
Approximation Algorithms for Feasibility Analysis in

Real-Time Static-Priority Systems ∗

Nathan Fisher‡ and Sanjoy Baruah
Department of Computer Science, The University of North Carolina, Chapel Hill,

NC 27599 USA

Abstract. Feasibility tests determine whether it is possible for a given real-time

system to always meet all of its timing constraints on a specified processing platform.

Current feasibility tests for the uniprocessor static-priority scheduling of sporadic

task systems run in pseudo-polynomial time. We present a fully polynomial-time

approximation scheme (FPTAS) for feasibility analysis in static-priority systems.

This test is an approximation in the sense that that there is a quantifiable trade-off

between the fraction of the processor’s capacity that must be left unused, and the

running time of the feasibility test.

Keywords: Real-time scheduling; Uniprocessor systems; Static-priority systems;

Feasibility analysis.

1. Introduction

Over the years, the sporadic task model (Mok, 1983; Leung and White-
head, 1982) has proven remarkably useful for the modelling of recurring
processes that occur in hard-real-time systems. In this model, a spo-
radic task τi = (ei, di, pi) is characterized by a worst-case execution
requirement ei, a (relative) deadline di, and a minimum inter-arrival

‡ Correspondence to: Nathan Fisher, Department of Computer Science, The Uni-
versity of North Carolina, Chapel Hill, NC 27599 USA. E-mail: fishern@cs.unc.edu
∗ Supported in part by the National Science Foundation (Grant Nos. ITR-

0082866, CCR-0204312, and CCR-0309825). Preliminary versions of some of these
results appeared as Fisher, N., and Baruah, S. 2005. A polynomial-time ap-
proximation scheme for feasibility analysis in static-priority systems with bounded
relative deadlines. In Proceedings of the 13th International Conference on Real-Time
Systems (Paris, France, April 5-7). and Fisher, N., and Baruah, S. 2005. A
fully polynomial-time approximation scheme for feasibility analysis in static-priority
systems with arbitrary relative deadlines. In Proceedings of Euromicro Conference
on Real-Time Systems (Palma de Mallorca, Spain, June 6-8).

c© 2005 Kluwer Academic Publishers. Printed in the Netherlands.

static_fptas_journal.tex; 25/05/2005; 11:53; p.1

2

separation pi, which is, for historical reasons, also referred to as the
period of the task. Such a sporadic task generates a potentially infinite
sequence of jobs, with successive job-arrivals separated by at least pi

time units. Each job has a worst-case execution requirement equal to
ei and a deadline that occurs di time units after its arrival time. A
sporadic task system is comprised of several such sporadic tasks.

In this paper, we are concerned with preemptive scheduling on
uniprocessor platforms. That is, we assume that there is a single shared
processor upon which all the jobs in the system must execute, and that
a job executing on this processor may be interrupted at any instant in
time, and its execution resumed later, at no cost or penalty. Without
loss of generality, we also assume that the processor has an execution
rate of unity (equivalently, that all task parameters are normalized to
the processor speed).

Many run-time scheduling algorithms operate as follows: at each
instant in time, they assign a priority to each job that is awaiting
execution, and choose for execution the highest-priority waiting job.
In static-priority scheduling algorithms for sporadic task systems, each
task is assigned a distinct priority, and all jobs of a task execute at the
task’s priority. In dynamic-priority scheduling algorithms, by contrast,
different jobs generated by the same task may have different priorities
(and indeed, the priority of an individual job may change during run-
time).

A sporadic task system is said to be dynamic-priority feasible (re-
spectively, static-priority feasible) upon a specified processing platform
if and only if it can be scheduled on the platform by a dynamic-
priority (resp., static-priority) scheduling algorithm such that all jobs
that may be generated by this task system always meet their dead-
lines. For sporadic task systems comprised of tasks that all have their
relative deadline parameter equal to their periods, dynamic-priority
feasibility analysis can be performed in time linear in the representation
of the task system (Liu and Layland, 1973); for arbitrary sporadic
task systems, however, all dynamic-priority feasibility analysis tests
known take time exponential in the representation of the task system.

static_fptas_journal.tex; 25/05/2005; 11:53; p.2

3

A static-priority feasibility test for systems of sporadic tasks, each
with its relative deadline parameter equal to its period, was presented
in (Lehoczky et al., 1989). In (Audsley et al., 1993), a feasibility test
for sets of tasks in which the relative deadline of each task is less than
or equal to its period is presented. In both of these static-priority
feasibility tests, the running time of the test is polynomial in the
values of the parameters of the tasks in the task system, i.e., these are
pseudo-polynomial time tests. (Lehoczky, 1990) provides a more general
feasibility test for sporadic task systems where the relation between
deadlines and periods may be arbitrary; the run-time of this test is not
known to be better than exponential. (These known results concerning
the computational complexity of uniprocessor feasibility-analysis are
summarized in Table III.)

In (Albers and Slomka, 2004), a fully polynomial-time approxima-
tion scheme (FPTAS) was presented for dynamic-priority feasibility
analysis of sporadic task systems. This FPTAS accepts as input the
specifications of a task system and a constant ε, 0 < ε < 1, and is an
approximation scheme in the following sense:

If the test returns “feasible”, then the task set is guaranteed to be
feasible on the processor for which it had been specified. If the test
returns “infeasible”, the task set is guaranteed to be infeasible on a
slower processor , of computing capacity (1− ε) times the comput-
ing capacity of the processor for which the task system had been
specified.

This research. In this paper, we extend the results of Albers and
Slomka to the domain of static-priority scheduling. That is, we present
an FPTAS for static-priority feasibility analysis that makes a perfor-
mance guarantee similar to the one above: for any specified value of ε,
the FPTAS correctly identifies, in time polynomial in the number of
tasks in the task system, all task systems that are static-priority feasible
(with respect to a given priority assignment) on a processor that has
(1−ε) times the computing capacity of the processor for which the task
system is specified.

static_fptas_journal.tex; 25/05/2005; 11:53; p.3

4

Significance of this research. The presence or otherwise of an FP-
TAS for static-priority feasibility analysis is interesting from a theo-
retical perspective, as part of the ongoing debate concerning the rel-
ative merits of static-priority and dynamic-priority scheduling. Since
an FPTAS was recently obtained for dynamic-priority uniprocessor
feasibility-analysis, it is of interest to know whether static-priority
feasibility-analysis could be approximated as efficiently as dynamic-
priority analysis. The FPTAS presented in this paper answers this
question in the affirmative.

Since the running time of current exact feasibility tests for static-
priority task systems depends on the ratio between the largest and
smallest period, the computational complexity of current feasibility
tests for task systems with widely-varying periods may prohibit their
use in automatic synthesis tools. The running time of the approxima-
tion proposed in this paper is completely independent of tasks’ periods,
and depends only on the number of tasks and the accuracy constant,
ε. Thus, the approximation offers a reduction in complexity for many
task sets, and its predictable worst-case run-time guarantees a quick
estimate for automatic synthesis tools exploring a real-time system
design space.

