LET: A Way Forward for Safe GPU Co-Scheduling

Nathan Otterness, James H. Anderson

Prerequisite: Timing Models

Tasks (implicit deadline): T, r |

o 17.:(04,2.0)
° 1, (0.2, 1.0)

T

’ l

Time

Real-time scheduling often assumes a Bounded Execution Time (BET) model:

Tasks must occupy a processor for a specific time interval before their deadline.

Prerequisite: Timing Models

Tasks (implicit deadline): r. | 20%

o 17.:(04,20),U=02
o 17,:(02,1.0),U=02
20%

S |

Time

Logical Execution Time (LET):

Tasks occupy a proportion of resources for their entire period.

Prerequisite: Timing Models

Total utilization: 40%

Tasks (implicit deadline): r, 1| 20%
o 17.:(04,20),U=02 g

o 17,:(02,1.0),U=02 | é

. : :

2 1 20% |

Time

Logical Execution Time (LET):

Tasks occupy a proportion of resources for their entire period.

Prerequisite: Timing Models

Total utilization: ;(_110% _)

Tasks (implicit deadline): r, 1| _ 20%
o 17.:(04,20),U=02 e j

o 17,:(02,1.0),U=02 . |

e 17,.:(0.350.5),U=07 2 1 20% : |

T :
3 I— 70% —|
Time

Logical Execution Time (LET):

Tasks occupy a proportion of resources for their entire period.

Safety-Critical GPUs

NVIDIA" JETSON

The embedded platform for autonomous everything

Screenshot of http://www.nvidia.com/object/embedded-systems-dev-kits-modules.html 27 March 2017

Platforms augmented with graphics processing units (GPUs), such as the NVIDIA Jetson TX1, are
increasingly prevalent in embedded systems.

Safety-Critical GPUs

Despite a lack of documentation needed for
modeling and certification, work is underway to
incorporate GPUs into safety-critical systems.

NVIDIA partners with some of today's most forward-looking automakers, tier-1 suppliers, research, and startup companies to
integrate GPU technology and artificial intelligence to develop self-driving cars, trucks, and shuttles. Their innovations in
GPU-based supercomputing enable deep learning, natural language processing, and gesture control that will change how people
drive cars—and even enable cars to drive people.

~

TOYOTA AUDI

NVIDIA is collaborating with Toyota to deliver At CES 2017, Audi and NVIDIA announced an
artificial intelligence hardware and software acceleration of a long- running partnership—this
technologies that will enhance the capabilities of new shared goal will put advanced Al cars on the
autonomous driving systems planned for market road starting in 2020. Together, Audi and NVIDIA
introduction within the next few years. have been delivering automotive breakthroughs for

over a decade. Currently, Audi’s award-winning Audi
connect display systems are powered by NVIDIA and

come in every car they make

TESLA MERCEDES-BENZ
Tesla Motors and NVIDIA have partnered since the Mercedes-Benz and NVIDIA have announced a
early development of the revolutionary Model S. partnership to bring an NVIDIA Al-powered car to

Screenshot of http://www.nvidia.com/object/automotive-partner-innovation.html 13 June 2017

GPU Co-Scheduling

Job 2 complete

@

CPU Job 2

GPU GPU

execution Job 3 complete

77

scheduler ﬂ

Job 3 Job 1 complete

NN N

The problem with GPU co-scheduling is that a lack of
information leads to a lack of predictability.

GPU Co-Scheduling

—I\ GPUSync GPU GPU
CPU T job2 A (RTSS “13) JOb::1 > scheduler ::J"bl > execution |[PRLRSESIGE >

Earlier systems work around this problem by enforcing
exclusive access to GPUs.

GPU Co-Scheduling

CPU

Ideal

manager

An ideal management system will enable both
predictability and concurrency.

