardiness is allowed [1]. Subse-
quently, several semi-partitioned algorithms were proposed
for hard real-time (HRT) systems [3, 4, 9, 10, 11, 15, 18,
19, 20, 21, 22, 23, 24, 25]. When the impacts of overheads
are considered, semi-partitioned algorithms have a key ad-
vantage over global ones as the former use push migrations,
which are pre-planned, while the latter use pull migrations,
which are reactive in nature and thus more difficult to pre-
dict, account for, and implement efficiently [8].

The original SRT algorithm proposed in [1], called EDF-
fm, is able to fully utilize the underlying hardware plat-
form’s available capacity. Moreover, it is boundary-limited:
a migrating task may only migrate between job boundaries
(i.e., between successive invocations). Unfortunately, EDF-
fm requires restrictions on per-task utilizations, and thus is
not optimal. In their simplest form, these restrictions pre-
clude any task utilization from exceeding 0.5, though they
can be relaxed somewhat, as discussed below.

Of the HRT algorithms cited above, one is optimal, at
least in theory, namely EKG [4]. However, it is optimal only
for implicit deadline periodic task systems, and it becomes
optimal (for periodic systems) only when a configurable pa-
rameter k becomes arbitrarily close to the number of proces-
sors, which unrealistically increases preemption frequency.
Additionally, EKG is not boundary-limited. Thus, it allows
jobs to migrate, which can be expensive in practice if jobs
maintain much cached state.

Contributions. In this paper, we present the first
boundary-limited, semi-partitioned scheduling algorithm
that is optimal for SRT sporadic task systems. This algo-
rithm, which we call EDF-os (earliest-deadline-first-based
optimal semi-partitioned scheduling), is based on EDF-fm.

EDF-fm was designed with implicit-deadline sporadic
task systems in mind. It functions in two phases: an offline
assignment phase, where tasks are assigned to processors
and fixed tasks (which do not migrate) are distinguished
from migrating ones (which do); and an online execution
phase, where invoked tasks are scheduled via rules that ex-
tend earliest-deadline-first (EDF) scheduling to account for
fixed and migrating tasks. Each migrating task executes on
two processors, and for each processor, at most two specific
migrating tasks may execute upon it. The tardiness bound
proof for EDF-fm relies crucially on the fact that migrating



tasks never miss deadlines. To ensure this, migrating tasks
are statically prioritized over fixed ones, jobs of migrating
tasks are prioritized against each other on a EDF basis, and
two migrating tasks that may execute on the same processor
are limited to have a combined utilization of at most 1.0.
This last requirement restricts per-task utilizations.

In EDF-os, we eliminate such utilization restrictions by
modifying both phases of EDF-fm. In particular, we modify
the assignment phase by considering tasks in a certain order
and by allowing a migrating task to execute on any number
of processors (instead of just two). We modify the schedul-
ing phase by statically prioritizing jobs of certain migrat-
ing tasks over those of others (instead of prioritizing them
against each other on an EDF basis). As a result of our mod-
ifications, migrating tasks can miss deadlines. However, we
show that tardiness bounds can be derived by leveraging cer-
tain properties pertaining to our modified assignment phase
and the more predictable nature of the static prioritizations
we introduce. These properties enable us to apply a novel re-
duction method that enables a given system to be converted
to a simpler form that can be more easily analyzed. This
analysis shows that EDF-os is optimal: deadline tardiness
is bounded provided total utilization is at most the system’s
capacity and per-task utilizations are at most 1.0. Moreover,
this claim of optimality holds regardless of whether dead-
lines are implicit, constrained, or unrestricted (see Sec. 2).

Organization. We present our optimality proof (Sec. 4) af-
ter first providing needed background (Sec. 2) and describ-
ing EDF-os in detail (Sec. 3). We then present an overhead-
aware experimental evaluation of EDF-os (Sec. 5) and con-
clude (Sec. 6). Our experimental evaluation expands prior
evaluations involving EDF-fm and other algorithms to also
include EDF-os. In this evaluation, the effects of measured
overheads from actual scheduler implementations were fac-
tored into schedulability and tardiness analysis. From a
schedulability standpoint, EDF-os proved to be the best al-
gorithm among those considered in almost all considered
scenarios. It also proved capable of ensuring very low tardi-
ness bounds. In fact, in most considered scenarios, tardiness
bounds under it were near zero.

2 Background
We consider the scheduling of a sporadic task system τ =
{τ1, τ2, . . . , τN} onM identical processors—we assume fa-
miliarity with the sporadic task model [28]. Task τi is spec-
ified by (Ci, Ti), where Ci is its maximum per-job execu-
tion requirement and Ti is its period. The jth job of τi, de-
noted τi,j , has release time ri,j and deadline di,j . We ini-
tially restrict attention to implicit deadlines (di,j = ri,j+Ti)
but in an appendix we consider both constrained deadlines
(di,j ≤ ri,j+Ti) and unrestricted deadlines (no relationship
between di,j and ri,j + Ti assumed). We denote the utiliza-
tion of τi by Ui = Ci/Ti, and the pth processor as Pp. We
assume that time is discrete.

In the scheduling algorithms we consider, each task is al-
located a non-zero fraction, or share, of the available utiliza-
tion of 1.0 on certain processors. Task τi’s share (potentially

initially si,p = 0 and σp = 0 for all i and p
p := 1;
for i := 1 to N do

if Ui ≤ 1− σp then /∗ τi is fixed ∗/
si,p := Ui;
σp := σp + Ui

else /∗ τi is migrating ∗/
si,p, si,p+1 := (1− σp), Ui − (1− σp);
σp, σp+1 := 1, si,p+1

fi;
if σp = 1 then p := p+ 1 fi

od

Figure 1: EDF-fm assignment phase.

zero) on Pp is denoted si,p. The total share allocation on Pp
is denoted σp ,

∑
τi∈τ si,p. We require that σp ≤ 1.0 and

that each task’s total share allocation matches its utilization:
Ui =

∑M
k=1 si,k. If τi has non-zero shares on multiple (only

one) processor, then it is a migrating (fixed) task.
The scheduling algorithms we consider have the addi-

tional property that each job of each task τi executes on
a specific processor. The fraction of τi’s jobs (potentially
zero) that execute on processor Pp is denoted fi,p. Such
fractions are commensurate with τi’s share allocations:

fi,p =
si,p
Ui

. (1)

The lowest-indexed processor to which migrating task τi as-
signs jobs is called its first processor.

