
Mixed criticality schedulability analysis is highly intractable

Sanjoy Baruah

Introduction

The mixed criticality real-time workload model, described in Section 1 below, arises in certain safety-critical
application domains that may be subject to mandatory certification requirements by statutory organizations. We
show here (Section 2) that it is NP-hard in the strong sense to determine whether it is possible to successfully
schedule a given system specified in this model upon a fully preemptive uniprocessor platform, such that all
certification constraints are satisfied.

1 Model and definitions

In this section we formally define the mixed-criticality job model, and explain terms and concepts used through-
out the remainder of this document. These definitions are illustrated by means of examples in Section 1.1; while
reading the following definitions, it may occasionally be useful to refer forward to Section 1.1.

A mixed-criticality (MC) job is characterzed by a 4-tuple of parameters: Ji = (Ai, Di, χi, Ci), where

• Ai ∈ R+ is the release time.

• Di ∈ R+ is the deadline. We expect that Di ≥ Ai.

• χi ∈ N+ denotes the criticality of the job, with a larger value denoting greater criticality.

• Ci : N+ → R+ specifies the worst case execution time (WCET) estimate of Ji for each criticality level. (It
is reasonable to assume that Ci(`) is monotonically non-decreasing with increasing `.)

An MC instance is specified as a finite collection of such MC jobs: I = {J1, J2, . . . , Jn}.
The MC job model has the following semantics. Each job Ji is released at time-instant Ai, needs to execute

for some amount of time γi, and has a deadline at time-instant Di. The values of Ai and Di are known from the
specification of the job. However, the value of γi is not known from the specifications of Ji, but only becomes
revealed by actually executing the job until it signals that it has completed execution. γi may take on very different
values during different execution runs: we will refer to each collection of values (γ1, γ2, . . . , γn) as a possible
behavior of instance I .

The criticality level of the behavior (γ1, γ2, . . . , γn) of I is the smallest integer ` such that γi ≤ Ci(`) for all
i, 1 ≤ i ≤ n. (If there is no such `, then we define that behavior to be erroneous.)

A scheduling strategy for an instance I specifies, in a completely deterministic manner for all possible behaviors
of I , which job (if any) to execute at each instant in time. A clairvoyant scheduling strategy knows the behavior of
I — i.e., the value of γi for each Ji ∈ I — prior to generating a schedule for I . By contrast, an on line scheduling
strategy does not have a priori knowledge of the behavior of I: for each Ji ∈ I , the value of γi only become known
by executing Ji until it signals that it has completed execution.

1



A scheduling strategy is correct if it satisfies the following criterion for each ` ≥ 1: when scheduling any
behavior of criticality level `, it ensures that every job Ji with χi ≥ ` receives sufficient execution during the
interval [Ai, Di) to signal that it has completed execution.

Let us define an instance I to be MC schedulable if there exists a correct on-line scheduling strategy for it. The
MC schedulability problem then determines whether a given MC instance is MC schedulable or not1.

1.1 An example

Consider an MC instance I comprised of 4 jobs. Job J2 has criticality level 1 (which is the lower criticality
level), and the other 3 jobs have the higher criticality level 2. We specify the WCET function of each task for the
two criticality levels by explicit enumeration: [Ci(1), Ci(2)].

• J1 = (0, 3, 2, [1, 2])

• J2 = (0, 3, 1, [2, 2])

• J3 = (0, 5, 2, [1, 1])

• J4 = (3, 5, 2, [1, 2])

For this example instance, any behavior in which γ1, γ2, γ3, and γ4 are no larger than 1, 2, 1, and 2 respectively
has criticality 1; while any behavior not of criticality one in which γ1, γ2, γ3, and γ4 are no larger than 2, 2, 1, and
2 respectively has criticality 2. All remaining behaviors are, by definition, erroneous.

S0 below denotes a possible on-line scheduling strategy for this instance I:

S0: Execute J1 over [0,1). If J1 has remaining execution (i.e., γ1 is revealed to be greater than 1), then execute
scheduling strategy S1 below; else,execute scheduling strategy S2 below.

S1: Execute J1 over [1,2), J3 over [2,3), and J4 over [3,5).

S2: Execute J2 over [1,3), J3 over [3,4), and J4 over [4,5).