Organization. The remainder of this paper is organized as follows.
We provide some background on real-time uniprocessor scheduling and
formally define our task model in Section 2. We briefly summarize
(Section 3.1) how the request-bound function abstraction, which plays
a crucial role in the various static-priority feasibility tests mentioned
above (Lehoczky et al., 1989; Audsley et al., 1993; Lehoczky, 1990),
can be approximated by a function that is easily computed, and which
satisfies the property that its value “closely” tracks the exact value of
the request-bound function. We give an FPTAS for task systems where
the relative deadline of each task is at most period in Section 3.2 and
prove the FPTAS correct (Section 3.4). We give an approximate test
for a task system with arbitrary relative deadlines in Section 4. We
prove the correctness of the approximation test for arbitrary deadlines
in Section 4.2. Finally, we give a brief review of approximation schemes

static_fptas_journal.tex; 25/05/2005; 11:53; p.4

5

and formally state the main result of this paper, the existence of an
FPTAS for feasibility in static-priority systems, in Section 5.

2. Model and Previous Work

2.1. Task and Processor Model

As stated in the introduction, we restrict our attention in this paper to
uniprocessor platforms, and to preemptive scheduling – a job executing
on the processor may be interrupted at any instant in time, and its
execution resumed later, at no cost or penalty. We consider the sporadic
task model. A task τi = (ei, di, pi) is characterized by a worst-case
execution requirement ei and (relative) deadline di. pi represents the
minimum inter-arrival separation between jobs of τi. Each job has a
worst-case execution requirement equal to ei and a deadline that occurs
di time-units after its arrival time. A task system τ is composed of tasks
τ1, . . . , τn, where n is the number of tasks in the system.

In some of the initial work on real-time scheduling (see, e.g., (Liu
and Layland, 1973)), it is assumed that all tasks have their relative
deadlines equal to their period parameters (i.e. di = pi for 1 ≤ i ≤ n).
Such systems are sometimes referred to in the real-time scheduling
literature as implicit-deadline systems. Later work (e.g., (Leung and
Whitehead, 1982)) relaxed the equality constraint between relative
deadlines and periods, and considered tasks with relative deadlines
bounded by periods (i.e. di ≤ pi for 1 ≤ i ≤ n). Such task systems with
bounded relative deadlines are sometimes referred to as constrained
task systems. The most general model, the arbitrary task system,
imposes no constraints between relative deadlines and periods. Table I
summarizes the task models.

2.2. Real-Time Uniprocessor Scheduling Algorithms

A job is said to be active at a specified time-instant in a schedule, if it
has not yet completed execution and its deadline has not yet elapsed. As

static_fptas_journal.tex; 25/05/2005; 11:53; p.5

6

Table I. Sporadic Task Models

Task Model Relative Deadline Constraint

Implicit-deadline Each task’s relative deadline is equal to its
period parameter (i.e. di = pi).

Constrained Each task’s relative deadline is at most its
period parameter (i.e. di ≤ pi).

Arbitrary No constraint is placed on the relationship
between relative deadlines and periods

mentioned in the introduction, most scheduling algorithms used in real-
time systems assign each active job a priority at each instant in time,
and select for execution the active job with the highest priority. (such
scheduling algorithms are sometimes called priority-driven scheduling
algorithms). In dynamic-priority scheduling algorithms, different jobs
of the same task may be assigned different priorities, and the priority of
a job may change during run-time. In static-priority algorithms, each
task is assigned a distinct priority, and all jobs of a task execute at the
task’s priority.

The earliest deadline first scheduling algorithm (edf) is an exam-
ple of a dynamic-priority scheduling algorithm. edf assigns the highest
priority (and hence, the processor) at each time instant to the job
awaiting execution that has the earliest deadline. Two well-studied
static-priority algorithms for scheduling sporadic task systems are the
rate monotonic algorithm (rm), and the deadline monotonic al-
gorithm (dm). rm (Liu and Layland, 1973) assigns each task a priority
equal to the inverse of its period, while dm (Leung and Whitehead,
1982) assigns each task a priority equal to the inverse of its rela-
tive deadline (in either case ties may be broken arbitrarily). These
algorithms are summarized in Table II.

For a given task system and processor, static-priority (respectively,
dynamic-priority) feasibility-analysis is the process of determining
whether the task system can be scheduled on the processor by a static-
priority (resp., dynamic-priority) scheduling algorithm such that all

static_fptas_journal.tex; 25/05/2005; 11:53; p.6

7

Table II. Uniprocessor scheduling algorithms

Algorithm Priority assignment rule

Earliest-deadline first (edf) Job with earlier deadline has higher priority
Rate-monotonic (rm) Task with smaller value of period parameter

has higher priority
Deadline-monotonic (dm) Task with smaller value of relative-deadline

parameter has higher priority

deadlines are met, for all possible sequences of job arrivals that may be
generated by the task system.

A scheduling algorithm A is said to be dynamic-priority (resp.,
static-priority) optimal for a particular class of task systems if algo-
rithm A will always meet all deadlines for all dynamic-priority feasible
(respectively, static-priority feasible) task systems that fall within this
particular class of task systems. The following results are known con-
cerning optimality of scheduling algorithms (this information, too, is
summarized in Table III):

− edf is an optimal dynamic-priority algorithm for sporadic task
systems (Liu and Layland, 1973; Dertouzos, 1974).

− rm is an optimal static-priority algorithm for implicit-deadline
sporadic task systems, i.e., for task systems in which each task has
its relative deadline parameter equal to its period parameter (Liu
and Layland, 1973).

− dm is an optimal static-priority algorithm for constrained sporadic
task systems, i.e., for for task systems in which each task has
its relative deadline parameter no larger than its period parame-
ter (Leung and Whitehead, 1982).

− To the best of our knowledge, there is currently no known optimal
static-priority scheduling algorithm for arbitrary task systems.

Recently, the relative merits of dynamic- and static-priority schedul-
ing have been widely debated in the real-time systems community —

static_fptas_journal.tex; 25/05/2005; 11:53; p.7

8

Table III. Known results concerning (i) the computational complexity of, and
(ii) optimal schedulers for, uniprocessor feasibility analysis for sporadic task
systems.