If a job τi,j completes at time t, then its lateness is t−di,j
and its tardiness is max (0, t− di,j). Observe that if a job’s
lateness is negative, then its tardiness is zero, and otherwise
its lateness and tardiness are identical. We seek schedul-
ing algorithms that ensure bounded tardiness: for each task,
there is a constant upper bound on the tardiness of any of its
jobs. We consider only feasible task systems that satisfy the
following conditions.

∀τi ∈ τ, Ui ≤ 1, (2)∑
τi∈τ

Ui ≤M. (3)

EDF-fm. The EDF-os algorithm presented herein extends
the EDF-fm algorithm proposed by Anderson et al. [1].
EDF-fm consists of assignment and execution phases. Dur-
ing the assignment phase, tasks are allocated shares offline
via the procedure in Fig. 1. This procedure allocates proces-
sor utilization (as shares) to tasks by considering each pro-
cessor and task in turn. If the currently considered processor
Pp has sufficient unallocated utilization, then the currently
considered task τi is assigned to it as a fixed task; otherwise,
τi exhausts the remaining unallocated utilization of Pp and
receives the rest of its needed allocation from Pp+1.

In the execution phase, released jobs are scheduled on-
line without migration (i.e., each job executes on only one
processor). The following prioritizations are used on each
processor: migrating tasks are prioritized over fixed ones,



Figure 2: EDF-fm task assignment for Ex. 1. Shares of migrating
tasks are shown in a darker shade. τ1 = (4, 5) is a fixed task on
P1, τ2 = (2, 4) migrates between P1 and P2 with with s2,1 = 1

5

and s2,2 = 3
10

, and so on. After assignment, 1
20

of P3 is unused.

and jobs of a given type (fixed or migrating) are prioritized
against each other on an EDF basis. By the assignment pro-
cedure in Fig. 1, at most two migrating tasks can have non-
zero shares on a given processor. It is required that for any
two such tasks, their combined utilization is at most 1.0.
This ensures that such tasks do not miss deadlines (which is
a crucial property in the tardiness analysis of EDF-fm).

To ensure that fixed tasks have bounded tardiness, it is
important that no processor be overloaded in the long run.
This can be ensured by employing a mechanism that en-
sures that, in the long run, each migrating task τi submits
an appropriate fraction of its jobs to each of the two proces-
sors on which it executes. Such fractions are given by (1). In
EDF-fm, the exact allocation of such jobs to processors is
done by leveraging results from work on Pfair scheduling.
We illustrate this with an example below.
Ex. 1. Consider the task system τ = {(4, 5), (2, 4), (1, 2),
(2, 5), (3, 4)}, with

∑
τi∈τ Ui = 59

20 ≤ 3, to be scheduled
on three processors. The assignment phase of EDF-fm will
produce the share allocations in Fig. 2 when applied to the
tasks in τ in the listed order.1 Note that τ2 has a share of 1

5

on P1 and 3
10 on P2. Thus, by (1), f1,1 = ( 1

5 )/( 1
2 ) = 2

5 of
its jobs should execute on P1 in the long run, and f1,2 =
( 3

10 )/( 1
2 ) = 3

5 of its jobs should execute on P2. At run-
time, EDF-fm determines which processor to allocate to a
newly released job of such a migrating task by applying a
formula that is derived by considering a Pfair schedule [5]
of certain fictitious periodic tasks. To avoid confusion, we
will call these fictitious tasks “processes” (instead of tasks).
For the case of τ2 in Ex. 1, two Pfair processes T and U
are considered with utilizations 2

5 and 3
5 , respectively. These

utilizations match the fractions 2
5 and 3

5 as computed using
(1) above. Job-to-processor allocations are made for τ2 by
conceptually maintaining a single-processor Pfair schedule
of T and U assuming each is always available for execution.
Whenever a new job τ2,j of τ2 is released, the Pfair sched-
ule is extended by one quantum. If process T is scheduled
during that quantum, then τ2,j is scheduled on P1 (τ2’s first
processor); if process U is instead scheduled, then τ2,j is
scheduled on P2. This is illustrated in Fig. 4, where the key
in Fig. 3 is assumed. By the definition of a Pfair schedule, by

1Strategies for selecting an assignment order are considered in [1].
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Figure 4: Using a fictitious Pfair schedule to assign jobs of τ2
from Ex. 1. The upper part of the figure shows a Pfair schedule for
two processes T = 2

5
and U = 3

5
. (In such a schedule, each quan-

tum of a process’s execution has a release time and deadline.) The
lower part shows how released jobs of τ2 are distributed between
P1 and P2 based on the Pfair schedule, starting with the fourth job
of τ2 (for clarity, no jobs of other tasks are depicted in the lower
part). Since job releases are sporadic, consecutive jobs of τ2 may
be separated by more than T2, as seen for jobs τ2,6 and τ2,7.

any integral point in time t in the Pfair schedule under con-
sideration (where each integral time unit is one quantum),
process T will have received approximately 2

5 ·t quanta, and
U will have received approximately 3

5 · t quanta. Thus, by
any point in time in the EDF-fm schedule, approximately 2

5
of the released jobs of τ2 will have been assigned to P1 and
approximately 3

5 to P2, as desired.
More specifically, in a Pfair schedule of a periodic sys-

tem of processes that do not over-utilize the assumed pro-
cessor platform, by the integral time instant t, a process
with utilization u will have received between bu · tc and
du · te quanta. In our case, a single-processor platform is
assumed and the Pfair processes under consideration will
always have a total utilization of 1.0. Based on this property
of Pfair schedules, the following is shown in [1].

Property 1. In any EDF-fm schedule, out of the first n jobs
of a migrating task τi, the number of jobs assigned to some
processor Pp is between bfi,p · nc and dfi,p · ne

Ex. 2. We now give an example task system that shows
that if the task utilization restriction of EDF-fm is violated,
then migrating tasks may miss deadlines. Such misses in-
validate the tardiness analysis given in [1]. Consider the
system τ = {(4, 6), (2, 3), (5, 6), (2, 3), (1, 2), (2, 3)}. Be-
cause

∑
τi∈τ Ui = 4, τ is feasible on four processors. Be-

cause all task utilizations exceed 1
2 , EDF-fm’s utilization
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Figure 6: An EDF-fm schedule for the task system in Ex. 2 show-
ing execution on P2. Jobs from τ3 = (5, 6) complete late.

restriction will be violated regardless of the order in which
tasks are considered for assignment on a four-processor sys-
tem. For the listed order, we show that deadlines may be
missed by migrating tasks on P2. Because τ1 = (4, 6) will
be assigned as a fixed task on P1, τ2 will migrate between
P1 and P2 with s2,1 = 1

3 and s2,2 = 1
3 . Since only 2

3 of
the available utilization of P2 remains after assigning τ2,
τ3 = (5, 6) will migrate between P2 and P3 and its share
on P2 will be s3,2 = 2

3 . Note that f2,1 = 1
3 ·

3
2 = 1

2 .
The Pfair-based mapping formula will assign odd-indexed
jobs of τ2 to P1 and even-indexed jobs of τ2 to P2. For τ3,
f3,2 = 2

3 ·
6
5 = 4

5 . The mapping formula will assign the
first four jobs in each consecutive group of five jobs of τ3 to
P2. Fig. 6 shows the first 25 time units of execution on P2

assuming deadline ties are broken in favor of τ2. Note that
each of the first four jobs of τ3 misses its deadline.