Scheduling strategy S0 is not correct for I , as can be seen by considering the schedule that generates on the
behavior (1, 2, 1, 2). This particular behavior has criticality 2 (since γ4, at 2, is greater than C4(1) which has value
1, it is not criticality 1); hence, a correct schedule would need to complete jobs J1, J3 and J4 by their deadlines.
However, the schedule generated by this scheduling strategy would have executed J4 for only one unit by its
deadline. In fact, it turns out that instance I is not MC schedulable.

2 The Intractability of MC schedulability

In this section, we categorize the computational complexity of the MC schedulability problem. We prove
(Theorem 1 below) that the MC schedulability problem — given an MC instance, determine whether it is MC-
schedulable — is highly intractable: NP-hard in the strong sense. (Indeed, we will see that this hardness result
holds even in the highly restricted case where all the jobs in the MC instance have the same arrival times, and each
job’s criticality level is either 1 or 2.) This intractability implies that under the assumption that P 6= NP, there can
be no polynomial or pseudo-polynomial time algorithm for solving the MC schedulability problem (even in the
restricted case of equal arrival times and only two criticality levels).

1Another problem — the scheduling strategy verification problem — verifies whether a given scheduling strategy is correct for a given
problem instance. We will not discuss the scheduling strategy verification problem much in this document, since a thorough analysis
requires us to first agree on what constitutes an acceptable representation of a scheduling strategy.

2



-
time2(j − 1)B (2j − 1)B 2jB

Ti1 Ti2 Ti3 T3m+j

Figure 1. Scheduling strategy over the time interval (2(j− 1)B, 2jB). The jobs Ji1 , J12 and Ji3 satisfy Ci1(1)+
Ci2(1) + Ci3(1) = B; i.e., {si1 , si2 , si3} could be one of the partitions Sj of S. Job J3m+j is executed if and only
if all 3 of Ji1 , J12 and Ji3 complete execution by time-instant (2j − 1)B; else, it is discarded and Ji1 , J12 and Ji3

executed to completion instead.

Theorem 1 Determining MC schedulability is NP hard in the strong sense.

Proof Sketch: This hardness is demonstrated by reducing the 3-partition problem [1], which is known to be NP-
complete in the strong sense, to MC-schedulability. The 3-partition problem is defined as follows. Given a multiset
S of 3m positive integers s0, s1, . . . , s3m−1 and a positive integer B such that B/4 < si < B/2 for each i and∑3m−1

i=0 si = mB, determine whether S can be partitioned into m disjoint sets S0, S1, . . . , Sm−1 such that, for
0 ≤ j < m,

∑
si∈Sj

si = B (note that each Sj must therefore contain exactly three elements from S).
From a given instance I3P = (S, B) of 3-Partition, we will build an MC instance IMC comprised of 4m jobs,

as follows:

• For each i, 0 ≤ i < 3m, job Ji has the following parameters: Ai = 0; Di = 2mB; χi = 2; Ci(1) = si and
Ci(2) = 2si. (We will say that the job Ji of IMC corresponds to the element si of I3P .)

• For each j, 0 ≤ j < m, job J3m+j has the following parameters: A3m+j = 0; D3m+j = 2(j + 1)B;
χ3m+j = 1; and C3m+j(1) = C3m+j(2) = B.

If we know beforehand whether a particular behavior of IMC is of criticality level 1 or 2, we could easily construct
a schedule:

• The schedule for a criticality-level 2 behavior would simply discard all the jobs J3m+j , 0 ≤ j < m; the
remaining jobs, all of criticality level 2, have a common release time at 0 and a common deadline at 2mB,
and their total execution requirement is equal to

∑3m−1
i=o 2si = 2mB, which equals the length of the interval

over which they must be scheduled.

• The schedule for a criticality-level 1 behavior would, for each j, 0 ≤ j < m, schedule job J3m+j over the B
time-units immediately preceding its deadline (i.e., over the interval [(2j−1)B, 2jB), thereby ensuring that
they all meet their deadlines. The total amount of execution thus needed is equal to mB. The remaining jobs
have a common release time at 0 and a common deadline at 2mB, and their total execution requirement is
equal to

∑3m−1
i=o si = mB. Since the jobs J3m+j , 0 ≤ j < m, use mB units of execution over the interval

of length 2mB between these jobs’ common deadline and release time, there is therefore sufficient capacity
available for them all to complete by their common deadline.

Hence a clairvoyant scheduler – one that knew beforehand whether a particular run would yield a behavior of
criticality level one or two – would easily be able to schedule IMC . An on-line scheduler, however, does not a
priori know whether a given run-time behavior will be of criticality level one or of criticality level two; rather, this
information is revealed on line during run-time by having some job Ji that receives Ci(1) units of execution not
signal that it has completed execution.