Task Model: Cxty. of Feas. analysis Opt. scheduler

static-pri dynamic-pri static-pri dynamic-pri

implicit-deadline pseudo-poly linear rm edf

constrained pseudo-poly exponential dm edf

arbitrary exponential exponential ? edf

see, e.g., (Buttazzo, 2005)1. Our research in this paper can be seen as
part of this wider debate, in the following sense. The results in (Albers
and Slomka, 2004) show that it is possible to determine in polynomial
time, with bounded error, the dynamic-priority feasibility of an arbi-
trary sporadic task system. In the context of the debate on dynamic-
and static-priority systems, it is interesting to consider whether a sim-
ilar approximation exists for static-priority systems, or whether ap-
proximate feasibility determination is one area where dynamic-priority
scheduling is superior to static-priority scheduling. In the remainder of
the paper, we show that an FPTAS for feasibility analysis exists for the
static-priority scheduling of sporadic tasks on a preemptive uniproces-
sor. The results of our work imply that equivalent approximations exist
for dynamic- and static-priority systems when considering an inexact
notion of infeasibility (i.e. the algorithm may return “infeasible” only
if it is guaranteed to be infeasible on a sufficiently smaller capacity
processor).

1 Indeed, a panel discussion (Mossé et al., 2004) was recently organized during a
prominent international symposium devoted to real-time systems, with the objective
of addressing the shortcoming that “there is not a general agreement in the real-time
community about the suitability of these two scheduling approaches for future real-
time systems,” and hoping to start “a constructive [...] discussion aimed at clarifying
some critical points and drawing some missing research lines.”

static_fptas_journal.tex; 25/05/2005; 11:53; p.8

9

3. Constrained Task Systems

In this section, we derive an approximate feasibility test for constrained-
deadline static-priority systems; i.e., sporadic task systems where each
task’s relative deadline is no larger than its period. We begin in Sec-
tion 3.1 by defining a request-bound function (rbf) that bounds the
amount of execution time requested by a task (similarly defined in
(Lehoczky et al., 1989; Audsley et al., 1993; Lehoczky, 1990)). An
approximation to the rbf is defined such that the deviation from the
rbf is bounded.

In Section 3.2, we define both exact and approximate cumulative
request-bound functions based, respectively, on the exact and approxi-
mate request-bound functions for a task τi. The functions describe the
cumulative execution requests over a time interval for task τi and all
tasks of higher priority. If the smallest fixed point of task τi’s cumulative
request-bound function is no larger than its relative deadline, then τi

will always meet its deadline. If the smallest fixed point exceeds τi’s
deadline, then we cannot guarantee τi will meet all deadlines; hence, τ

is not feasible.

3.1. Request-Bound Function

For a sporadic task τi, the maximum amount of execution time that τi

can request over an interval (0, t] occurs when τi releases a job at time
zero, and successive jobs every pi time units. The synchronous arrival
sequence occurs when all tasks of a sporadic task system release jobs at
the same time instant and subsequent jobs as soon as permissible. The
total execution time requested by a task τi in a synchronous arrival
sequence can be expressed as a function of time. Every time a task τi

releases a job, ei additional units of processor time are requested. The
following function provides an upper bound on the total execution time
requested by task τi over time interval (0, t]:

rbf(τi, t)
def=

⌈
t

pi

⌉
ei (1)

static_fptas_journal.tex; 25/05/2005; 11:53; p.9

10

- t

6

rbf(τi, t)

e

- - - -2e

- - - - - -3e

- - - - - - - - -4e

- - - - - - - - - - -5e

..

..

..

pi

..

..

..

..

..

.

2pi

..

..

..

..

..

..

..

..

3pi

..

..

..

..

..

..

..

..

..

..

.

4pi 5pi

..

..

..

..

..

..

..

..

..

..

..

..

..

¡
¡

¡
¡

¡
¡

¡

¡
¡

¡
¡

¡
¡

¡

Figure 1. The step function denotes a plot of rbf(τi, t) as a function of t. The
double line represents the function δ(τi, t), approximating rbf(τi, t), where k = 3;
for t ≤ 2pi, δ(τi, t) ≡ rbf(τi, t).

Figure 1 shows an example of a rbf. Notice that the “step” function,
rbf(τi, t) increases by ei units every pi time units.

3.1.1. Approximating the rbf

The function rbf(τi, t) has a discontinuity every pi time units. We call
these discontinuities, steps. We define an approximation that computes
the first (k−1) steps of rbf(τi, t) exactly (where k is a constant, defined
below), and is a linear approximation of rbf(τi, t), thereafter.

We choose a constant k based on our given “accuracy” constant ε,
0 < ε < 1. For the remainder of the paper, assume the integer constant
k is defined as follows:

k
def= d1/εe − 1 (2)

We now define the following function δ(τi, t) which closely approxi-
mates the function rbf(τi, t):

δ(τi, t) =

{
rbf(τi, t) , for t ≤ (k − 1)pi

ei + tei
pi

, for t > (k − 1)pi
(3)

static_fptas_journal.tex; 25/05/2005; 11:53; p.10

11

Figure 1 shows that δ(τi, t) is exactly rbf(τi, t) up to t = (k−1)pi, (in
this example, k = 3) and then is a linear approximation for t > (k−1)pi

that “bounds” rbf(τi, t) from above.

3.2. Description of Feasibility Test

3.2.1. Exact Test

For constrained static-priority task systems, (Liu and Layland, 1973)
showed that the worst-case response time for a job of task τi occurs
when all tasks of priority greater than τi release a job simultaneously
with τi. If a task τi releases a job J simultaneously with all higher prior-
ity tasks and each higher priority task τj releases subsequent jobs at the
earliest legal opportunity (i.e. the inter-arrival separation between jobs
of higher-priority task τj is exactly pj), then J has the largest response
time of any job of task τi. Note that this sequence of job arrivals is the
synchronous arrival sequence. In a constrained, sporadic task system,
it is necessary and sufficient to only check the response time of the
first job of each task in a synchronous arrival sequence. If the response
time of the first job of task τi is at most its relative deadline, then
all jobs generated by τi are guaranteed to always meet their deadlines;
else, they cannot be so guaranteed. A task system τ is feasible on a
uniprocessor if and only if the first job of each task τi has a worst-case
response time at most di.

In order to determine the response-time for the first job of task τi, we
must consider execution requests of τi and all jobs of tasks which may
preempt τi. We define the following cumulative request-bound function
based on rbf. Let THi be the set of tasks with priority greater than
τi. Then, the cumulative request-bound function is defined as:

Wi,`(t)
def= `ei +

∑

τj∈THi

rbf(τj , t) (4)

The cumulative request-bound function Wi,`(t) is simply the total
execution requests of all tasks of higher priority than τi over the interval
(0, t], and the execution request of the first ` jobs of τi. When deadlines

static_fptas_journal.tex; 25/05/2005; 11:53; p.11

12

do not exceed periods, we are concerned only with Wi,1(t) which is the
cumulative request-bound function for the first job of τi.