3 EDF-os

The problem of eliminating EDF-fm’s utilization restric-
tions to obtain the first ever optimal boundary-limited semi-
partitioned scheduling algorithm for SRT systems has stood
open for eight years. Here, we close this problem by pre-
senting EDF-os, which was obtained by devising several
novel modifications to both the functioning of EDF-fm
and the resulting tardiness analysis. Like EDF-fm, EDF-os
consists of assignment and execution phases. Its assignment
phase is described by the procedure in Fig. 7. An assignment
is produced in two steps: first, as many tasks as possible
are assigned as fixed tasks, using a worst-fit decreasing bin-
packing heuristic. Then, all remaining tasks are assigned (in
decreasing utilization order) by considering each processor

and remaining task in turn. Each task considered in this step
is allocated non-zero shares from a succession of proces-
sors until the sum of its shares equals its utilization. Because
the remaining tasks are considered in decreasing-utilization
order, it is possible that such a task receives a non-zero
share on only one processor, in which case it is a fixed task;
otherwise, it is migrating. Like the assignment procedure
for EDF-fm, this procedure ensures that there are at most
two migrating tasks with non-zero shares on any processor.
However, a migrating task can now have non-zero shares on
more than two processors. Note that we are no longer im-
posing any restrictions on task utilizations (other than that
they be at most 1.0), so it is now possible that migrating
tasks may be tardy. Note also that, because tasks are con-
sidered in decreasing utilization order, each processor must
contain at least one fixed task with a utilization at least that
of any migrating task.

The same assignment scheme has been used by Sarkar
et al. [29] in work on frame-based fair scheduling for rate-
based task systems. Specifically, this scheme is used in their
work to determine the number of units of execution to allo-
cate for each task in a frame (specified interval of time).

In the execution phase, EDF-os works as follows. As
in EDF-fm, each job executes on only one processor. On
any processor, migrating tasks are statically prioritized over
fixed ones, and fixed tasks are prioritized against each other
using EDF (like in EDF-fm). Also, if a processor has two
migrating tasks τi and τi+1, assigned in this order, then τi is
statically prioritized over τi+1 (this differs from EDF-fm).
That is, a migrating task executes with highest priority on
any processor that is not its first processor (recall Sec. 2).
Informally, this rule ensures that tardiness is “created” for
a migrating task only on its first processor; on its other pro-
cessors, one of its jobs will be tardy only if its predecessor
job was also tardy. In fact, any such job assigned to a non-
first processor will be scheduled as soon as it is eligible (i.e.,
released and its predecessor finished). As we shall see in the
tardiness bound proof in Sec. 4, this very predictable execu-
tion behavior for “non-first-processor” jobs can be lever-
aged to derive a lateness bound for all migrating tasks, and
in turn a tardiness bound for all fixed tasks.

Because a migrating task may execute on more than two
processors in EDF-os, we use a slightly altered version of
EDF-fm’s Pfair-based job assignment policy. In particular,
if a migrating task executes on n processors, then we con-
ceptually manage n Pfair processes with total utilization
1.0, where each Pfair process corresponds to a processor
Pk, as before. If, in a uniprocessor schedule of these n pro-
cesses, the kth process is allocated time slot t, then the tth
job of the migrating task is assigned to processor Pk. With
this generalized assignment policy, Prop. 1 still holds.

Ex. 1 (revisited). We now discuss how EDF-os would
schedule the task system from Ex. 1 in Sec. 2. For conve-
nience, we list here the tasks in decreasing utilization order:
τ = {(4, 5), (3, 4), (2, 4), (1, 2), (2, 5)}. Fig. 8 shows how
EDF-os assigns these tasks to processors. Note that now
there is only one migrating task, τ5, which executes on P1



initially si,p = 0 and σp = 0 for all i and p
/∗ assign fixed tasks via a worst-fit decreasing packing ∗/
Index tasks in the order of heaviest utilization to lightest;
for i := 1 to N do

Select p such that σp is minimal;
if Ui > 1− σp then

break /∗ this task must be migrating ∗/
fi;
si,p, σp, last := Ui, σp + Ui, i
fi

od;
/∗ assign migrating and low-utilization fixed tasks ∗/
p := 1;
for i := last + 1 to N do

remaining := Ui

repeat
si,p := min(remaining , (1− σp));
σp, remaining := σp + si,p, remaining − si,p;
if σp = 1 then p := p+ 1 fi

until remaining = 0
od

Figure 7: EDF-os assignment phase.

Figure 8: EDF-os task assignment for Ex. 1: τ1 = (4, 5), τ2 =

(3, 4), τ3 = (2, 4), and τ4 = (1, 2) are assigned as fixed tasks.
τ5 = (2, 5) (shaded) is the only migrating task. For it, s5,1 = 1

5

and s5,2 = 1
5

. After assignment, 1
20

of P2 is unused.

and P2. Because its shares are the same on these two pro-
cessors, f5,1 = 1

2 and f5,2 = 1
2 . Our Pfair-based job assign-

ment policy will assign odd-numbered (even-numbered)
jobs of τ5 to P1 (P2). Fig. 9 shows an example schedule
of this system. In this schedule, only fixed tasks miss dead-
lines. Note also that jobs of τ5 alternate between P1 and P2.

Ex. 2 (revisited). Next, we consider how EDF-os would
schedule the task system from Ex. 2 in Sec. 2. As be-
fore, we list tasks in decreasing utilization order: τ =
{(5, 6), (4, 6), (2, 3), (2, 3), (2, 3), (1, 2)}. The task assign-
ment EDF-os produces is shown in Fig. 10. Note that there
are now two migrating tasks, and one of them, τ5 = (2, 3),
executes on three processors, P1, P2, and P3. Fig. 11 shows
an example EDF-os schedule for this task system.

