
Nathan Otterness, James H. Anderson

LET: A Way Forward for Safe GPU Co-Scheduling



Prerequisite: Timing Models

Time

ᷠ1

ᷠ2

Real-time scheduling often assumes a Bounded Execution Time (BET) model:

Tasks must occupy a processor for a specific time interval before their deadline.

Tasks (implicit deadline):
● ᷠ1: (0.4, 2.0)
● ᷠ2: (0.2, 1.0)



Prerequisite: Timing Models

Time

ᷠ1

ᷠ2

Logical Execution Time (LET):

Tasks occupy a proportion of resources for their entire period.

Tasks (implicit deadline):
● ᷠ1: (0.4, 2.0), U = 0.2
● ᷠ2: (0.2, 1.0), U = 0.2

20%

20%



Prerequisite: Timing Models

Time

ᷠ1

ᷠ2

Logical Execution Time (LET):

Tasks occupy a proportion of resources for their entire period.

Tasks (implicit deadline):
● ᷠ1: (0.4, 2.0), U = 0.2
● ᷠ2: (0.2, 1.0), U = 0.2

20%

20%

40%Total utilization:



Prerequisite: Timing Models

Time

ᷠ1

ᷠ2

Logical Execution Time (LET):

Tasks occupy a proportion of resources for their entire period.

Tasks (implicit deadline):
● ᷠ1: (0.4, 2.0), U = 0.2
● ᷠ2: (0.2, 1.0), U = 0.2
● ᷠ3: (0.35, 0.5), U = 0.7 20%

20%

Total utilization:

ᷠ3 70%

110%



Safety-Critical GPUs

Platforms augmented with graphics processing units (GPUs), such as the NVIDIA Jetson TX1, are 
increasingly prevalent in embedded systems.

Screenshot of http://www.nvidia.com/object/embedded-systems-dev-kits-modules.html 27 March 2017



Despite a lack of documentation needed for 
modeling and certification, work is underway to 
incorporate GPUs into safety-critical systems.

Screenshot of http://www.nvidia.com/object/automotive-partner-innovation.html 13 June 2017

Safety-Critical GPUs



GPU Co-Scheduling

CPU GPU 
scheduler

Job 1

Job 2

Job 3

GPU 
execution???

Job 2 complete

Job 3 complete

Job 1 complete

The problem with GPU co-scheduling is that a lack of 
information leads to a lack of predictability.



GPU Co-Scheduling

CPU GPU 
scheduler

Job 1

Job 2

Job 3

GPU 
execution Job 1 complete

GPUSync
(RTSS ‘13) Job 1 Job 1

Earlier systems work around this problem by enforcing 
exclusive access to GPUs.



GPU Co-Scheduling

CPU GPU 
scheduler

Job 1

Job 2

Job 3

GPU 
execution

Ideal 
manager

Job 1

Job 2

Job 3

Job 1

Job 2

Job 3

Job 1 complete

Job 2 complete

Job 3 complete

An ideal management system will enable both 
predictability and concurrency.



A Simplified GPU Model

time

GPU capacity

100%



A Simplified GPU Model

time

GPU capacity

100%

K1



A Simplified GPU Model

time

GPU capacity

100%

K1

Starts 
Executing

Completes



A Simplified GPU Model

time

GPU capacity

100%

K1
Uses 50% of 

available capacity



A Simplified GPU Model

time

GPU capacity

100%

K1



K1

A Simplified GPU Model

time

GPU capacity

100%



Approaches to Co-Scheduling

Different ways to Co-Schedule GPU Tasks:

● Every task is a separate CPU process (no GPU middleware).

● Every task is a separate CPU thread in a single process.

● Every task is a separate CPU process, using NVIDIA's MPS middleware.



Different ways to Co-Schedule GPU Tasks:

● Every task is a separate CPU process (no GPU middleware).

● Every task is a separate CPU thread in a single process.

● Every task is a separate CPU process, using NVIDIA's MPS middleware.