(Audsley et al., 1991) presented an exact static-priority feasibility
test for sporadic task systems: all jobs of task τi are guaranteed to
always meet their deadlines if and only if there exists a fixed point, t,
of Wi,1(t) such that t occurs before τi’s deadline . The following theorem
restates their test (observe that this theorem uses the fact that dm is
a static-priority optimal scheduling algorithm for constrained sporadic
task systems):

Theorem 1 (from (Audsley et al., 1991)) In a sporadic task system,
task τi always meets all deadlines when scheduled by dm if and only if
∃t ∈ (0, di] such that Wi,1(t) ≤ t.

3.2.2. Approximate Test

The goal of using a linear approximation in δ(τi, t) is to bound the
number of steps in the approximation function. Since δ(τi, t) has at
most k−1 steps for all τi, a superposition of δ(τi, t)’s (i.e. a summation
of a number of different δ functions) will have a polynomially bounded
number of steps in terms of k and the number of functions in the
superposition. The following equation defines a superposition which we
will use as the approximate cumulative request-bound function for the
approximate feasibility test:

Ŵi,1(t)
def= ei +

∑

τj∈THi

δ(τj , t) (5)

In Section 3.4, we will see that the value of Ŵi,1(t) is always at least
that of Wi(t). If we use the approximate cumulative request-bound
function, Ŵi,1(t), to find a fixed point as in Theorem 1, it is possible
for the approximate function’s smallest fixed point to exceed the exact
function’s smallest fixed point; therefore, the test is no longer necessary
and sufficient. Instead, we will have sufficient test for static-priority
feasibility, as the following theorem states (proved in Section 3.4):

static_fptas_journal.tex; 25/05/2005; 11:53; p.12

13

Theorem 2 In a sporadic task system, task τi always meets all dead-
lines when scheduled by dm if ∃t ∈ (0, di] such that Ŵi,1(t) ≤ t.

Using the approximate cumulative request-bound function also no
longer gives an exact check for infeasibility. Instead, if we cannot find a
t ∈ (0, di] such that Ŵi,1(t) ≤ t, then τi may miss a deadline on a lower
capacity processor. In fact, we can quantify the amount by which the
smaller capacity processor must be slower; the following theorem (also
proved in Section 3.4) derives this capacity:

Theorem 3 If ∀t ∈ (0, di], Ŵi,1(t) > t, then there exist job-arrival
sequences for τ in which τi misses some deadlines when scheduled by
dm on a processor of (1− ε) capacity.

The preceding theorem states we must effectively ignore (1 − ε) of
the processor capacity for the test to become exact.

Together, theorems 2 and 3 provide an approximate test for static-
priority feasibility of constrained sporadic task system τ . The test is:

If for all tasks, τi ∈ τ , there is a time t ≤ di such that Ŵi,1(t) ≤ t,
then τ is static-priority feasible. Otherwise, τ is guaranteed to be
infeasible on a processor of (1− ε) capacity.

Section 3.5 will show that the complexity of the approximate feasi-
bility test for constrained task systems is polynomial-time in terms of
the number of tasks and the accuracy parameter, ε.

3.3. Example

We now consider an example system τ , to illustrate both the exact and
approximate feasibility tests. Let τ be comprised of the following tasks:

τ1 = (1, 3, 3)
τ2 = (2, 5, 5)
τ3 = (2, 12, 12)

Let us first demonstrate the exact feasibility test. We must calculate
the smallest fixed points of the the cumulative request-bound function

static_fptas_journal.tex; 25/05/2005; 11:53; p.13

14

t

W
3,1

(t)

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

11

12

11 12

f(t) = t

(a)

t

W
3,1

(t)

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

11

12

11 12

f(t) = t

f(t) =(1- ε) t

(b)

Figure 2. The two graphs above illustrate the cumulative request-bound func-
tions of task τ3 for task system τ where τ1 = (1, 3, 3), τ2 = (2, 5, 5), and
τ3 = (2, 12, 12). Graph (a) shows the approximate cumulative request-bound
function, Ŵ3,1(t) where ε = 1

3 (i.e. k = 2) . Since there does not exist a
t ∈ (0, 12) such that Ŵ3,1(t) ≤ t, the approximate feasibility test declares τ
is infeasible. Graph (b) shows the exact cumulative request-bound function,
W3,1(t). Notice, that τ is, in fact, infeasible on a uniprocessor of (1 − 1

3)
capacity; however, τ is feasible on the unit capacity uniprocessor.

(if they exist). The fixed points are: W1,1(1) = 1, W2,1(3) = 3, and
W3,1(9) = 9. Since, for all τi, there exists a t such that Wi,1(t) ≤ t and
t ∈ (0, di], then τ is feasible on a uniprocessor. Figure 2(b) shows the
cumulative request-bound function for τ3. Observe from the graph that
you can quickly identify the smallest fixed point of W3,1(t).

For the approximate test, Ŵ1,1(1) = 1, and Ŵ2,1(3) = 3. However,
it is easy to see from Figure 2(a) that there does not exist a t ∈ (0, 12]
such that Ŵ3,1(t) ≤ t. Therefore, by Theorem 3, τ is infeasible on a
uniprocessor of (1 − ε) capacity. The fact that W3,1(t) does not fall
below the line f(t) = (1− ε)t in Figure 2(b) illustrates the infeasibility
of τ on this smaller capacity processor.

3.4. Correctness of Approximate Feasibility Test for

Constrained Task Systems

In this section, we prove Theorems 2 and 3, thereby proving the cor-
rectness of the approximate feasibility test. However, before proving

static_fptas_journal.tex; 25/05/2005; 11:53; p.14

15

the theorems, it will be useful to prove properties of the request-bound
functions. Using the request-bound function properties, we will be able
to prove lemmas about the approximate cumulative request-bound
function. From these lemmas and properties, Theorems 2 and 3 will
follow.

We prove several properties about δ(τi, t), which together show that
δ(τi, t) closely tracks rbf(τi, t). The first property states that our ap-
proximation always exceeds or equals rbf.

Property 1 ∀t ≥ 0, δ(τi, t) ≥ rbf(τi, t).

Proof: For all t ∈ (0, (k− 1)pi], δ(τi, t) = rbf(τi, t), by definition. For
t > (k − 1)pi, δ(τi, t) = ei + tei

pi
= (t

pi
+ 1)ei ≥ d t

pi
eei = rbf(τi, t) 2

The second property states that if the approximation strictly exceeds
the rbf at time t, then we have calculated at least k − 1 steps of
the rbf. We may observe this visually in Figure 1, because the linear
approximation does not begin until after the k − 1 step. Formally,

Property 2 If δ(τi, t) > rbf(τi, t), then rbf(τi, t) ≥ kei.