4 Tardiness Bounds
In this section, we derive tardiness bounds for tasks sched-
uled by EDF-os. We consider migrating and fixed tasks
separately, in Secs. 4.1 and 4.2, respectively. For migrat-
ing tasks, we actually consider lateness bounds rather than
tardiness bounds. Recall from Sec. 2 that if tardiness is

(1,2)

(2,4)

(4,5)

(2,5)

(3,4)

(2,5)

Figure 9: EDF-os schedule for Ex. 1. f5,1 = f5,2 = 1
2

.

Figure 10: EDF-os task assignment for Ex. 2.

positive, then lateness is identical to tardiness, but lateness
can be negative while tardiness cannot. Allowing the late-
ness bounds for migrating tasks to be negative can result in
tighter tardiness bounds for fixed tasks. In the rest of this
section, we assume that the task system τ being analyzed is
feasible (refer to (2) and (3)). We denote the set of all fixed
tasks on processor Pp as τfp , and the sum of the shares of all
fixed tasks on Pp as σfp .

We begin by establishing several properties that follow
from the assignment procedure in Fig. 7. Recall that, as dis-
cussed in Sec. 3, Prop. 1 continues to hold for EDF-os.

Property 2. For each migrating task τi, Ui < 1.

This property follows from the worst-fit decreasing
heuristic used by our assignment procedure. Because τ is
feasible, if Ui < 1 fails to hold, then Ui = 1 holds. More-
over, i ≤ M , for otherwise, total utilization would exceed
M . These facts imply that τi would have been assigned as a
fixed task to a dedicated processor.

Property 3. There are no more than two migrating tasks
that assign jobs to processor Pp. If there are two migrating
tasks that assign jobs to Pp, then Pp is the first processor
for exactly one of them.

It can be shown by induction that when our assignment
procedure first considers a migrating task τi, there can be at
most one migrating task already assigned to the currently
considered processor (which will be τi’s first processor).
From this, Prop. 3 follows.
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Figure 11: EDF-os schedule for Ex. 2. f5,1 = 1
4
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3
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.

Property 4. For processor Pp with one or more migrating
tasks τi (and possibly τk) that have shares si,p (and sk,p),
σfp + si,p + sk,p ≤ 1.

Our assignment procedure does not allow σp to exceed
1.0 (i.e., Pp cannot be over-allocated).

Property 5. If processor Pp contains migrating tasks τi and
τk and Pp is the first processor of τk, then si,p + Uk < 1.

Because tasks are assigned in decreasing-utilization or-
der, there must be a fixed task τf on Pp such that Uf ≥ Uk.
Therefore, by Prop. 4 and because sk,p > 0, Prop. 5 holds.

Property 6. Out of any c consecutive jobs of some migrat-
ing task τi, the number of jobs released on Pp is at most
fi,p(c− 1) + 2.

By Prop. 1, if τi executes jobs on Pp, then out of its first
n jobs, the number assigned to Pp is between bfi,p · nc and
dfi,p · ne. Thus, out of any c consecutive jobs of τi, where
the index of the first such job is j, the number of jobs as-
signed to Pp is at most

dfi,p · (j + c− 1)e − bfi,p · (j)c
≤ {Since dx+ ye ≤ dxe+ dye}
dfi,p · (j)e+ dfi,p · (c− 1)e − bfi,p · (j)c

≤ {Since dxe − bxc ≤ 1}
dfi,p · (c− 1)e+ 1

< {Since dxe < x+ 1}
fi,p · (c− 1) + 2.

4.1 Lateness Bounds for Migrating Tasks

We now derive a lateness bound for migrating tasks. Since
such tasks are statically prioritized over fixed ones, we need
not consider fixed tasks in this derivation. Thus, all refer-
enced tasks in this subsection are assumed to be migrating.

First, we provide a bound on the work from a migrating
task that competes with an arbitrary task. This result will be
used both here and in the next subsection.

Lemma 1. Consider a migrating task τi that releases jobs
on processor Pp. Let t0 ≥ 0 and tc > t0. If no job of τi
has lateness exceeding ∆i (which may be negative), then
the demand from τi in the interval [t0, tc) on Pp is less than

(si,p)(tc − t0) + (si,p)(∆i + Ti) + 2Ci.

Proof. Since we assume that the maximum lateness of τi is
at most ∆i, we know that any job released by τi will take
no more than Ti + ∆i time units to complete, so jobs of
τi released before t0 − (∆i + Ti) cannot create demand in
[t0, tc). Thus, competing demand for execution from jobs
of τi in the interval [t0, tc) comes from jobs of τi released
in [t0 −∆i − Ti, tc). Since the minimum inter-release time
between jobs of τi is Ti, there are at most

⌈
tc−(t0−∆i−Ti)

Ti

⌉
such jobs released in this interval. Since τi is a migrating
task, the number of jobs executed on Pp out of any number
of consecutive jobs of τi is limited by Prop. 6. Thus, the
demand from τi in the interval [t0, tc) on Pp is at most(

fi,p ·
(⌈

tc − (t0 −∆i − Ti)
Ti

⌉
− 1

)
+ 2

)
Ci

< {Since dxe < x+ 1}(
fi,p ·

((
tc − (t0 −∆i − Ti)

Ti
+ 1

)
− 1

)
+ 2

)
Ci

= {Simplifying}(
fi,p ·

(
tc − t0 + ∆i + Ti

Ti

)
+ 2

)
Ci

= {By (1)}
(si,p)(tc − t0) + (si,p)(∆i + Ti) + 2Ci.

We now show that we can upper-bound the lateness of a
migrating task τ` by using a reduction argument that consid-
ers an alternate job allocation in which all of its jobs execute
on its first processor, Pp. (For ease of understanding, we use
the indices “`” and “h” in the rest of this subsection to re-
flect lower and higher static priorities, respectively.) Note
that Prop. 5 ensures that, when ignoring fixed tasks (as we
do in this subsection), Pp has sufficient capacity to accom-
modate any jobs of τ` we may move to it from other pro-
cessors. This is because there must exist a fixed task on Pp
with utilization at least that of τ`. (Our usage of a worst-fit
decreasing assignment strategy is crucially exploited here.)

Lemma 2. If every job of migrating task τ` that executes on
a non-first processor of τ` is moved to its first processor Pp,
no job of τ` will complete earlier. Also, if another migrating
task τh executes on Pp, such moves do not affect it.

Proof. If τ` shares Pp with another migrating task τh, then
by the prioritization rules of EDF-os, τh is not impacted by
moving jobs of τ` to Pp, since τh has higher priority than τ`
(we are not changing the static prioritization of these tasks).

We now show that moving a single job τ`,k of τ` to Pp
cannot lessen the completion time of any job of τ`. By in-
ducting over all such moves, the lemma follows.

