AM-Red: An Optimal Semi-Partitioned Scheduler Assuming Arbitrary Affinity Masks

Sergey Voronov and James H. Anderson

University of North Carolina at Chapel Hill

February 14, 2018

Job (a single unit of work)

Release time t_r , relative deadline D (absolute one is $t_d = D + t_r$) and execution time C. Tardiness of job, completed at t_c : max $(0, t_c - t_d)$.

Sporadic Task (a sequence of similar dependent jobs)

Characterized by period T and Worst-Case Execution Time (WCET) C. Releases jobs $j_1, ..., j_k, ...,$ such that

- Distance between releases of j_i and j_{i+1} is at least T.
- Relative deadline of j_i is T time units from the release.
- WCET of j_i does not exceed C.

Task tau_i utilization is $U_i = C/T$, task tardiness is supremum of all its jobs tardiness.

Affinity Mask α_i of task τ_i

A set of processors, that can execute given task τ_i (any processor that is not in the mask cannot execute the task).

Affinity Graph $AG(\tau)$

n vertices τ_1, \ldots, τ_n (representing tasks) *m* vertices π_1, \ldots, π_m (representing cores) has an edge (τ_i, π_j) if and only if $\pi_j \in \alpha_i$ (i.e., task τ_i can execute on core π_j).

$$\alpha_1 = \{1\}, \ \alpha_2 = \{1, 2\}, \\
\alpha_3 = \{1, 2\}, \ \alpha_4 = \{3\}.$$

Schedulability of $\boldsymbol{\tau}$

 τ is *HRT-schedulable* (resp., *SRT-schedulable*) under scheduling algorithm S if each task in τ has zero (resp., bounded) tardiness in any schedule for τ generated by S.

Feasibility of τ

 τ is *HRT-feasible* (resp., *SRT-feasible*) if, for any job release sequence, a schedule exists in which each task has zero (resp., bounded) tardiness.

Optimality of Scheduler S

S is *HRT-optimal* (resp., *SRT-optimal*) if every HRT-feasible (resp., SRT-feasible) task set τ is HRT-schedulable (resp., SRT-schedulable) under S.

Problem and Motivation

Affinity masks usage

- simplify cache usage analysis
- reduce I/O-related overheads (interrupts)
- easier load balancing
- ensure security isolation

Problem and Motivation

Affinity masks usage

- simplify cache usage analysis
- reduce I/O-related overheads (interrupts)
- easier load balancing
- ensure security isolation

Affinity masks support

- Linux's SCHED_DEADLINE policy (RT scheduler)
- Windows, Mac OS X
- FreeRTOS, QNX, VxWorks, ...

Problem and Motivation

Affinity masks usage

- simplify cache usage analysis
- reduce I/O-related overheads (interrupts)
- easier load balancing
- ensure security isolation

Affinity masks support

- Linux's SCHED_DEADLINE policy (RT scheduler)
- Windows, Mac OS X
- FreeRTOS, QNX, VxWorks, ...

Affinity masks schedulers

- [Baruah 2013]: HMR, requires future knowledge
- [Brandenburg 2014]: improvement for Linux scheduler, HMR
- [Bonifaci 2016]: HMR, only hierarchical, high overheads

HMR = high migrations rateNo optimal scheduler, available for implementation, exist. Our goals:

- Build HRT/SRT-optimal scheduler that supports arbitrary affinity masks
- Make scheduler as fast as possible (in the worst case)
- Reduce number of task *migrations* over cores

Our goals:

- Build HRT/SRT-optimal scheduler that supports arbitrary affinity masks
- Make scheduler as fast as possible (in the worst case)
- Reduce number of task *migrations* over cores

What do we do:

• Restrict affinity masks, preserving task set feasibility (affinity graph reduction)

	Static	Dynamic
How to	Create schedule template	No preprocessing
build	Generate "almost static" schedule	Decide at runtime tasks-cores placement
Pros	Easy to analyze	Easy to implement
	Small overheads	No pre-processing
Cons	Hard to adjust schedule	Hard to analyze
	Offline phase may take lots of time	High overheads

Frame is a template of schedule over [0, 1). We scale this template to [0, F) and repeat.

	Baruah	UB Test	Max Flow
Test	$egin{array}{lll} orall i:&\sum_{j\inlpha_i}x_{ij}=1\ orall j:&\sum_ix_{ij}U_i\leq 1\ orall i,j:&x_{ij}\geq 0 \end{array}$	$\forall S \subset \tau : U_S \leq \alpha_{\tau}$ For every subset of tasks, its aggre- gated affinity mask size is at least its utilization	f = U. Maximal flow over specially con- structed graph $FN(\tau)$ is equal to system utiliza- tion
Complexity	$ ilde{O}(mn\cdot(m+n)^{2.9})$	$mn \cdot 2^n$	$ ilde{O}(mn\sqrt{m+n})$

 \tilde{O} ignores logarithmic factors: $\tilde{O}(g(n)) = O(g(n) \log^k g(n))$ for some natural number k.