GPU
scheduler

Job 1 complete

execution [PRSEASIIIEE

Job 3 complete

NN N

A Simplified GPU Model

A
100% -

GPU capacity

> time

A Simplified GPU Model

A

100% -

GPU capacity

K1

> time

A Simplified GPU Model

A
100% -

GPU capacity

K1

> time

T

Starts Completes
Executing

A Simplified GPU Model

A

100% -

GPU capacity

Uses 50% of
available capacity

K1

> time

A Simplified GPU Model

A

100% -

GPU capacity

K1

> time

A Simplified GPU Model

A

100% -

GPU capacity

K1

> time

Approaches to Co-Scheduling

Different ways to Co-Schedule GPU Tasks:

® Every task is a separate CPU process (no GPU middleware).
e Every task is a separate CPU thread in a single process.

e Every task is a separate CPU process, using NVIDIA's MPS middleware.

Approaches to Co-Scheduling

Different ways to Co-Schedule GPU Tasks:

® Every task is a separate CPU process (no GPU middleware).

e Every task is a separate CPU thread in a single process.

e Every task is a separate CPU process, using NVIDIA's MPS middleware.

Multi-process Co-Scheduling

A
100% T

GPU capacity
K1

K2

ﬁ {_} > time

Starting Example: Sequential Execution

Reported in:
® An Evaluation of the NVIDIA TX1 for Supporting Real-time Computer-Vision Workloads (RTAS'17)
® GPU Scheduling on the NVIDIA TX2: Hidden Details Revealed (RTSS'17)

Multi-process Co-Scheduling

A
125% T
GPU capacity K1
K2
> time
g Co-scheduled kernels using multiple CPU processes
Reported in:

® An Evaluation of the NVIDIA TX1 for Supporting Real-time Computer-Vision Workloads (RTAS'17)
® GPU Scheduling on the NVIDIA TX2: Hidden Details Revealed (RTSS'17)

Multi-process Co-Scheduling

125% [T

GPU capacity K1

K2

> time

g Co-scheduled kernels using multiple CPU processes

Reported in:
® An Evaluation of the NVIDIA TX1 for Supporting Real-time Computer-Vision Workloads (RTAS'17)
® GPU Scheduling on the NVIDIA TX2: Hidden Details Revealed (RTSS'17)

Multi-process Co-Scheduling

A
125% T
GPU capacity K1
K2
: > time
g Co-scheduled kernels using multiple CPU processes
Reported in:

® An Evaluation of the NVIDIA TX1 for Supporting Real-time Computer-Vision Workloads (RTAS'17)
® GPU Scheduling on the NVIDIA TX2: Hidden Details Revealed (RTSS'17)

Multi-process Co-Scheduling

125% 1

GPU capacity

K1

K2

Multiple processes share the
GPU using multiprogramming.

g Co-scheduled kernels using multiple CPU processes

Reported in:

> time

An Evaluation of the NVIDIA TX1 for Supporting Real-time Computer-Vision Workloads (RTAS'17)
GPU Scheduling on the NVIDIA TX2: Hidden Details Revealed (RTSS'17)

Approaches to Co-Scheduling

Different ways to Co-Schedule GPU Tasks:

® Every task is a separate CPU process (no GPU middleware).

e Every task is a separate CPU thread in a single process.

e Every task is a separate CPU process, using NVIDIA's MPS middleware.

Multi-thread Co-Scheduling

A

100% T

GPU capacity

K1

K2

@

Reported in:

e Inferring the Scheduling Policies of an Embedded CUDA GPU (OSPERT '17)
® GPU Scheduling on the NVIDIA TX2: Hidden Details Revealed (RTSS'17)

i)

Starting Example: Sequential Execution

> time

Multi-thread Co-Scheduling

A
100% T

GPU capacity
K1

K2

> time
g Co-scheduled kernels using multiple CPU threads

Reported in:
e Inferring the Scheduling Policies of an Embedded CUDA GPU (OSPERT '17)
® GPU Scheduling on the NVIDIA TX2: Hidden Details Revealed (RTSS'17)

Multi-thread Co-Scheduling

A
100% T

GPU capacity K1

K2 K1 (contd.)

> time

Co-scheduled kernels using multiple CPU threads

Reported in:
e Inferring the Scheduling Policies of an Embedded CUDA GPU (OSPERT '17)
® GPU Scheduling on the NVIDIA TX2: Hidden Details Revealed (RTSS'17)

Multi-thread Co-Scheduling

A

100% T

GPU capacity K1

K2

K1 (contd.)