Approaches to Co-Scheduling



time

GPU capacity

100%

K1

Starting Example: Sequential Execution

K2

Multi-process Co-Scheduling

Reported in:
● An Evaluation of the NVIDIA TX1 for Supporting Real-time Computer-Vision Workloads (RTAS'17)
● GPU Scheduling on the NVIDIA TX2: Hidden Details Revealed (RTSS'17)



Multi-process Co-Scheduling

Reported in:
● An Evaluation of the NVIDIA TX1 for Supporting Real-time Computer-Vision Workloads (RTAS'17)
● GPU Scheduling on the NVIDIA TX2: Hidden Details Revealed (RTSS'17)

time

GPU capacity

125%

K1

Co-scheduled kernels using multiple CPU processes

K2



Multi-process Co-Scheduling

Reported in:
● An Evaluation of the NVIDIA TX1 for Supporting Real-time Computer-Vision Workloads (RTAS'17)
● GPU Scheduling on the NVIDIA TX2: Hidden Details Revealed (RTSS'17)

time

GPU capacity

125%

Co-scheduled kernels using multiple CPU processes

K1

K2



Multi-process Co-Scheduling

Reported in:
● An Evaluation of the NVIDIA TX1 for Supporting Real-time Computer-Vision Workloads (RTAS'17)
● GPU Scheduling on the NVIDIA TX2: Hidden Details Revealed (RTSS'17)

time

GPU capacity

125%

Co-scheduled kernels using multiple CPU processes

K1

K2



Multi-process Co-Scheduling

Reported in:
● An Evaluation of the NVIDIA TX1 for Supporting Real-time Computer-Vision Workloads (RTAS'17)
● GPU Scheduling on the NVIDIA TX2: Hidden Details Revealed (RTSS'17)

time

GPU capacity

125%

Co-scheduled kernels using multiple CPU processes

Multiple processes share the 
GPU using multiprogramming.K1

K2



Different ways to Co-Schedule GPU Tasks:

● Every task is a separate CPU process (no GPU middleware).

● Every task is a separate CPU thread in a single process.

● Every task is a separate CPU process, using NVIDIA's MPS middleware.

Approaches to Co-Scheduling



Multi-thread Co-Scheduling

Reported in:
● Inferring the Scheduling Policies of an Embedded CUDA GPU (OSPERT '17)
● GPU Scheduling on the NVIDIA TX2: Hidden Details Revealed (RTSS'17)

time

GPU capacity

100%

K1

Starting Example: Sequential Execution

K2



Multi-thread Co-Scheduling

Reported in:
● Inferring the Scheduling Policies of an Embedded CUDA GPU (OSPERT '17)
● GPU Scheduling on the NVIDIA TX2: Hidden Details Revealed (RTSS'17)

time

GPU capacity

100%

K1

Co-scheduled kernels using multiple CPU threads

K2



Multi-thread Co-Scheduling

Reported in:
● Inferring the Scheduling Policies of an Embedded CUDA GPU (OSPERT '17)
● GPU Scheduling on the NVIDIA TX2: Hidden Details Revealed (RTSS'17)

time

GPU capacity

100%

K1

K2 K1 (contd.)

Co-scheduled kernels using multiple CPU threads



Multi-thread Co-Scheduling

Reported in:
● Inferring the Scheduling Policies of an Embedded CUDA GPU (OSPERT '17)
● GPU Scheduling on the NVIDIA TX2: Hidden Details Revealed (RTSS'17)

time

GPU capacity

100%

K1

K2 K1 (contd.)

Multiple threads share the GPU 
through a hierarchical FIFO 
queue structure.

Co-scheduled kernels using multiple CPU threads



Multi-thread Co-Scheduling

Reported in:
● Inferring the Scheduling Policies of an Embedded CUDA GPU (OSPERT '17)
● GPU Scheduling on the NVIDIA TX2: Hidden Details Revealed (RTSS'17)

time

GPU capacity

100%

K2

Blocking can be common when 
multiple tasks share a CUDA 
context.K1

Co-scheduled kernels using multiple CPU threads



Different ways to Co-Schedule GPU Tasks:

● Every task is a separate CPU process (no GPU middleware).

● Every task is a separate CPU thread in a single process.

● Every task is a separate CPU process, using NVIDIA's MPS middleware.