Because job τ`,k is being moved, it was originally ex-



ecuting on a non-first processor of τ`. Hence, τ`,k was of
highest priority on that processor and executed immediately
to completion as soon as it was eligible (i.e., by the later of
its release time and the completion time of its predecessor
τ`,k−1, if any). After the move, its execution may be delayed
by jobs of τh, which have higher priority than those of τ` on
Pp. Thus, after the move, τ`,k cannot complete earlier, and
may complete later. If it completes later, then this cannot
cause subsequent jobs of τ` to complete earlier (earlier jobs
of τ` are clearly not impacted).

Thm. 1 below provides lateness bounds for migrating
tasks. If a migrating task τ` shares its first processor with
another migrating task τh, then the bound for τ` depends on
that of τh. Such bounds can be computed inductively, with
the following lemma providing the base case.

Lemma 3. The migrating task τh with the lowest-indexed
first processor Pp does not share Pp with another migrating
task.

Proof. By the assignment procedure of EDF-os, no migrat-
ing task other than τh executes on Pp.

Theorem 1. Let Pp be the first processor of τ`. If τ` is not
the only migrating task that executes on Pp, then let τh de-
note the unique (by Prop. 3) other migrating task that does
so, and let ∆h denote an upper bound on its lateness. Then,
τ` has lateness no larger than

∆` ,

{
(sh,p)(∆h+Th)+2Ch+C`

1−sh,p − T` if τh exists,
C` − T` otherwise.

(4)

Proof. By Lem. 2, we can establish the desired lateness
bound by assuming that all jobs of τ` run on Pp. We make
this assumption in the remainder of the proof.

If τ` is the only migrating task on Pp, then its jobs will
be of highest priority on Pp. Thus, by Prop. 2 and Lem. 2,
every job of τ` will have a response time of at most C`, and
therefore a lateness of at most C` − T`.

In the rest of the proof, we assume that τ` shares Pp with
another migrating task. By Prop. 3, there is a unique such
task τh, as stated in the theorem. By the prioritization rules
used by EDF-os, τh has higher priority than τ`.

Consider job τ`,j with release time r`,j and deadline d`,j .
For purposes of contradiction, assume that τ`,j’s lateness
exceeds ∆`. According to the prioritization rules used by
EDF-os, τ`,j’s execution may be impacted only by jobs
from τh and by jobs from τ` with deadlines before d`,j . We
now upper bound the processor demand impacting τ`,j by
considering a certain time interval, as defined next.

Interval [t0, tc). Let t0 be the latest point in time at or be-
fore r`,j such that no jobs of τh or τ` released on Pp before
t0 are pending; a released job is pending if it has not yet
completed execution. (t0 is well-defined because the stated
condition holds at time 0.) Define tc , d`,j + ∆`. The as-
sumption we seek to contradict is that τ`,j does not com-
plete by tc. Since τ`,j fails to complete by tc, there are more
than tc − t0 units of demand in the interval [t0, tc) for the

execution of jobs on Pp with priority at least that of τ`,j .

Demand from τh. By Lem. 1, the competing demand in
[t0, tc) due to τh on Pp is at most

(sh,p)(tc − t0) + (sh,p)(∆h + Th) + 2Ch. (5)

Demand from τ`. Additional demand can come from jobs
of τ` with deadlines earlier than d`,j . By the definition of
t0, all such jobs are released in [t0, r`,j). Thus, there are at

most
⌊

(r`,j−t0)
T`

⌋
such jobs. Including job τ`,j itself, there

are at most
⌊

(r`,j−t0)
T`

⌋
+ 1 jobs of τ` released in [t0, tc)

with deadlines at most d`,j . The total demand due to such

jobs is
(⌊

(r`,j−t0)
T`

⌋
+ 1
)
C`, which by the definition of U`

is at most
U`(r`,j − t0) + C`. (6)

Total demand. For notational convenience, let

K , (sh,p)(∆h + Th) + 2Ch + C`. (7)

Then, by (5) and (6), the total demand on Pp due to jobs of
equal or higher priority than τ`,j in [t0, tc) is at most

K + (tc − t0)sh,p + (r`,j − t0)U`. (8)

Because τ`,j completed after time tc (by assumption),
the considered demand exceeds the length of the interval
[t0, tc), so

(tc − t0) < {By (8)}
K + (tc − t0)sh,p + (r`,j − t0)U`

= {Rearranging}
K + (tc − r`,j)sh,p + (r`,j − t0)(sh,p + U`)

< {By Prop. 5}
K + (tc − r`,j)sh,p + (r`,j − t0). (9)

Subtracting (r`,j − t0) from both sides of (9) gives (tc −
r`,j) < K + (tc − r`,j)sh,p, which implies

K > (tc − r`,j)(1− sh,p). (10)

By Prop. 2, Uh < 1, and hence sh,p < 1. Thus, by (10),

(tc − r`,j) < {since 1− sh,p is positive}
K

1− sh,p
= {By (7)}

(sh,p)(∆h + Th) + 2Ch + C`
1− sh,p

= {By (4)}
∆` + T`.

Because r`,j = d`,j−T`, this implies tc−d`,j < ∆`, which
contradicts our definition of tc = d`,j + ∆`. Thus, τ`,j does
not complete after time d`,j + ∆` as assumed.



4.2 Tardiness Bounds for Fixed Tasks

Although we provided bounds on lateness in Sec. 4.1, in this
subsection we instead provide bounds on tardiness, because
it is not possible for the bounds in this subsection to be nega-
tive. If no migrating tasks execute on a given processor, then
the fixed tasks on that processor have zero tardiness, by the
optimality of EDF on one processor. The following theo-
rem establishes tardiness bounds for fixed tasks that must
execute together with migrating tasks.

Theorem 2. Suppose that at least one migrating task exe-
cutes on processor Pp and let τi be a fixed task on Pp. If
Pp has two migrating tasks (refer to Prop. 3), denote them
as τh and τ`, where τh has higher priority; otherwise, de-
note its single migrating task as τh, and consider τ` to be a
“null” task with T` = 1, s`,p = 0, and C` = 0. Then, τi has
a maximum tardiness of at most

∆i ,
(sh,p)(∆h + Th) + 2Ch + (s`,p)(∆` + T`) + 2C`

(1− sh,p − s`,p)
.

(11)

Proof. The proof is similar to that of Thm. 1. We will upper
bound demand over the following interval.