Sergey Voronov and James H. Anderson

AM-Red: An Optimal Semi-Partitioned Scheduler Assuming Arbitrary Affinity Masks

Schedulability Conditions: Utilization Balance

(a) Affinity Graph $AG(\tau)$

Schedulability Conditions: Utilization Balance

Utilization Balance Feasibility Test check for $S = \{\tau_1, \tau_2\}$: $U_1 + U_2 \leq 2$.

Schedulability Conditions: Max Flow Test

(a) Affinity Graph $AG(\tau)$

Schedulability Conditions: Max Flow Test

Max Flow Feasibility Test: the maximum flow over $FN(\tau)$ is U.

Sergey Voronov and James H. Anderson

AM-Red: An Optimal Semi-Partitioned Scheduler Assuming Arbitrary Affinity Masks

- Run Max Flow Test
- Remove cycles from Share Graph
- Build extended frame
- Build frame

 $\mathsf{AM}\text{-}\mathsf{Red} = \mathsf{Affinity} \ \mathsf{Masks} \ \mathsf{REDuction}$

From Flow Solution to Frame: Share Graph

Max Flow Test passed:
$$|f| = U$$

 $f(\tau_i, \pi_j)$ is a flow between τ_i and π_j .

From Flow Solution to Frame: Share Graph

Max Flow Test passed:
$$|f| = U$$

 $f(\tau_i, \pi_j)$ is a flow between τ_i and π_j .

Share Graph $SG(\tau)$

Affinity graph $AG(\tau)$ with (τ_i, π_j) edges removed, if $f(\tau_i, \pi_j) = 0$.

Figure: $f(\tau_3, \pi_2) = 0$, all others edges in $AG(\tau)$ have non-zero f values.

From Flow Solution to Frame: Cycles Removal

If Share Graph $SG(\tau)$ has cycles we can remove them one-by-one. f_m is minimum of $f(\tau_i, \pi_j)$ over all cycle edges.

(a) Cycle in Share Graph before removal. (b) "Cycle" in Share Graph after removal.

Figure: For dashed edges $f(\tau_i, \pi_j)$ decreases, for solid it increases. $f_m = f(\tau_2, \pi_1) = 0.1$.

From Flow Solution to Frame: Extended Frame

Let $I_E(\tau_i, \pi_j)$ be the union of all continuous intervals on core π_j allocated to task τ_i .

ne	$\forall i, j:$	$I_{E}(au_{i},\pi_{j})$ is a single continuous interval
tran	$\forall i$:	$\bigcup_j I_{\mathcal{E}}(au_i, \pi_j)$ is a single continuous interval
ed ($\forall j$:	$\bigcup_{i} I_{E}(\tau_{i}, \pi_{j})$ is a single continuous interval
cenc	$\forall i, j:$	$ I_{E}(au_{i},\pi_{j}) =f(au_{i},\pi_{j})$ (correct capacity)
eX	$\forall i, j_1, j_2$:	$I_{E}(au_{i}, \pi_{j_{1}}) \cap I_{E}(au_{i}, \pi_{j_{2}}) = \emptyset$ (no overlapping)

	$ au_1$	$ au_2$	$ au_3$
π_1	1/3	2/3	-
π_2	1/3	-	2/3
π_3	1/3	-	-
π_4	-	-	1/3

From Flow Solution to Frame: Extended Frame Construction

1:

2:

3:

 au_1

 τ_2

 $T_{\mathbf{X}}$

2/3

1/3

time

Proper Order properties:

 $\forall i, j: \tau_i$ appears in task order of core π_j if and only if $f(\tau_i, \pi_j) > 0$

- $\forall i$: task τ_i can be non-first task on at most one core
- $\forall i$: if task τ_i is non-first on core π_j , then on previous cores τ have not appeared

How to get Proper Order:

- Run BFS over acyclic Share Graph
- Order cores in the discovery order
- Order tasks for each core in the discovery order

 $[t \leftarrow t \mod 1]$ creates a correct schedule for [0, 1] from an extended frame.