Multiple threads share the GPU
through a hierarchical FIFO
queue structure.

> time

Co-scheduled kernels using multiple CPU threads

Reported in:

e Inferring the Scheduling Policies of an Embedded CUDA GPU (OSPERT '17)
® GPU Scheduling on the NVIDIA TX2: Hidden Details Revealed (RTSS'17)

Multi-thread Co-Scheduling

A
100% T

Blocking can be common when

GPU capacity multiple tasks share a CUDA
K1 context.
K2
> time
Co-scheduled kernels using multiple CPU threads
Reported in:

e Inferring the Scheduling Policies of an Embedded CUDA GPU (OSPERT '17)
® GPU Scheduling on the NVIDIA TX2: Hidden Details Revealed (RTSS'17)

Approaches to Co-Scheduling

Different ways to Co-Schedule GPU Tasks:

® Every task is a separate CPU process (no GPU middleware).

e Every task is a separate CPU thread in a single process.

e Every task is a separate CPU process, using NVIDIA's MPS middleware.

Multi-process Co-Scheduling with MPS

100% 1

GPU capacity

K1

K2

g

Co-scheduled kernels using MPS

> time

Multi-process Co-Scheduling with MPS

100% 1

GPU capacity

K1

K2

K1 (contd.)

Co-scheduled kernels using MPS

> time

Which one is best for safety-critical systems?

Different ways to Co-Schedule GPU Tasks:

® Every task is a separate CPU process (no GPU middleware).
e Every task is a separate CPU thread in a single process.

e Every task is a separate CPU process, but using NVIDIA's MPS middleware.

Which one is best for safety-critical systems?

Different ways to Co-Schedule GPU Tasks:

® Every task is a separate CPU process (no GPU middleware).
e Every task is a separate CPU thread in a single process.

e Every task is a separate CPU process, but using NVIDIA's MPS middleware.

The best system:
e s easy to schedule (e.g. supports preemption).
e Does not require modifying existing CUDA programs.
e Fully utilizes the GPU when possible.

Which one is best for safety-critical systems?

Different ways to Co-Schedule GPU Tasks:

® Every task is a separate CPU process (no GPU middleware).

e Every task is a separate CPU thread in a single process.

e Every task is a separate CPU process, but using NVIDIA's MPS middleware.

The best system:
e Is easy to schedule (e.g. supports preemption). ¥
e Does not require modifying existing CUDA programs. X
e Fully utilizes the GPU when possible. ¥

Which one is best for safety-critical systems?

Different ways to Co-Schedule GPU Tasks:

® Every task is a separate CPU process (no GPU middleware).

e Every task is a separate CPU thread in a single process.

e Every task is a separate CPU process, but using NVIDIA's MPS middleware.

The best system:
e Is easy to schedule (e.g. supports preemption). ¥
e Does not require modifying existing CUDA programs. ¢/
e Fully utilizes the GPU when possible. ¢/

Sporadic kernels under MPS (or threads)

100%

GPU capacity

A

K1

K2

K3

Kernel K3, with the closest deadline,

is blocked by two kernels with
less-urgent deadlines.

¥ %

%> time

Which one is best for safety-critical systems?

Different ways to Co-Schedule GPU Tasks:

® Every task is a separate CPU process (no GPU middleware).

e Every task is a separate CPU thread in a single process.

e Every task is a separate CPU process, but using NVIDIA's MPS middleware.

The best system:
e s easy to schedule (e.g. supports preemption).
e Does not require modifying existing CUDA programs. ¢/
e Fully utilizes the GPU when possible. ¥

Sporadic kernels using Multiprogramming

100%

GPU capacity

A

K1

K2

K3

(Starting example)

%> time

Multiprogrammed kernels

Adjusted A
"capacity": 300% +
K3
GPU capacity
K2
K1

Response time may be better,
but still not good enough to
meet deadline (runs at ~1/3rd
speed + overhead)

%> time

Multiprogrammed kernels

Adjusted A
"capacity": 225% -

GPU capacity

K3

. S

K2

K1

Reducing resource requirements from

competitors won't help with
multiprogramming overhead.