Proof: δ(τi, t) > rbf(τi, t) implies that t > (k−1)pi. Thus, rbf(τi, t) =
d t

pi
eei >

⌈
(k−1)pi

pi

⌉
ei = (k−1)ei. Since rbf increases by ei at each step,

rbf(τi, t) ≥ kei. 2
The third property reflects the fact that the approximation never

exceeds the rbf by more than one step size, ei. Again, visually this is
easy to see, since after k − 1 steps, δ(τi, t) is a linear interpolation of
the “edges” of the steps.

Property 3 ∀t ≥ 0, δ(τi, t)− rbf(τi, t) ≤ ei.

Proof: For all t ∈ (0, (k − 1)pi], δ(τi, t) − rbf(τi, t) = 0 ≤ ei. For
t > (k−1)pi, δ(τi, t)−rbf(τi, t) = tei

pi
+ei−

⌈
t
pi

⌉
ei ≤ tei

pi
+ei− tei

pi
= ei. 2

Property 4, below, bounds the ratio of the value of the approximate
function at time t to the value of the exact function:

Property 4 ∀t ≥ 0, rbf(τi, t) ≤ δ(τi, t) ≤ (1 + 1
k)rbf(τi, t).

static_fptas_journal.tex; 25/05/2005; 11:53; p.15

16

Proof: If t ≤ (k − 1)pi, then δ(τi, t) = rbf(τi, t). Since k ≥ 1, for all
0 < ε < 1, the inequality (1 + 1

k) > 1 holds. Therefore, rbf(τi, t) ≤
δ(τi, t) ≤ (1 + 1

k)rbf(τi, t).

Otherwise, if t > (k − 1)pi, then rbf(τi, t) ≤ δ(τi, t) follows from
Property 1. By Property 3, δ(τi, t) ≤ rbf(τi, t)+ei. Then by Property 2,
rbf(τi, t) + ei ≤ rbf(τi, t) + rbf(τi,t)

k . This implies, ∀t ≥ 0, δ(τi, t) ≤
(1 + 1

k)rbf(τi, t). 2
The following lemmas describe the implications of using the ap-

proximation function δ in the cumulative request-bound function. In-
formally, Lemma 1 states that if the approximate cumulative request-
bound function is below line f(t) = t, then the exact cumulative
request-bound function must be below as well.

Lemma 1 If Ŵi,`(t) ≤ t, then Wi,`(t) ≤ t.

Proof:

By Property 1,
∑

τj∈THi
δ(τj , t) ≥

∑
τj∈THi

rbf(τj , t). Thus, `ei +∑
τj∈THi

δ(τj , t) ≤ t ⇒ `ei+
∑

τj∈THi
rbf(τj , t) ≤ t. The Lemma follows

from the definitions of Wi,`(t) and Ŵi,`(t). 2
Lemma 2 states that if the approximate cumulative request-bound

function lies above f(t) = t, then the exact cumulative request-bound
function must lie above the line f(t) = k

1+k (t). Formally stated:

Lemma 2 If Ŵi,`(t) > t, then Wi,`(t) > k
1+k (t).

Proof:

Ŵi,`(t) = `ei +
∑

τj∈THi
δ(τj , t) > t

⇒ `ei +
∑

τj∈THi
(1 + 1

k)rbf(τj , t) > t (by Property 4)

⇒ (1 + 1
k)(`ei +

∑
τj∈THi

rbf(τj , t)) > t

⇒ `ei +
∑

τj∈THi
rbf(τj , t) > k

1+k (t)

The Lemma follows from definition of Wi,`(t). 2
We are now prepared to prove Theorems 2 and 3, originally stated

in Section 3.

static_fptas_journal.tex; 25/05/2005; 11:53; p.16

17

Proof of Theorem 2 Assume there exists a t0 ∈ (0, di] such that
Ŵi,1(t0) ≤ t0. Then, by Lemma 1, Wi,1(t0) ≤ t0. From Theorem 1, τi

always meets all deadlines using dm. 2
Proof of Theorem 3 The proof is by contradiction. Assume that for
all t ∈ (0, di], Ŵi,1(t) > t, but τi is still feasible on a processor of (1− ε)
capacity. Notice that 1− k

k+1 ≤ ε. By Theorem 1, ∃t0 ∈ (0, di] such that
Wi,1(t0) ≤ (1− ε)t0 ≤ (k

k+1)t0. But, Ŵi,1(t0) > t0 ⇒ Wi,1(t0) > (k
k+1)t0

by Lemma 2. This is a contradiction; therefore, τi is infeasible on a
processor of capacity (1− ε). 2

3.5. Testing Set

We now turn our attention to the most significant benefit of the ap-
proximate feasibility test: its polynomial time complexity. In order to
prove that the test runs in polynomial time, we show that the number
of points at which Equation (5) must be evaluated is bounded by a
polynomial in terms of n and ε.

As a basis of comparison, let us first consider the testing set for
the exact feasibility test. It is known (Audsley et al., 1993) that the
time-instants at which the condition of Theorem 1 must be evaluated
is:

Si
def=

{
t = bpa : a = 1, . . . , i; b = 1, . . . ,

⌊
di

pa

⌋}
(6)

Informally, these are the only values of t where Wj(t) changes value,
for some j, 1 ≤ j ≤ i. The number of points in this set may be as large
as:

i∑

j=1

⌊
di

pj

⌋
(7)

Since the number of points that must be checked is dependent on the
task periods, this represents a pseudo-polynomial feasibility test.

In the remainder of this section, we will show that if we were to use
the approximation Ŵi,1(t) in place of Wi(t), we would only need test
the condition of Theorem 2 at polynomially many points. In particular,

static_fptas_journal.tex; 25/05/2005; 11:53; p.17

18

we will show that the set of points that must be checked is:

Ŝi
def= {t = bpa : a = 1, . . . , i− 1; b = 1, . . . , k − 1} ∪ {t = di} (8)

3.5.1. Necessity and Sufficiency of Testing Set

In the following argument, we will show that Ŝi contains a sufficient
number of points to determine the existence (or absence) of a time t

such that Ŵi,1(t) ≤ t. Our proof obligation is to show: if for all t ∈ Ŝi,
Ŵi,1(t) > t, then for all t ∈ (0, di], Ŵi,1(t) > t.

We call two elements t1 and t2 (t1 < t2) in set Ŝi adjacent , if no t

satisfying t1 < t < t2 is in Ŝi. In order to fulfill our proof obligation,
we will show that for any pair of adjacent points in Ŝi, if the value of
Ŵi,1 at the adjacent points lies above f(t) = t, then the value of Ŵi,1

at all points in between the adjacent points are above f(t) = t.