Approaches to Co-Scheduling



Multi-process Co-Scheduling with MPS

time

GPU capacity

100%

K1

Co-scheduled kernels using MPS

K2



time

GPU capacity

100%

K1

K2 K1 (contd.)

Multi-process Co-Scheduling with MPS

Co-scheduled kernels using MPS



Which one is best for safety-critical systems?

Different ways to Co-Schedule GPU Tasks:

● Every task is a separate CPU process (no GPU middleware).

● Every task is a separate CPU thread in a single process.

● Every task is a separate CPU process, but using NVIDIA's MPS middleware.



Which one is best for safety-critical systems?

Different ways to Co-Schedule GPU Tasks:

● Every task is a separate CPU process (no GPU middleware).

● Every task is a separate CPU thread in a single process.

● Every task is a separate CPU process, but using NVIDIA's MPS middleware.

The best system:
● Is easy to schedule (e.g. supports preemption).
● Does not require modifying existing CUDA programs.
● Fully utilizes the GPU when possible.



Which one is best for safety-critical systems?

Different ways to Co-Schedule GPU Tasks:

● Every task is a separate CPU process (no GPU middleware).

● Every task is a separate CPU thread in a single process.

● Every task is a separate CPU process, but using NVIDIA's MPS middleware.

The best system:
● Is easy to schedule (e.g. supports preemption).
● Does not require modifying existing CUDA programs.
● Fully utilizes the GPU when possible.

✘
✘

✘



Which one is best for safety-critical systems?

Different ways to Co-Schedule GPU Tasks:

● Every task is a separate CPU process (no GPU middleware).

● Every task is a separate CPU thread in a single process.

● Every task is a separate CPU process, but using NVIDIA's MPS middleware.

The best system:
● Is easy to schedule (e.g. supports preemption).
● Does not require modifying existing CUDA programs.
● Fully utilizes the GPU when possible.

✘
✔

✔



Sporadic kernels under MPS (or threads)

time

GPU capacity

100%

K1 K2 K3

Kernel K3, with the closest deadline, 
is blocked by two kernels with 
less-urgent deadlines.



Which one is best for safety-critical systems?

Different ways to Co-Schedule GPU Tasks:

● Every task is a separate CPU process (no GPU middleware).

● Every task is a separate CPU thread in a single process.

● Every task is a separate CPU process, but using NVIDIA's MPS middleware.

The best system:
● Is easy to schedule (e.g. supports preemption).
● Does not require modifying existing CUDA programs.
● Fully utilizes the GPU when possible.

❓
✔

✘



Sporadic kernels using Multiprogramming

time

GPU capacity

100%

K1 K2 K3

(Starting example)



Multiprogrammed kernels

time

GPU capacity

300%

K1

K2

K3

Adjusted 
"capacity":

Response time may be better, 
but still not good enough to 
meet deadline (runs at ~1/3rd 
speed + overhead)



Multiprogrammed kernels

time

GPU capacity

225%

K1

K2

K3

Adjusted 
"capacity":

Reducing resource requirements from 
competitors won't help with 
multiprogramming overhead.



Which one is best for safety-critical systems?

Different ways to Co-Schedule GPU Tasks:

● Every task is a separate CPU process (no GPU middleware).
● Every task is a separate CPU thread in a single process.
● Every task is a separate CPU process, but using NVIDIA's MPS middleware.

The best system:
● Is easy to schedule (e.g. supports preemption).
● Does not require modifying existing CUDA programs.
● Fully utilizes the GPU when possible.



Which one is best for safety-critical systems?

Different ways to Co-Schedule GPU Tasks:

● Every task is a separate CPU process (no GPU middleware).
● Every task is a separate CPU thread in a single process.
● Every task is a separate CPU process, but using NVIDIA's MPS middleware 

on a Volta-architecture GPU to limit per-task computing resources.

The best system:
● Is easy to schedule (e.g. supports preemption).
● Does not require modifying existing CUDA programs.
● Fully utilizes the GPU when possible.



Which one is best for safety-critical systems?