X<

%> time

Which one is best for safety-critical systems?

Different ways to Co-Schedule GPU Tasks:

e Every task is a separate CPU process (no GPU middleware).
® Every task is a separate CPU thread in a single process.
e Every task is a separate CPU process, but using NVIDIA's MPS middleware.

The best system:
e s easy to schedule (e.g. supports preemption).
e Does not require modifying existing CUDA programs.
e Fully utilizes the GPU when possible.

Which one is best for safety-critical systems?

Different ways to Co-Schedule GPU Tasks:

e Every task is a separate CPU process (no GPU middleware).

® Every task is a separate CPU thread in a single process.

e Every task is a separate CPU process, but using NVIDIA's MPS middleware
on a Volta-architecture GPU to limit per-task computing resources.

The best system:
e s easy to schedule (e.g. supports preemption).
e Does not require modifying existing CUDA programs.
e Fully utilizes the GPU when possible.

Which one is best for safety-critical systems?

Different ways to Co-Schedule GPU Tasks:

e Every task is a separate CPU process (no GPU middleware).
® Every task is a separate CPU thread in a single process.
e Every task is a separate CPU process, but using NVIDIA's MPS middleware

on a Volta-architecture GPU to limit per-task computing resources.

The best system:

Is easy to schedule (e.g. supports preemption).
Does not require modifying existing CUDA programs.
Fully utilizes the GPU when possible.

Which one is best for safety-critical systems?

Different ways to Co-Schedule GPU Tasks:

e Every task is a separate CPU process (no GPU middleware).
® Every task is a separate CPU thread in a single process.

e Every task is a separate CPU process, but using NVIDIA's MPS middleware
on a Volta-architecture GPU to limit per-task computing resources.

The best system:

e s easy to schedule (e.g. supports preemption).

e Does not require modifying existing CUDA programs.
e Fully utilizes the GPU when possible.

Which one is best for safety-critical systems?

Different ways to Co-Schedule GPU Tasks:

e Every task is a separate CPU process (no GPU middleware).
® Every task is a separate CPU thread in a single process.

e Every task is a separate CPU process, but using NVIDIA's MPS middleware
on a Volta-architecture GPU to limit per-task computing resources.

The best system:

e s easy to schedule (e.g. supports preemption).
e Does not require modifying existing CUDA programs. ¢/
e Fully utilizes the GPU when possible.

Which one is best for safety-critical systems?

Different ways to Co-Schedule GPU Tasks:

e Every task is a separate CPU process (no GPU middleware).
® Every task is a separate CPU thread in a single process.

e Every task is a separate CPU process, but using NVIDIA's MPS middleware
on a Volta-architecture GPU to limit per-task computing resources.

The best system:
e Is easy to schedule (approximates fluid scheduling). ¢/

e Does not require modifying existing CUDA programs. ¢/
e Fully utilizes the GPU when possible.

Which one is best for safety-critical systems?

Different ways to Co-Schedule GPU Tasks:

e Every task is a separate CPU process (no GPU middleware).
® Every task is a separate CPU thread in a single process.

e Every task is a separate CPU process, but using NVIDIA's MPS middleware
on a Volta-architecture GPU to limit per-task computing resources.

The best system:
e Is easy to schedule (approximates fluid scheduling). ¢/
e Does not require modifying existing CUDA programs. ¢/
e Fully utilizes the GPU when necessary. ¢/

Applying LET to Volta MPS

100%

GPU capacity

A

K1

K2

K3

(Starting example)

%> time

Applying LET to Volta MPS

A
100% -

GPU capacity

K3 Make K1 and K2 use the minimum capacity necessary-- All
kernels meet their deadlines.

K2
K1

T

What needs to be done?

This is still ongoing work. The next steps include:

1. Determining formulas relating GPU utilization to execution time.
(This can actually be measured per-task rather than per-kernel.)

2. Write a management system that dynamically sets utilization limits based
on the formulas and tasks' deadlines.

Potential Problems

e Volta GPUs are currently expensive and in short supply.

e Embedded GPUs (so far) do not support MPS, regardless of GPU architecture.

e There's no guarantee that future GPU architectures will support setting
resource limits.