Define a linear function, g(t1,t2),`(t) over the interval (t1, t2) as fol-
lows,

g(t1,t2),`(t)
def=

Ŵi,`(t2)− Ŵi,`(t1)
t2 − t1

(t− t1) + Ŵi,`(t1), ∀t ∈ (t1, t2) (9)

Intuitively, g(t1,t2),`(t) is a linear interpolation of points (t1, Ŵi,`(t1))
and (t2, Ŵi,`(t2)). For example, in Figure 2a consider the two adjacent
points t1 = 6 and t2 = 10. g(t1,t2),1(t) is the line defined by points (6, 8)
and (10, 101

3).

The following claim shows that between any two adjacent points,
the linear function, g(t1,t2),`(t) is less than the approximation function.
So, g(t1,t2),`(t) bounds the approximation function from below over the
interval (t1, t2). Let ri(t) be the total execution of all tasks τj , of priority
τi or greater, that release jobs at time t when t ≤ (k−1)pj . Informally,
ri(t) is the “step”-size of Ŵi,`(t). Formally,

ri(t)
def=

∑

{τj∈THi
:(pjdivides t)∧(t≤(k−1)pj)}

ej . (10)

static_fptas_journal.tex; 25/05/2005; 11:53; p.18

19

Claim 1 For adjacent elements, t1, t2 ∈ Ŝi (t1 < t2),(
g(t1,t2),`(t) < Ŵi,`(t), ∀t ∈ (t1, t2)

)
.

Proof: We know that g(t1,t2),`(t1) = Ŵi,`(t1) and g(t1,t2),`(t2) = Ŵi,`(t2),
by definition of g(t1,t2),`(t). Observe that the “height” of the step for
Ŵi,`(t) is ri(t) > 0 at every point t in Ŝi. Also, note that Ŵi,`(t) is
linear in interval (t1, t2). Then, for t ∈ (t1, t2), Ŵi,`(t) is a line that
passes through (t1, Ŵi,`(t1) + ri(t1)) and (t2, Ŵi,`(t2)). Thus for t in

interval (t1, t2), Ŵi,`(t) = Ŵi,`(t2)−Ŵi,`(t1)−ri(t1)
t2−t1

(t−t1)+Ŵi,`(t1)+ri(t1).

Notice that Ŵi,`(t) − g(t1,t2),`(t) = ri(t1)
(

t2−t
t2−t1

)
> 0. This implies,

Ŵi,`(t) > g(t1,t2),`(t). 2
The next lemma shows that for any adjacent elements of Ŝi, if the

value of Ŵi,` lies above the line f(t) = t, then the value of Ŵi,` of all
points in between the adjacent elements must lie above f(t) = t.

Lemma 3 For adjacent elements, t1, t2 ∈ Ŝi, if Ŵi,`(t1) > t1 and
Ŵi,`(t2) > t2, then Ŵi,`(t) > t, ∀t ∈ (t1, t2).

Proof: Notice that g(t1,t2),`(t1) = Ŵi,`(t1) > t1 and g(t1,t2),`(t2) =
Ŵi,`(t2) > t2. Now consider function g(t1,t2),`(t) over the interval (t1, t2).
Assume that there exists t′ ∈ (t1, t2), such that g(t1,t2),`(t′) ≤ t′. Since,
g(t1,t2),`(t) is linear the slope from t1 to t′ must equal the slope from t′

to t2. But,
Ŵi,`(t′) ≤ t′

⇒ Ŵi,`(t
′)−t1

t′−t1
≤ 1

⇒ Ŵi,`(t
′)−Ŵi,`(t1)
t′−t1

< 1,

and
−Ŵi,`(t′) ≥ −t′

⇒ t2−Ŵi,`(t
′)

t2−t′ ≥ 1

⇒ Ŵi,`(t2)−Ŵi,`(t
′)

t2−t′ > 1.

The slopes are unequal and we have reached a contradiction. Our
assumption that there exists a t′ such that g(t1,t2),`(t′) ≤ t′ is incor-
rect. Therefore, ∀t ∈ (t1, t2), g(t1,t2),`(t) > t. By Claim 1, Ŵi,`(t) > t,
∀t ∈ (t1, t2). 2

static_fptas_journal.tex; 25/05/2005; 11:53; p.19

20

The following theorem proves Ŝi is a necessary and sufficient testing
set for our approximation.

Theorem 4 There exists t ∈ (0, di] such that Ŵi,1(t) ≤ t if and only if
there exists t′ ∈ Ŝi such that Ŵi,1(t′) ≤ t′.

Proof: The “if” direction is obvious since Ŝi ⊂ (0, di]. Therefore, we
will concentrate on the “only if” direction of the proof. If there exists a
t ∈ (0, pmin) such that Ŵi,1(t) ≤ t (where pmin is the smallest period),
then Ŵi,1(pmin) ≤ pmin and pmin ∈ Ŝi. So, assume there exists a t ∈
[pmin, di] such that Ŵi,1(t) ≤ t, but 6 ∃t′ ∈ Ŝi such that Ŵi,1(t′) ≤ t′.
Since Ŝi ⊂ [pmin, di], there exists adjacent elements t1 and t2 of Ŝi such
that t ∈ (t1, t2). But, by Lemma 3, for all t ∈ (t1, t2), Ŵi,1(t) > t. This
a contradiction; therefore, our assumption that there did not exist a
t′ ∈ Ŝi such that Ŵi,1(t′) ≤ t′ is incorrect. 2

3.5.2. Computational Complexity

It is easy to see that the number of items in the testing set for τi is at
most:

1 + (i− 1)(k − 1) (11)

In a naive implementation of approximate feasibility-analysis, the con-
dition in Theorem 2 would be evaluated at most Σn

i=1(1+(i−1)(k−1))
times, which is O(n2k). A smarter implementation is to consider only
the points of Ŝn. It is possible to use a “heap-of-heaps” data structure
(see, e.g, (Mok, 1988)) to determine the order of the job-releases in
the test set, Ŝn, in O(log n) time. For each distinct time t ∈ Ŝn, it is
also possible to determine the set of tasks that have their execution
requests satisfied by time t in O(log n) time. Therefore, we can reduce
the overall time complexity to O(nk log n).

static_fptas_journal.tex; 25/05/2005; 11:53; p.20

21

4. Arbitrary Task Systems

When deadlines can exceed periods, (Lehoczky, 1990) shows that it is
no longer sufficient to check the response-times of only the first job of
each task. Instead, it is potentially necessary to check the response-time
of all jobs in the level-i busy interval for each task τi . A level-i busy
interval is a time interval [a, b] where only jobs of Ti = THi ∪ {τi} are
executing continuously and the following is true:

1. A job of Ti is released at time a.

2. All jobs of Ti released prior to a have completed by time a.

3. b is the first time instant such that all jobs of Ti released in the
interval [a, b) have completed.