3



We will now show that instance I3P = (S, B) is in 3-Partition if and only if instance IMC is MC schedulable.
(We only provide a sketch of a proof here; a formal proof appears in the appendix.)

Informally speaking, the “template” schedule shown in Figure 1 illustrates the equivalence between the 3-
partition instance I3P and the MC instance IMC . For each j, 0 ≤ j < m, over the time-interval [2(j − 1)B, 2jB)
we aim to complete the execution of exactly these jobs: (i) the job J3m+j (of criticality-level χ3m+j equal to
1), and (ii) all the jobs Ji, of criticality level χi = 2, such that si ∈ Sj (i.e., all the jobs that correspond to the
elements in the j’th partition of S). To understand how this is accomplished, let us consider a particular run-time
behavior of IMC . Suppose that the criticality level of this behavior has not been determined to exceed 1 up until
the time-instant (2(j − 1)B; i.e., any job Ji that has received Ci(1) units of execution will have signalled that it
has completed execution.

Over the time interval [2(j − 1)B, 2jB),

1. We start out “reserving” the last B units of time over this interval — the interval [(2j − 1)B, 2jB) — for
job J3m+j . Since this job has its deadline at time-instant 2jB and an execution requirement equal to B, this
is adequate to ensure that this job will complete by its deadline if needed.

2. This leaves B units of execution over [2(j − 1)B, (2j − 1)B). During this interval, we will attempt to
execute as many jobs Ji with χi = 2 (i.e., of criticality-level 2) as possible, each for exactly Ci(1) time
units. The rationale for doing this is as follows. If any such job does not signal that it has completed
execution after receiving Ci(1) units of execution, we know that this behavior is of criticality level 2 and
that jobs of criticality-level 1 are therefore not required to complete by their deadlines. Hence, we can
release the capacity we had reserved in step 1 above for the criticality-level 1 job J3m+j . If on the other
hand all such jobs do signal that they have completed execution, we know that, even in the event of our later
discovering that the behavior is of criticality-level 2, we will not need to execute these particular jobs any
further (since they will have already signalled that they have completed execution). We hence know that the
“savings” in execution requirement, versus the execution they would have required in the event that all jobs
execute to their WCET’s estimated at a level of assurance consistent with criticality level 2, is equal to the
sum, over all such jobs Ji, of (Ci(2)− Ci(1)).

3. Now suppose that we are able to completely fill the interval [2(j − 1)B, (2j − 1)B) (equivalently, we have
identified a partition Sj of I3P with the items summing to exactly B). If all these jobs signal completion,
their cumulative savings versus their criticality-level 2 execution requirements is equal to B, and this is
the capacity reserved in Step 1 above, and now used, for executing job J3m+j . If however one or more of
them do not signal completion, then their cumulative additional execution requirement may be as large as
B. But we can give them this additional execution requirement by reclaiming the B units reserved for the
criticality-level 1 job J3m+j in step 1 above (since we are in this case not obligated to meet the deadlines of
jobs of criticality-level 1).

4. If we are not able to completely fill the interval [2(j − 1)B, (2j − 1)B) by executing criticality-level 2 jobs
Ji for exactly Ci(1) units each (equivalently, we are unable to identify a partition Sj with items summing to
exactly B), on the other hand, then the savings in level-2 execution requirement that we will have identified
is strictly less than B units. The schedule now has two choices, complete the execution of J3m+j or not.
Depending on which choice it makes, we identify below a potential behavior for which this schedule would
not be correct, thereby allowing us to conclude that a failure to identify a 3-partition for I3P implies that
IMC is not MC-schedulable.

• If the schedule does not complete the execution of J3m+j , then the criticality level of this behavior will
remain equal to 1. The failure to meet J3m+j’s deadline therefore indicates a failure to successfully
schedule IMC .