Conclusion

Safe, predictable real-time scheduling seems possible, when
applying the principles of LET to GPU resource partitioning
on Volta-architecture GPUs.

GPU Co-Scheduling with Processes

Maxwell GPU Architecture (TX1) Pascal GPU Architecture (TX2)

_§ ao00p & 40001 11|/ AL L U VLU LU UL L 1
&% 3000 - 48 3000 - 1
85 © 5
£3 2000 | j:‘_’g 2000 | q
S £ 6661 % & 1000
*2 # g i
5 0 . & O r r L n n 1
0.15 0.16 0.17 0.18 0.19 0.20 0.0000 0.0625 0.1250 0.1876 0.2501 0.3126
3 4000 F T i ‘g 4000 T T]
I K
48 3000 48 3000 |
3
£5 2000 §§ 2000 |
*é 1000 | ;é 1000 |
& 0 L N (o S T L L L k|
0.15 0.16 0.17 0.18 0.19 0.20 0.0000 0.0625 0.1250 0.1876 0.2501 0.3126
g a000r] & 4000 111 AR L L LLLLLLLULLLLLLLT T
48 3000} 48 3000 - 1
©
gi 2000 §§ 2000 |
% & 1000 * é 1000
™ 0 ™ Ot e T L " s =
0.15 0.16 0.17 0.18 0.19 0.20 0.0000 0.0625 0.1250 0.1876 0.2501 0.3126
4000 & 4000 111 1 AALALRALLLLLLLLLLLLLLLLLLLLLLLLLLLL
48 3000 48 3000 -
N
33 2000 9% 2000}
£3 £2
8 1000 * & 1000
§ o, = 3 ob_: . |
0.15 0.16 0.17 0.18 0.19 0.20 0.0000 0.0625 0.1250 0.1876 0.2501 0.3126

Time (seconds) Time (seconds)

When GPU tasks are launched from separate CPU processes (CUDA contexts),
co-scheduling is achieved via multiprogramming.

Reported in:
® An Evaluation of the NVIDIA TX1 for Supporting Real-time Computer-Vision Workloads (RTAS'17)
® GPU Scheduling on the NVIDIA TX2: Hidden Details Revealed (RTSS'17)

GPU Co-Scheduling with Processes

threads,

threads,

Small, short-lived competing workload

4000 |

1: Timer Spin

4000

2: Mandelbrot Set
= N w
o o o
o o o
o o o

o

N w

o o

o o

o o
T T

1000 |

0.0000

0.0286 0.0572 0.0858 0.1143 0.1429

T T T T T

0.0000

0.0572 0.0858 0.1143 0.1429

Time (seconds)

0.0286

Small, long-lived competing workload

4000 |-

N w
o o
o o
o o

threads,
1: Timer Spin

4000 [

threads
2: Mandelbrot Set
= N w
o o o
o o o
o o o

0

1000 |

I —] —_
0.0000 0.0652 0.1304 0.1957 0.2609 0.3261
0.0000 0.0652 0.1304 0.1957 0.2609 0.3261

Time (seconds)

Multiprogramming on Maxwell GPUs leads to blocking.

GPU Co-Scheduling with Processes

Small, short-lived competing workload Small, long-lived competing workload
4000 ' ' ' ' i 4000
.S 3000 |- ..£ 3000
w Q. wn Q
g 5
£ 2000 £5 2000
* 5 1000} * 5 1000}
OF : . ‘ - . T o : : — . . il
0.0000 0.0254 0.0509 0.0763 0.1018 0.1272 0.0000 0.0365 0.0731 0.1096 0.1461 0.1827
4000 : : i] B 4000

threads
2: Mandelbrot Set
[N w
o o o
o o o
o o o
threads
2: Mandelbrot Set
[N w
o o o
o o o
o o o

0

0

0.0000 0.0254 0.0509 0.0763 0.1018 0.1272 0,0600 0.0.;)65 0,0‘731 0.12)96 0.1;161 0.1£|327
Time (seconds) Time (seconds)

Multiprogramming on Pascal GPUs leads to disproportionate performance loss.