It may be tempting to try extending our results to an arbitrary
task system by applying the approximate feasibility test presented in
this paper to each job of τi in the level-i busy interval. Unfortunately,
if this approach is used the approximate feasibility test is no longer
polynomial in terms of n and ε. Applying the approximate feasibility
test to each job of τi in the level-i busy interval results in a possibly
exponential time test. The reason that the test is not polynomial-time
is the following:

• The length of the level-i busy interval does not depend on n, but
on the pi and ei terms. The exact length of the level-i busy interval
is the solution to the following equation:

t =
i∑

j=1

⌈
t

pi

⌉
ei (12)

Therefore, the level-i busy interval contains possibly exponential
number of jobs of τi. Applying the approximate feasibility test of
the previous section would require running the test a exponential
number of times.

static_fptas_journal.tex; 25/05/2005; 11:53; p.21

22

• The number of jobs of a task τi that are active at each time instant
t (i.e. t lies between the job’s release time and absolute deadline)
could be Θ(di/pi). Again, this is not polynomial in terms of n and ε.
Therefore, at each point in the testing set, we may have to perform
a computation for a pseudo-polynomial number of active jobs to
check if any of them have missed their deadline.

In this section, we show that an exponential (or even
pseudo-polynomial) number of checks are not required. We construct an
FPTAS for feasibility analysis in static-priority, arbitrary task systems
given an arbitrary priority assignment. Furthermore, our FPTAS for
arbitrary task systems achieves the same asymptotic time complexity
as the FPTAS for constrained task systems. We define an algorithm
that determines (according to the approximation functions defined in
Section 3.2) the set of jobs of τi that complete prior to or at time
t = maxj∈{1,...,i}{(k − 1)pj} (the point after which the approximation
becomes a linear function), and meet their deadlines, in Section 4.1.1.
Section 4.1.2 describes a test to approximate the set of jobs that com-
plete after time maxj∈{1,...,i}{(k − 1)pj} and meet their deadline. We
provide a proof of the correctness of the feasibility approximation in
Section 4.2. We derive the running time of approximation in Section 4.3.

4.1. Feasibility Test

4.1.1. Jobs with completion time prior or equal to
maxj∈{1,...,i}{(k − 1)pj}

We define the following function used to determine the set of jobs that
have their execution requests satisfied by time t:

W̃i(t)
def= δ(τi, t) +

∑

τj∈THi

δ(τj , t) (13)

W̃i(t) represents a “close” approximate to the cumulative requests
of task τi and all higher priority tasks with respect to any given time
t. In comparison, Ŵi,`(t) is only a “close” approximation when t lies in

static_fptas_journal.tex; 25/05/2005; 11:53; p.22

23

the interval ((`− 1)pi, `pi]. An example of W̃i(t) and Ŵi,`(t) functions
is illustrated in Figure 3.

The next lemma describes the time interval where W̃i(t) is guaran-
teed to be at least as large as Ŵi,`(t).

Lemma 4 If t > (`− 1)pi, then W̃i(t) ≥ Ŵi,`(t).

Proof: We will prove the contrapositive. Assume that W̃i(t) < Ŵi,`(t).
Then,

δ(τi, t) +
∑

τj∈THi
δ(τj , t) < `ei +

∑
τj∈THi

δ(τj , t)

⇒ δ(τi, t) < `ei

If t > (k − 1)pi, then

ei + tei
pi

< `ei ⇒ t < (`− 1)pi ⇒ t ≤ (`− 1)pi

Otherwise, if t ≤ (k − 1)pi, then

⌈
t
pi

⌉
ei < `ei ⇒ t

pi
+ 1 ≤ ` ⇒ t ≤ (`− 1)pi

Since in either case t ≤ (`− 1)pi, we have proved the contrapositive. 2
Notice that the number of active jobs at time t could be Θ(di/pi).

The next function is used to identify the index of the most recently
released job of τi to have its execution request satisfied by time t. Using
this function, we will avoid checking potentially Θ(di/pi) number of jobs
for completion at each point in the approximate test.

Zi(t)
def= max

(⌈
W̃i(t)− t

ei

⌉
, 0

)
(14)

Observe that for each ` > 1, Ŵi,`+1(t) − Ŵi,`(t) = ei. So each of
the approximate cumulative request-bound functions is separated by
ei units for consecutive jobs of τi. Zi(t) determines the number of jobs
` ≤ d t

pi
e such that Ŵi,`(t) > t. Therefore, the index of the most recently

released job to have its execution request satisfied by time t is
⌈

t
pi

⌉
−

Zi(t) (according to our approximation). By finding the index of the

static_fptas_journal.tex; 25/05/2005; 11:53; p.23

24

W
2,1

(t)

W
2,2

(t)

W
2,3

(t)

f(t) = t

W
2

(t)

f(t)

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

t

~

Figure 3. Examples of W̃2(t) and Ŵi,`(t) functions for system with
τ1 = (p1, e1, d1) = (2, 1, 2) and τ2 = (p2, e2, d2) = (3, 1, 4), and k = 4. The

approximation function Ŵ for the first three jobs of task τ2 is shown along with

the W̃ function.

most recently released job of τi to complete execution with respect to
time t, we can determine in constant time the set of active jobs that
have their execution requests satisfied at or prior to t.

The following lemma states this formally:

Lemma 5 If Zi(t) ≤
⌈

t
pi

⌉
−1, then ∀` ∈ {1, . . . ,

⌈
t
pi

⌉
−Zi(t)}, Wi,`(t) ≤

t.

Proof: Let b =
⌈

t
pi

⌉
− Zi(t). Then,

Ŵi,b(t) =
(⌈

t
pi

⌉
− Zi(t)

)
ei +

∑
τj∈THi

δ(τj , t) (by definition of Ŵ)

≤ −Zi(t)ei + (δ(τi, t) +
∑

τj∈THi
δ(τj , t)) (by Property 1))

= W̃i(t)− Zi(t)ei (by definition of W̃)

static_fptas_journal.tex; 25/05/2005; 11:53; p.24

25

If Zi(t) > 0, then

Ŵi,b(t) ≤ W̃i(t)−
⌈

W̃i(t)−t
ei

⌉
ei (by definition of Zi(t))

≤ W̃i(t)− W̃i(t) + t

≤ t.

Otherwise, if Zi(t) = 0 then Ŵi,b(t) ≤ W̃i(t) and
⌈

W̃i(t)−t
ei

⌉
≤ 0.

This implies that W̃i(t) ≤ t. Thus, Ŵi,b(t) ≤ t. Since, ∀a < b, Ŵi,a(t) ≤
Ŵi,b(t), then Wi,`(t) ≤ t, ∀` ∈ {1, . . . ,

⌈
t
pi

⌉
− Zi(t)}, by Lemma 1. 2

The next lemma shows: if the `th job of τi is active at time t, and
its index exceeds

⌈
t
pi

⌉
− Zi, then the `th job does not complete before

or at time t. Using this lemma we can determine the set of jobs of τi

that do not have their execution request satisfied by time t.