Different ways to Co-Schedule GPU Tasks:

● Every task is a separate CPU process (no GPU middleware).
● Every task is a separate CPU thread in a single process.
● Every task is a separate CPU process, but using NVIDIA's MPS middleware 

on a Volta-architecture GPU to limit per-task computing resources.

The best system:
● Is easy to schedule (e.g. supports preemption).
● Does not require modifying existing CUDA programs.
● Fully utilizes the GPU when possible.



Which one is best for safety-critical systems?

Different ways to Co-Schedule GPU Tasks:

● Every task is a separate CPU process (no GPU middleware).
● Every task is a separate CPU thread in a single process.
● Every task is a separate CPU process, but using NVIDIA's MPS middleware 

on a Volta-architecture GPU to limit per-task computing resources.

The best system:
● Is easy to schedule (e.g. supports preemption).
● Does not require modifying existing CUDA programs.
● Fully utilizes the GPU when possible.



Which one is best for safety-critical systems?

Different ways to Co-Schedule GPU Tasks:

● Every task is a separate CPU process (no GPU middleware).
● Every task is a separate CPU thread in a single process.
● Every task is a separate CPU process, but using NVIDIA's MPS middleware 

on a Volta-architecture GPU to limit per-task computing resources.

The best system:
● Is easy to schedule (e.g. supports preemption).
● Does not require modifying existing CUDA programs.
● Fully utilizes the GPU when possible.

✔



Which one is best for safety-critical systems?

Different ways to Co-Schedule GPU Tasks:

● Every task is a separate CPU process (no GPU middleware).
● Every task is a separate CPU thread in a single process.
● Every task is a separate CPU process, but using NVIDIA's MPS middleware 

on a Volta-architecture GPU to limit per-task computing resources.

The best system:
● Is easy to schedule (approximates fluid scheduling).
● Does not require modifying existing CUDA programs.
● Fully utilizes the GPU when possible.

✔
✔



Which one is best for safety-critical systems?

Different ways to Co-Schedule GPU Tasks:

● Every task is a separate CPU process (no GPU middleware).
● Every task is a separate CPU thread in a single process.
● Every task is a separate CPU process, but using NVIDIA's MPS middleware 

on a Volta-architecture GPU to limit per-task computing resources.

The best system:
● Is easy to schedule (approximates fluid scheduling).
● Does not require modifying existing CUDA programs.
● Fully utilizes the GPU when necessary.

✔
✔

✔



time

GPU capacity

100%

K1 K2 K3

(Starting example)

Applying LET to Volta MPS



Applying LET to Volta MPS

time

GPU capacity

100%

K1
K2

K3 Make K1 and K2 use the minimum capacity necessary-- All 
kernels meet their deadlines.



What needs to be done?

This is still ongoing work. The next steps include:

1. Determining formulas relating GPU utilization to execution time.
(This can actually be measured per-task rather than per-kernel.)

2. Write a management system that dynamically sets utilization limits based 
on the formulas and tasks' deadlines.



Potential Problems

● Volta GPUs are currently expensive and in short supply.
● Embedded GPUs (so far) do not support MPS, regardless of GPU architecture.
● There's no guarantee that future GPU architectures will support setting 

resource limits.



Conclusion

Safe, predictable real-time scheduling seems possible, when 
applying the principles of LET to GPU resource partitioning 
on Volta-architecture GPUs.



GPU Co-Scheduling with Processes

When GPU tasks are launched from separate CPU processes (CUDA contexts), 
co-scheduling is achieved via multiprogramming.

Reported in:
● An Evaluation of the NVIDIA TX1 for Supporting Real-time Computer-Vision Workloads (RTAS'17)
● GPU Scheduling on the NVIDIA TX2: Hidden Details Revealed (RTSS'17)

Maxwell GPU Architecture (TX1) Pascal GPU Architecture (TX2)



GPU Co-Scheduling with Processes

Multiprogramming on Maxwell GPUs leads to blocking.

Small, short-lived competing workload Small, long-lived competing workload



GPU Co-Scheduling with Processes

Multiprogramming on Pascal GPUs leads to disproportionate performance loss.

Small, short-lived competing workload Small, long-lived competing workload