	$ au_1$	$ au_2$	$ au_{3}$		
π_1	1/3	2/3	-	π_1 τ_1 τ_2	$\pi_1 \mid \tau_1 \mid \tau_2 \mid$
π_2	1/3	-	2/3		π_0 τ_0 τ_1 τ_2
π_3	1/3	-	-	<u> </u>	
π_4	-	-	1/3	π_3 τ_1	π_3 τ_1
				π_4 τ_3	π_4 τ_3
				time	time
				0 1 2	0 1 2

AM-Red : Sporadic Tasks Scheduling

Stage	Complexity	Bound
Max Flow	$\tilde{O}(mn\sqrt{m+n})$	$\Omega(mn)$
Cycles Removal	$O(m^2n^2)$	$\Omega(mn)$
Extended Frame	O(m+n)	$\Omega(m+n)$
Frame	O(m+n)	$\Omega(m+n)$

At most m-1 migrating tasks; at most 2m-2 migrations per frame.

 $ilde{O}$ ignores logarithmic factors: $ilde{O}(g(n)) = O(g(n) \log^k g(n))$ for some natural number k.

Sergey Voronov and James H. Anderson

AM-Red: An Optimal Semi-Partitioned Scheduler Assuming Arbitrary Affinity Masks

Stage	Complexity	Bound
Max Flow	$\tilde{O}(mn\sqrt{m+n})$	$\Omega(mn)$
Cycles Removal	$O(m^2n^2)$	$\Omega(mn)$
Extended Frame	O(m+n)	$\Omega(m+n)$
Frame	O(m+n)	$\Omega(m+n)$

At most m-1 migrating tasks; at most 2m-2 migrations per frame.

Max Flow + Cycles Removal = find and modify $f(\tau_i, \pi_j)$.

 \tilde{O} ignores logarithmic factors: $\tilde{O}(g(n)) = O(g(n) \log^k g(n))$ for some natural number k.

Sergey Voronov and James H. Anderson

AM-Red: An Optimal Semi-Partitioned Scheduler Assuming Arbitrary Affinity Masks

AM-Red Enhancements: Acyclic Masks

 $AG(\tau)$ does not have any cycles \Rightarrow $SG(\tau)$ does not have cycles.

Stage	Complexity
Max Flow	O(m+n)
Cycles Removal	0
Extended Frame	O(m+n)
Frame	O(m+n)

Max Flow: run BFS over AG(au) and apply Ford-Fulkerson algorithm.

FF heuristic: augmenting path searches over vertexes in reversed discovery order.

Input data size: O(m + n).

AM-Red Enhancements: Hierarchical Masks

For any two masks α_i , α_j : $\alpha_i \subset \alpha_j$, or $\alpha_i \supset \alpha_j$, or $\alpha_i \cup \alpha_j = \emptyset$.

Importance: follows multiprocessor architecture.

Input data size: O(mn), special packing is needed to ensure O(m + n).

Hierarchical masks specialty: at most 2m-1 unique masks and tree masks structure.

AM-Red Enhancements: Hierarchical Masks

For any two masks α_i , α_j : $\alpha_i \subset \alpha_j$, or $\alpha_i \supset \alpha_j$, or $\alpha_i \cup \alpha_j = \emptyset$.

Importance: follows multiprocessor architecture.

Input data size: O(mn), special packing is needed to ensure O(m + n).

Hierarchical masks specialty: at most 2m-1 unique masks and tree masks structure.

AM-Red Enhancements: Hierarchical Masks

For any two masks α_i , α_j : $\alpha_i \subset \alpha_j$, or $\alpha_i \supset \alpha_j$, or $\alpha_i \cup \alpha_j = \emptyset$.

Importance: follows multiprocessor architecture.

Input data size: O(mn), special packing is needed to ensure O(m + n).

Hierarchical masks specialty: at most 2m-1 unique masks and tree masks structure.

Max Flow: compute shown order and apply Ford-Fulkerson algorithm. (note that direct flow network $FN(\tau)$ construction requires $\Omega(mn)$, so we avoid it) FF heuristic: augmenting path searches over tasks vertexes according to masks order.

(b) Medium tasks.

(c) Heavy tasks.

Figure: Exp. 1 (hierarchical masks): total number of migrations under AM-Red and HPA-EDF (assuming periodic releases), averaged over the generated task sets, as a function of relative system utilization.

(a) Light tasks.

Figure: Exp. 2 (hierarchical masks): maximum tardiness, averaged over the generated task sets, as a function of relative system utilization.

- Baruah 2013] Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities.
- [Brandenburg 2014] Linux's processor affinity API, refined: shifting real-time tasks towards higher schedulability
- Bonifaci 2016] Multiprocessor real-time scheduling with hierarchical processor affinities.