Interval [t0, tc). For purposes of contradiction, suppose
that there exists a job τi,j of τi that has tardiness exceeding
∆i, i.e., τi,j has not completed by tc, where tc , di,j + ∆i.
Define a job as a competing job if it is released on Pp and it
is a job of τh or τ`, or a job of a fixed task that has a dead-
line at or before di,j . Let t0 be the latest point in time at
or before ri,j such that no competing jobs released before
t0 are pending. (t0 is well-defined because the stated con-
dition holds at time 0.) We now bound demand over [t0, tc)
due to competing jobs (including τi,j itself) by considering
migrating and fixed tasks separately.

Demand from migrating tasks. By Lem. 1, demand over
[t0, tc) due to jobs of τh and τ` is at most

(sh,p)(tc − t0) + (sh,p)(∆h + Th) + 2Ch+

(s`,p)(tc − t0) + (s`,p)(∆` + T`) + 2C`. (12)

Demand from fixed tasks. A fixed task τk can release at
most

⌊
di,j−t0
Tk

⌋
competing jobs within [t0, tc). Thus, de-

mand from all competing jobs of fixed tasks is at most∑
τk∈τfp

⌊
di,j − t0
Tk

⌋
Ck ≤ (di,j − t0)

∑
τk∈τfp

Ck
Tk
. (13)

By the definition of σfp , the bound in (13) can be written as

(di,j − t0)(σfp ) ≤ {By Prop. 4}
(di,j − t0)(1− sh,p − s`,p). (14)

Total demand. For notational convenience, let

K , (sh,p)(∆h+Th)+2Ch+(s`,p)(∆`+T`)+2C`. (15)

Then, by (12) and (14), total competing demand is at most

K + sh,p(tc − t0) + s`,p(tc − t0)+

(di,j − t0)(1− sh,p − s`,p). (16)

Because τi,j completed after time tc (by assumption),
the considered demand exceeds the length of the interval
[t0, tc), so

(tc − t0) < {By (16)}
K + sh,p(tc − t0) + s`,p(tc − t0)+

(di,j − t0)− (di,j − t0)(sh,p + s`,p)

= {Rearranging}
K + (sh,p + s`,p)(tc − t0)+

(di,j − t0)− (di,j − t0)(sh,p + s`,p). (17)

Subtracting (di,j − t0) from both sides of (17), we have
(tc−di,j) < K+(sh,p+s`,p)(tc− t0)− (di,j− t0)(sh,p+
s`,p) = K + (sh,p + s`,p)(tc − di,j). This implies

K > (tc − di,j)(1− sh,p − s`,p). (18)

By Prop. 4 and because at least one fixed task τi assigned to
Pk, we have (1− sh,p − s`,p) > 0. Thus, by (18),

tc − di,j <
K

(1− sh,p − s`,p)
= {By (11) and (15)}

∆i.

This contradicts our definition of tc = di,j+∆i, so it cannot
be the case that τi,j has more than ∆i units of tardiness.

In an appendix, we discuss some possible improvements
and extensions to EDF-os.

5 Experimental Comparison
Several scheduling algorithms have been previously eval-
uated for use in SRT systems. Bastoni et al. [8] com-
pared several semi-partitioned algorithms, including EDF-
fm and also EDF-WM [23], although the latter was origi-
nally designed for HRT systems. In that study, EDF-WM
was shown to be effective for SRT systems due to its low
overheads. Although not a semi-partitioned algorithm, the
global algorithm G-FL has been proposed by Erickson et
al. [16] as a promising scheduler for SRT systems. G-FL has
provably better tardiness bounds than the more well known
G-EDF algorithm. The variant C-FL [17], which partitions
tasks onto clusters of processors and runs G-FL within each
cluster, is often preferable in the presence of overheads.

We conducted overhead-aware experiments in which
each of EDF-os, EDF-fm, EDF-WM, and C-FL were com-
pared on the basis of schedulability and the tardiness bounds
they ensure. In order to determine the effect of overheads,
we first implemented EDF-os in LITMUSRT [13] and mea-
sured the same scheduler-specific overheads considered by
Bastoni et al. [8]. We used an Intel Xeon L7455 system,



which has 24 cores on four physical sockets. The cores in
each socket share an L3 cache, and pairs of cores share an
L2 cache. Overheads on the same machine were available
for EDF-fm and EDF-WM from the study in [8] and for
C-FL from the study in [17]. Cache-related preemption and
migration delays were also measured on this machine in a
prior study [6]. All of those prior measurements were reused
in the study here. We used these overheads in an overhead-
aware schedulability study involving randomly generated
task sets following the methodology in [8]. We elaborate
upon specific aspects of this methodology, including how
task sets were generated and the weighted schedulabiiity
metric used for comparison, in the appendix.

Due to space constraints, we present only a subset of our
results here—other results can be found in an online ap-
pendix [2]. A typical result for weighted schedulability is
depicted in Fig. 12, which shows weighted schedulability,
with respect to working set size (WSS), of each algorithm
under uniform medium utilizations and uniform moderate
periods.2 Because all utilizations considered are no greater
than 0.5, EDF-fm has 100% schedulability before account-
ing for overheads. EDF-os and EDF-fm have similar over-
heads, so they are nearly indistinguishable from a schedula-
bility perspective, but both have higher schedulability than
EDF-WM or C-FL. Fig. 13 has the same axes as Fig. 12,
but depicts a uniform heavy utilization distribution rather
than uniform medium. Because the utilization constraint
for EDF-fm is no longer guaranteed to be satisfied, EDF-
fm schedules very few task systems in this case. However,
EDF-os continues to exhibit the best weighted schedulabil-
ity of any considered algorithm. Overall, EDF-os usually
provided the best weighted schedulability of any algorithm,
although EDF-fm and EDF-WM sometimes provided small
advantages for task systems with light utilizations.

Tardiness bounds are depicted with respect to utilization
cap (for a fixed WSS of 128 KB) in Fig. 14. For small uti-
lization caps, C-FL can guarantee negative lateness, which
leads to a tardiness bound of zero. Usually, fewer tasks are
migratory under EDF-os than under EDF-fm; as a result,
tardiness was usually drastically lower under EDF-os than
under EDF-fm, often very close to zero. Therefore, even
for task systems where EDF-fm and EDF-os yielded com-
parable schedulability, EDF-os was superior. Overall, C-
FL typically provided tardiness bounds between those of
EDF-fm and EDF-os, while EDF-WM provided zero tar-
diness (as it is a HRT scheduler), at the cost of the inabil-
ity to schedule many task sets. C-FL sometimes provided
smaller tardiness bounds than EDF-os for some task sys-
tems with small WSSs where migration overheads are rel-
atively small, but typically only EDF-WM yielded smaller
tardiness bounds than EDF-os.

