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Real-time scheduling often assumes a Bounded Execution Time (BET) model:

Tasks must occupy a processor for a specific time interval before their deadline.
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Logical Execution Time (LET):

Tasks occupy a proportion of resources for their entire period.
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Safety-Critical GPUs

NVIDIA" JETSON

The embedded platform for autonomous everything

Screenshot of http://www.nvidia.com/object/embedded-systems-dev-kits-modules.html 27 March 2017

Platforms augmented with graphics processing units (GPUs), such as the NVIDIA Jetson TX1, are
increasingly prevalent in embedded systems.



Safety-Critical GPUs

Despite a lack of documentation needed for
modeling and certification, work is underway to
incorporate GPUs into safety-critical systems.

NVIDIA partners with some of today's most forward-looking automakers, tier-1 suppliers, research, and startup companies to
integrate GPU technology and artificial intelligence to develop self-driving cars, trucks, and shuttles. Their innovations in
GPU-based supercomputing enable deep learning, natural language processing, and gesture control that will change how people
drive cars—and even enable cars to drive people.

~

TOYOTA AUDI

NVIDIA is collaborating with Toyota to deliver At CES 2017, Audi and NVIDIA announced an
artificial intelligence hardware and software acceleration of a long- running partnership—this
technologies that will enhance the capabilities of new shared goal will put advanced Al cars on the
autonomous driving systems planned for market road starting in 2020. Together, Audi and NVIDIA
introduction within the next few years. have been delivering automotive breakthroughs for

over a decade. Currently, Audi’s award-winning Audi
connect display systems are powered by NVIDIA and

come in every car they make

TESLA MERCEDES-BENZ
Tesla Motors and NVIDIA have partnered since the Mercedes-Benz and NVIDIA have announced a
early development of the revolutionary Model S. partnership to bring an NVIDIA Al-powered car to

Screenshot of http://www.nvidia.com/object/automotive-partner-innovation.html 13 June 2017



GPU Co-Scheduling
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The problem with GPU co-scheduling is that a lack of
information leads to a lack of predictability.



GPU Co-Scheduling
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Earlier systems work around this problem by enforcing
exclusive access to GPUs.



GPU Co-Scheduling
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A Simplified GPU Model
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Approaches to Co-Scheduling

Different ways to Co-Schedule GPU Tasks:

® Every task is a separate CPU process (no GPU middleware).
e Every task is a separate CPU thread in a single process.

e Every task is a separate CPU process, using NVIDIA's MPS middleware.
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Multi-process Co-Scheduling
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Starting Example: Sequential Execution

Reported in:
®  An Evaluation of the NVIDIA TX1 for Supporting Real-time Computer-Vision Workloads (RTAS'17)
®  GPU Scheduling on the NVIDIA TX2: Hidden Details Revealed (RTSS'17)
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Multi-process Co-Scheduling
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Multi-thread Co-Scheduling
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e  Inferring the Scheduling Policies of an Embedded CUDA GPU (OSPERT '17)
®  GPU Scheduling on the NVIDIA TX2: Hidden Details Revealed (RTSS'17)
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Which one is best for safety-critical systems?

Different ways to Co-Schedule GPU Tasks:

® Every task is a separate CPU process (no GPU middleware).
e Every task is a separate CPU thread in a single process.

e Every task is a separate CPU process, but using NVIDIA's MPS middleware.



Which one is best for safety-critical systems?

Different ways to Co-Schedule GPU Tasks:

® Every task is a separate CPU process (no GPU middleware).
e Every task is a separate CPU thread in a single process.

e Every task is a separate CPU process, but using NVIDIA's MPS middleware.

The best system:
e s easy to schedule (e.g. supports preemption).
e Does not require modifying existing CUDA programs.
e Fully utilizes the GPU when possible.
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Applying LET to Volta MPS
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Applying LET to Volta MPS

A
100% -

GPU capacity

K3 Make K1 and K2 use the minimum capacity necessary-- All
kernels meet their deadlines.

K2
K1

T




What needs to be done?

This is still ongoing work. The next steps include:

1. Determining formulas relating GPU utilization to execution time.
(This can actually be measured per-task rather than per-kernel.)

2. Write a management system that dynamically sets utilization limits based
on the formulas and tasks' deadlines.



Potential Problems

e Volta GPUs are currently expensive and in short supply.

e Embedded GPUs (so far) do not support MPS, regardless of GPU architecture.

e There's no guarantee that future GPU architectures will support setting
resource limits.



Conclusion

Safe, predictable real-time scheduling seems possible, when
applying the principles of LET to GPU resource partitioning
on Volta-architecture GPUs.



GPU Co-Scheduling with Processes
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When GPU tasks are launched from separate CPU processes (CUDA contexts),
co-scheduling is achieved via multiprogramming.

Reported in:
®  An Evaluation of the NVIDIA TX1 for Supporting Real-time Computer-Vision Workloads (RTAS'17)
®  GPU Scheduling on the NVIDIA TX2: Hidden Details Revealed (RTSS'17)



GPU Co-Scheduling with Processes
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Multiprogramming on Maxwell GPUs leads to blocking.
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Multiprogramming on Pascal GPUs leads to disproportionate performance loss.