4



1 crit ← 1 ¤ Will be set to 2 if any Ji executes for > Ci(1) units
2 for j ← 0 to (m− 1) do

¤ Schedule over the time-interval [2jB, (2j + 2)B)
3 if (crit equals 1) then

4 Schedule each of the three jobs Ji such that si ∈ Sj for Ci(1) = si units during [2jB, (2j+
1)B)

5 if (all these jobs complete execution) then
6 Schedule job J3m+j over the interval [(2j + 1)B, (2j + 2)B)

else ¤ some job Ji needs more than Ci(1) execution
7 crit ← 2

8
Schedule the three jobs Ji such that si ∈ Sj for si additional units each over the
time-interval [(2j + 1)B, (2j + 2)B)

else ¤ crit equals two

9 Schedule the three jobs Ji such that si ∈ Sj for Ci(2) = 2si units each over the time-
interval [2jB, (2j + 2)B)

end for

Figure 2. Constructing a scheduling strategy from a 3-partitioning

• If the schedule completes the execution of J3m+j , then the criticality level of this behavior will become
equal to 2 — some criticality-level 2 job Ji that has executed for strictly less that Ci(1) units of
execution thus far will request Ci(2) units of execution. It may be verified that due to the execution of
J3m+j , there is not enough remaining execution capacity available to meet all jobs’ deadlines.

We thus see that a failure to identify a partition Sj is equivalent to IMC not being MC-schedulable.

Acknowledgements. Many thanks to Alberto Marchetti-Spaccamela, Nicole Megow, Leen Stougie, and Jose
Verschae for very useful feedback regarding the presentation of this proof.

References

[1] GAREY, M., AND JOHNSON, D. Complexity results for multiprocessor scheduling under resource constraints.
SIAM Journal of Computing 4 (1975), 397–411.

Appendix

A Proof

We now provide a detailed proof of the correctness of Theorem 1. Recall the reduction from 3-Partition to
MC schedulability in the proof of Theorem 1: From a given instance I3P = (S, B) of 3-Partition with B =
{s0, s1, . . . , s3m−1}, we had built an MC instance IMC comprised of 4m jobs, as follows:

• For each i, 0 ≤ i < 3m, job Ji has the following parameters: Ai = 0; Di = 2mB; χi = 2; Ci(1) = si and
Ci(2) = 2si. (We will say that the job Ji of IMC corresponds to the element si of I3P .)

• For each j, 0 ≤ j < m, job J3m+j has the following parameters: A3m+j = 0; D3m+j = 2(j + 1)B;
χ3m+j = 1; and C3m+j(1) = C3m+j(2) = B.

5



1. Initialize the variable j ← 0

2. Schedule exactly three criticality-2 jobs, with a cumulative criticality-1 WCET equal to B (and hence,
cumulative criticality-2 WCET equal to 2B) over the interval [2jB, (2j + 1)B), each for exactly its WCET
estimated at criticality level 1.

3. If any of these three jobs does not complete execution, we know that the current behavior has criticality level
2; we may hence discard all remaining criticality-1 jobs, and complete the execution of the three criticality-
2 jobs selected in Step 2 above. If, on the other hand, all three jobs do complete their execution, then we
execute the criticality-1 job J3m+j over the interval [(2j + 1)B, (2j + 2)B) thereby enabling it to meet its
deadline.

4. If j equals (m− 1) we are done; otherwise, j ← (j + 1) and we repeat the above steps, starting at step 2.

Figure 3. Any successful scheduling strategy for IMC must look like this.

Lemma 1 If I3P = (S,B) is in 3-Partition then IMC is MC schedulable.

Proof: Let us assume that I3P is in 3-Partition, and let S1, S2, . . . , Sm denote a 3-partition of S. We may use this
3-partition to obtain a scheduling strategy for the jobs in IMC . For each j, 0 ≤ j < m, we will construct the
schedule over the interval [2jB, (2j + 1)B) as follows:

S1: Schedule the jobs Ji corresponding to each si ∈ Sj for Ci(1) = si units each over the time-interval
[2jB, (2j + 1)B) (note that this is possible, since it is assumed that

∑
si∈Sj

si = B).

S2: If all the jobs scheduled in step S1 above signal that they have completed execution, schedule job J3m+j over
the interval [(2j + 1)B, (2j + 2)B). Else, discard job J3m+j and complete the execution of the jobs begun in
step S1 above. Note that this is possible since their total execution requirement at criticality level 2 is equal
to 2B, which is equal to the length of the interval [2jB, (2j + 1)B), all of which is now devoted to their
execution.

Hence over each such interval, we will have executed all jobs corresponding to the elements in Sj for their re-
quested amount of execution. If these jobs’ execution is consistent with the behavior being of criticality level 1,
then the job J3m+j also gets its needed amount of execution; if not, then J3m+j receives no execution (but this is
alright since the behavior is revealed to be of criticality level 2 whereas χ3m+j = 1).