2In interpreting the presented graphs, it suffices to know the following:
uniform medium and heavy task utilizations are distributed uniformly over
[0.1, 0.4] and [0.5, 0.9], respectively; moderate periods are distributed uni-
formly over [10, 100] ms; the labels “load” and “idle” in the graphs denote
whether cache-related preemption and migration delays were measured in
an idle system or a system under load; and the label “wc” means that worst-
case overheads were assumed. Please see the appendix for details.
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Figure 12: Weighted schedulability for task systems with
uniform medium utilizations and uniform moderate periods.
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Figure 13: Weighted schedulability for task systems with
uniform heavy utilizations and uniform moderate periods.
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Because EDF-WM is not boundary-limited, it may not
interact well with synchronization protocols in the pres-
ence of critical sections. Therefore, in addition to its typ-
ically better schedulability, EDF-os provides a significant
practical advantage over EDF-WM when synchronization
is needed. Moreover, as noted in the appendix, the behav-
ior of EDF-WM it not well-defined if systems are provi-
sioned assuming deadline misses are tolerable. Compared to
C-FL, EDF-os provides better schedulability and typically
provides lower tardiness bounds, and compared to EDF-fm,
EDF-os provides both better schedulability and lower tar-
diness bounds. Therefore, EDF-os represents a significant
improvement to the state-of-the-art for SRT scheduling.

6 Conclusion
We have presented EDF-os, the first boundary-limited
semi-partitioned scheduling algorithm that is optimal un-
der the “bounded tardiness” definition of SRT correctness.
We have also discussed (in an appendix) optimal variants
of EDF-os in which implicit deadlines are not assumed
and in which algorithms other than EDF are used as the
secondary scheduler. EDF-os and its analysis extend prior
work on EDF-fm by introducing two new key ideas: us-
ing some static prioritizations to make the execution of mi-
grating tasks more predictable; and exploiting properties of
worst-fit decreasing task assignments to enable a migrating
task to be analyzed by “pretending” that all of its jobs exe-
cute on its first processor. In experiments that we conducted,
EDF-os proved to be the best overall alternative from a
schedulability perspective while providing very low tardi-
ness bounds. Moreover, it has practical advantages over al-
gorithms that are not boundary-limited.

The only other optimal boundary-limited scheduling al-
gorithms for SRT systems known to us are non-preemptive
global EDF (NP-G-EDF) [14] and global FIFO (G-
FIFO) [26] (which is also non-preemptive). For static sys-
tems, EDF-os is likely to be preferable in practice, because
the tardiness bounds we have established are much lower
than those known for NP-G-EDF and G-FIFO, and be-
cause semi-partitioned algorithms have lower runtime over-
heads than global ones [8]. On the other hand, for dynamic
systems, where task timing parameters (such as execution
budgets and periods) may change at runtime, NP-G-EDF
is likely to be preferable, as EDF-based global scheduling
tends to more amenable to runtime changes [12]. In con-
trast, the correctness of EDF-os relies crucially on how
tasks are assigned to processors, and redefining such assign-
ments on-the-fly does not seem easy.
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Appendix: Additional Material
In this appendix, we present our experimental methodology
in full and discuss several extensions to our work.

Experimental Methodology

In our experiments, we randomly generated implicit-
deadline task sets, inflated the task system parameters to
account for average-case3 observed overheads, and com-
puted the resulting schedulability and maximum tardiness
bounds under each tested algorithm. When generating task
sets, we used the parameter distributions from [8]. Task uti-
lization were generated using uniform, bimodal, and ex-
ponential distributions. For uniform distributions, we con-
sidered a light distribution where values were drawn from
[0.001, 0.1], a medium distribution where values were drawn
from [0.1, 0.4], and a heavy distribution where values were
drawn from [0.5, 0.9]. For bimodal distributions, we drew
values uniformly in the range of either [0.001, 0.05] or
[0.5, 0.9] with respective probabilities of either 8

9 and 1
9 , 6

9

and 3
9 , or 4

9 and 5
9 , for light, medium, and heavy distribu-

tions, respectively. For exponential distributions, we used a
respective mean of 0.1, 0.25, and 0.5 for light, medium, and
heavy distributions, respectively, and discarded any values
that exceeded one. We generated periods uniformly from
either a short (3 ms to 33 ms), moderate (10 ms to 100 ms),
or long (50 ms to 250 ms) distribution.

We also considered utilization caps in the set
{1, 1.25, 1.5, . . . , 24}, and working set sizes (WSSs)
from 16 KB to 3072 KB. WSSs from [0, 256) KB were
considered in increments of 16 KB, from [256, 1024) KB
in increments of 64 KB, and from [1024, 3072] KB in
increments of 256KB.

We generated 100 task sets for each combination of pe-
riod distribution, utilization distribution, utilization cap, and
WSS. When generating each task set, we added tasks until
the total utilization exceeded the utilization cap, and then
removed the last task.

We considered several variants of the four tested sched-
ulers, EDF-os, EDF-fm, EDF-WM, and C-FL, yielding
ten possibilities in total. We used clustering based on L3
cache boundaries for C-FL, resulting in clusters of size six;
this choice was made because C-FL has overheads simi-
lar to clustered EDF (C-EDF), and [8] used C-EDF with
L3 cache boundaries as its standard of comparison. (C-FL,
which was developed after the publication of [8], has better
tardiness bounds than C-EDF.) For each tested scheduler,
we considered cache-related preemption and migration de-
lays both for an idle system and a system under load; con-
sidering both possibilities allows conclusions to be drawn
for systems with light and heavy cache contention, respec-
tively. Finally, because EDF-WM was designed as a HRT
scheduler, it may not behave correctly if overheads cause
jobs to miss deadlines (specifically, such misses may cause

3In prior studies, e.g., [7, 8], average-case overheads were considered
when evaluating SRT schedulers, and worst-case overheads when evaluat-
ing HRT schedulers.

Figure 15: Counterexample to show that EDF-os is not op-
timal for non-preemptive task systems.

a task to run in parallel with itself). Therefore, for EDF-
WM, we also considered behavior in the presence of worst-
case observed overheads (denoted with wc), as doing so is
probably necessary in practice.

To assess overall schedulability trends, we used the met-
ric of weighted schedulability from [7]. Let S(U,W ) ∈
[0, 1] denote the schedulability of an algorithm (after ac-
counting for overheads) with utilization cap (before over-
heads) U and WSS W , and let Q denote the set of con-
sidered utilization caps. Weighted schedulability, S(W ), is
defined as

S(W ) =

∑
U∈Q U · S(U,W )∑

U∈Q U
.

Potential Extensions to EDF-os

Non-preemptive sections. After designing EDF-os, we
initially thought it retained its optimality if job execution is
non-preemptive. However, this turns out not to be the case.
In particular, with non-preemptivity, a job of a migrating
task executing on a non-first processor for that task may be
non-preemptively blocked when it is released. This block-
ing negates an important property exploited in our analysis,
namely that such jobs execute immediately upon release.
Here we give a counterexample consisting of five tasks
executing on three processors where such non-preemptive
blocking causes a migrating task to have unbounded tardi-
ness.

Let τ = {τ1 = (4, 5), τ2 = (20, 30), τ3 = (24, 36), τ4 =
(9, 20), τ5 = (5, 12)} and M = 3. Since U(τ) = 3.0, τ
is feasible on three processors. The assignment phase of
EDF-os would assign the five tasks as shown in Fig. 15.
In this example, tardiness can be unbounded for τ5 if jobs
are released as follows. Let the first job of τ5 be released
at time 1 and periodically once every 12 time units there-
after. Since f5,3 = 4/5 and f5,2 = 1/5, consider a job as-
signment in which the first four of every group of five jobs
5n + 1 . . . 5n + 5 (i.e., jobs 5n + 1 . . . 5n + 4) of τ5 are
assigned to P3 and the last job (job 5n + 5) to P2 for all
n ≥ 0. Let τ3 (τ2) release a job one time unit before the first
of the four jobs (fifth job) of every five jobs of τ5 assigned
to P3 (P2) becomes eligible. Let τ4’s jobs assigned to P2 be
released at exactly the same time that a job of τ5 assigned
to P2 become eligible. (f4,1 = 4/9 and f4,2 = 5/9, and



hence, jobs 1, 3, 5, 7, and 8 of every group of nine jobs
9n + 1 . . . 9n + 9, n ≥ 0, can be assigned to P2, and the
remaining job to P1. Since p4 = 20, it is sufficient if the
separation between two consecutive jobs of τ4 assigned to
P2 is 40 time units. With only every fifth job of τ5 assigned
to P2, the eligibility times of two consecutive jobs of τ5 as-
signed to P2 is at least 60. Thus, τ4’s jobs can be released
such that releases on P2 coincide with the eligibility times
of jobs of τ5 assigned to P2.) With such a job release pat-
tern, the first of every group of four jobs of τ5 assigned to P3

is blocked by τ3 for 23 time units after it becomes eligible.
(The remaining three jobs are eligible when their predeces-
sors complete executing and hence do not incur additional
blocking.) Similarly, every fifth job is blocked for 19 time
units due to τ2 and waits for an additional 9 time units due
to τ4, for a total waiting time of 28 time units. Thus, 51 time
units in every 60 time units within which every five jobs of
τ5 need to execute are spent waiting on other jobs. Hence,
since the total execution requirement for five jobs is 25, tar-
diness for jobs in each group increases by 16 and grows
unboundedly.

Refined assignment procedures. Our analysis suggests
that, by refining EDF-os’s assignment procedure, it may
possible to obtain lower lateness/tardiness bounds. First,
note that the inductive nature of the lateness bound calcula-
tion for migrating tasks may cause migrating tasks assigned
to later processors to have higher bounds because lateness
can cascade (though it will remain bounded). It may be pos-
sible to reduce such cascades by adjusting the assignment
of migrating tasks, particularly on systems that are not fully
utilized. Second, note that reducing the shares of migrat-
ing tasks executing on Pp reduces the bounds in (4) and
(11). However, such a reduction would entail increasing the
shares of these tasks on other processors, which could lead
to lateness/tardiness bound increases on those processors.
It may be possible to take such linkages among processors
into account and obtain an assignment of tasks to proces-
sors that lessens the largest tardiness bound in the system.
Finally, note that (4) includes −T` as part of τ`’s lateness
bound. By biasing the task assignment procedure to prefer
larger periods for migrating tasks, it might be possible to
lessen the lateness/tardiness bounds that result. We leave re-
finements to our assignment procedure motivated by these
observations as future work.

Bounds with non-implicit deadlines. We have so far as-
sumed that all job deadlines are implicit. However, if we
maintain the prioritizations that EDF-os uses, then bounded
tardiness can be easily ensured for systems with non-
implicit deadlines, i.e., ones where each task τi has a spec-
ified relative Di that may be less than, equal to, or greater
than Ti. Maintaining the existing prioritizations for migrat-
ing tasks is straightforward, as these tasks are not scheduled
by deadline (that are statically prioritized). For each job τi,j
of a fixed task τi, we merely need to define a “scheduling
deadline” equal to ri,j + Ti and prioritize such jobs on an
EDF basis using scheduling deadlines instead of real ones.
With this change, EDF-os will behave as before, but our

analysis then bounds lateness/tardiness (for both migrating
and fixed tasks) with respect to scheduling deadlines. How-
ever, such bounds can be easily corrected to be expressed
with respect to real deadlines: if Di > Ti, then simply sub-
tract Di − Ti from the bound; if Di < Ti, then simply add
Ti −Di to the bound.

Window constrained second-level schedulers In defining
EDF-os, we used EDF as a secondary scheduler for fixed
tasks. (For migrating tasks, our prioritization rules and the
sporadic task model fully characterize the behavior.)

Optimal variants of EDF-os can be constructed in which
other algorithms are used as the secondary scheduler. All
that we require is that a window-constrained [27] sched-
uler be used. Such a scheduler employs a per-task prior-
ity function χi(τi,j , t) such that for some constants φi and
ψi, ri,j − φi ≤ χi(τi,j , t) ≤ di,j + ψi for each job τi,j .
The priority of job τi,j is at least that of τi′,j′ at time t if
χi(τi,j , t) ≤ χi′(τi′,j′ , t) (priority functions can potentially
change with time).

Our analysis can be modified to deal with this more gen-
eral priority specification as follows. The bounds for migrat-
ing tasks continue to hold without modification; the proof of
Thm. 1 is unchanged. By the definition of EDF-os priori-
ties, all jobs of τh always have a higher priority than τ`,j ,
and by the sporadic task model, no job of τ` released after
r`,j is eligible for execution before τ`,j completes.

However, in our analysis of the tardiness of fixed tasks
in the proof of Theorem 2, the number of competing
jobs due to a fixed task τk is no longer

⌊
di,j−t0
Tk

⌋
but⌊

di,j+ψi+φk−t0
Tk

⌋
. In effect, this change causes “di,j” to be

replaced by “di,j+ψi” throughout the proof andK to be in-
flated by an additional

∑
τk∈τfp Ukφk. As a result, ∆i must

be increased by ψi +

∑
τk∈τfp

Ukφk

1−sh,p−s`,p . Tighter analysis may be
possible if more is known about the prioritization function
(as was the case with EDF).