Repeating this argument for all j, 0 ≤ j < m, we will have thus successfully scheduled all the jobs in IMC .
The lemma follows.

(This scheduling strategy, along with some optimizations that allow us to ignore the criticality-1 jobs once we
have identified that the behavior is of criticality level 2, is presented in pseudo-code form in Figure 2.)

Lemma 2 If IMC is MC schedulable then I3P = (S, B) is in 3-Partition.

Proof: Let us suppose that IMC is MC schedulable; we will use this to conclude that there must exist a 3-partition
S1, S2, . . . , Sm for S.

Since IMC is assumed to be MC schedulable, all its behaviors must be successfully scheduled by some optimal
on-line scheduling algorithm. We claim that any successful on-line scheduling strategy must essentially behave as
depicted in Figure 3. To show that this is the only successful scheduling strategy, consider a strategy that does not
follow it, and let j′ denote the smallest value of j at which it deviates from the above. Consider the behavior(s) of

6



IMC in which all criticality-2 jobs that were executed over the interval [0, (2j′ + 1)B) have executed for no more
than their criticality-1 WCET’s, indicating that the behavior does not (yet) have criticality-level 2.

Since the on-line scheduling strategy is assumed to differ from the one in Figure 3 in the scheduling decisions
made over the time-interval [(2j′B, (2j′ + 2)B), and Figure 3 would schedule 3 criticality-2 jobs for exactly their
criticality-1 WCET’s over [2j′B, (2j′+1)B), it must be the case that this scheduling strategy must have scheduled
2 or fewer criticality-2 jobs for exactly their criticality-1 WCET’s over this interval2. Consider the behavior of IMC

in which each such criticality-2 job that executed for exactly its criticality-1 WCET signals that it has completed
execution. Since there are two or fewer such jobs and each has criticality-1 WCET strictly less than B/2, their
cumulative criticality-1 WCET must be strictly less than B. (Equivalently, their cumulative criticality-2 WCET’s
is strictly less than 2B.)

Observe that the scheduling strategy must execute job I3m+j′ for B units, since if it did not do so the behavior
in which no job in the future executes for more than its criticality-1 WCET would have criticality level of equal to
one, and the schedule a failure since it failed to complete J3m+j′ on time.

Let us now consider the behavior in which all remaining jobs – those that have not completed execution by
time-instant (2j′ + 2)B – execute for their criticality-2 WCET’s. (This means that this behavior is of criticality
level 2, and that the criticality-level 1 jobs do not need to meet their deadlines.) Let us determine how much
execution must be completed by the common deadline of 2mB, in order to be able to meet the deadlines of all
jobs of criticality-level 2.

• At time t = 0, the total WCET at all criticality level 2 jobs for is equal to
∑3m

i=1 Ci(2) =
∑3m

i=1 2si = 2mB.

• For each j < j′, the scheduling strategy is assumed to behave identically to the one depicted in Figure 3.
Hence for each such j, 3 criticality-2 jobs, with a cumulative criticality-2 WCET equal to 2B, will have
signalled completion.

• This leaves (2mB − 2(j′ − 1)B) units of criticality-2 execution over [2j′B, 2mB). Out of this, we have
seen that strictly less than 2B is accounted for over the interval [2j′B, (2j′ + 2)B), by the jobs that sig-
nal completion; hence, strictly more than (2mB − 2j′B) units of execution are required over the interval
[2j′B, 2mB).

But this remaining execution exceeds the length of the interval, and hence it is not possible that all the jobs of
criticality level 2 will complete execution by their common deadline of 2mB. This contradicts our assumption that
a scheduling strategy can be optimal and different from the scheduling strategy depicted in Figure 3; equivalently,
any optimal scheduling strategy for IMC must be as depicted in Figure 3.

It is straightforward to obtain a 3-partition of S from the schedule generated by the scheduling strategy of
Figure 3 on the behavior in which no job executes for more than its criticality-1 WCET: for each j, 0 ≤ j < m,
Sj is comprised of the elements corresponding to the jobs scheduled by the scheduling strategy of Figure 3 over
the interval [2jB, (2j + 1)B).

2The possibility that 4 or more criticality-2 jobs are executed for exactly their criticality-1 WCET’s is ruled out by the 3-partition
constraint that B/4 < si < B/2 for each i; hence, there isn’t enough execution available with this B-length interval to accommodate
more than 3 jobs’s criticality-1 WCET’s.

7