Lemma 6 If t ∈ ((` − 1)pi, (` − 1)pi + di] and ` >
⌈

t
pi

⌉
− Zi(t), then

Ŵi,`(t) > t.

Proof: Let a =
⌈

t
pi

⌉
− Zi(t) + 1. Assume that Ŵi,a(t) ≤ t. Then,

Ŵi,a(t) = aei +
∑

τj∈THi

⌈
t
pj

⌉
ej ≤ t

⇒
⌈

t
pi

⌉
ei − Zi(t)ei + ei +

∑
τj∈THi

⌈
t
pj

⌉
ej ≤ t

⇒ Ŵi,a−1(t) ≤ t− ei

⇒ W̃i(t)−Ŵi,a−1(t)
ei

≥ W̃i(t)−t+ei

ei
>

⌈
W̃i(t)−t

ei

⌉
− 1 + 1

⇒ W̃i(t)−Ŵi,a−1(t)
ei

>

⌈
W̃i(t)−t

ei

⌉

But, notice that W̃i(t)−Ŵi,a−1(t)
ei

= Zi(t). Since W̃i(t) − Ŵi,a−1(t) ≥ 0
(otherwise, W̃i(t) < Ŵi,a(t), which implies t ≤ (`− 1)pi from Lemma 4

and contradicts the assumption on t), W̃i(t)−Ŵi,a−1(t)
ei

=
⌈

W̃i(t)−t
ei

⌉
. This

is a contradiction of the above statement W̃i(t)−Ŵi,a−1(t)
ei

>

⌈
W̃i(t)−t

ei

⌉
.

Therefore, Ŵi,a(t) > t.

Then ∀` ≥ a, Ŵi,`(t) ≥ Ŵi,a(t) which implies Ŵi,`(t) > t and the
lemma follows. 2

static_fptas_journal.tex; 25/05/2005; 11:53; p.25

26

ApproxFirstStage(τ, i, k):
Step 0: Construct an ordered set S̃i as in Equation (15).

Step 1: Initialize variable lowest active to 1.

Step 2: For each ta ∈ S̃i − {0}:
a) If ta > (lowest active− 1)pi + di then:

i) Let ta−1 be the adjacent element prior to ta in ordered set

S̃i. (Recall that ri(t) is the total execution requirement of all
jobs of priority greater than τi released at time t.) Determine

where the line defined by (ta−1, Ŵi, lowest active(ta−1)+ri(ta))

and (ta, Ŵ
i, lowest active(ta)) intersects with f(t) = t. Let this

point of intersection be t′.

ii) If t′ > (lowest active−1)pi +di, then return “τi does not always
meet all deadlines”; otherwise, increment lowest active.

b) Let x := max
(
0,

⌈
ta
pi

⌉
− Zi(t)

)
.

c) Let lowest active := max (x + 1, lowest active).

Step 3: Return lowest active.

Figure 4. The function ApproxFirstStage(τ, i, k) determines whether all jobs of task
τi with deadlines less than maxj∈{1,...,i}{(k − 1)pj} are schedulable. If no deadlines
are missed up to time maxj∈{1,...,i}{(k − 1)pj} ApproxFirstStage returns the lowest
indexed job whose execution request is not satisfied by time maxj∈{1,...,i}{(k−1)pj}.
Otherwise, it returns “τi does not always meet all deadlines”.

We now define, for a given task τi, the set of points that must be
tested in our approximation as:

S̃i
def= {t = bpa : a = 1, . . . , i; b = 1, . . . , k − 1} ∪ {0} (15)

Observe that for any two adjacent elements t1, t2 ∈ S̃i, |t2−t1| ≤ pi.
Therefore, at most one job of τi can have its deadline occur between
any two adjacent elements of S̃i. Using this observation and Lemmas 5
and 6, we can construct an algorithm which determines, for all t ∈ S̃i,
which jobs of τi have their execution requests satisfied at or prior to
time t. Also, we can check in constant time whether the processor
meets the execution requests of any job whose deadline has elapsed
since the prior adjacent element in S̃i. Figure 4 describes this algorithm

static_fptas_journal.tex; 25/05/2005; 11:53; p.26

27

ApproxFirstStage in greater detail. Section 4.2 will prove the correctness
of ApproxFirstStage.

4.1.2. Jobs with completion time after maxj∈{1,...,i}{(k − 1)pj}
Next, we describe a constant time test for the set of jobs of task τi that
have deadlines after time maxj∈{1,...,i}{(k− 1)pj} and ApproxFirstStage

does not determine that their demand is satisfied prior to or at time
maxj∈{1,...,i}
{(k − 1)pj}. Notice from the definition of Ŵi,`,

∀` ∈ N, ∀t ∈
(
maxj∈{1,...,i}{(k − 1)pj},∞

)
::(

Ŵi,`(t) = `ei +
∑

τj∈THi

(
ej + tej

pj

)) (16)

Let us assume that ApproxFirstStage(τ, i, k) returns h. This means
that h is the lowest-indexed job of τi that according to the approxima-
tion has not had its execution request satisfied by time maxj∈{1,...,i}{(k−
1)pj}. Then for all ` ∈ N(` ≥ h), we can solve equation (16) to find
point t` at which Ŵi,`(t`) = t`.

t`
def=

`ei

1− UHi

+

∑
τj∈THi

ej

1− UHi

(17)

where UHi

def=
∑

τj∈THi

ej

pj
. From Lemma 1, we know that Wi,`(t`) ≤

t`. Intuitively, t` represents the time at which the approximation deter-
mines that the processor can satisfy the execution requests of the `th

job of task τi. Therefore, if

th ≤ (h− 1)pi + di, (18)

then the hth job of τi meets its deadline in the synchronous ar-
rival sequence. Otherwise, we declare that τi will not always meet its
deadlines.

If Inequality (18) is true, we must then determine whether all sub-
sequent jobs of τi after h meet their deadlines. This is equivalent to
determining whether ∀` ∈ N(` > h), t` ≤ (`− 1)pi + di. Define

static_fptas_journal.tex; 25/05/2005; 11:53; p.27

28

∆`
def= [(`− 1)pi + di]−

[
`ei

1− UHi

+

∑
τj∈THi

ej

1− UHi

]
. (19)

∆` represents the difference between t` and the deadline for the `th

job of task τi. The following lemma quantifies this difference in terms
of ∆h.

Lemma 7 ∀` ∈ N(` ≥ h), ∆` = ∆h − (`− h)
(

ei
1−UHi

− pi

)
.

Proof: The proof is by induction on `.

Base Case: Let ` = h. The following statement is vacuously true:
∆h = ∆h − (h− h)

(
ei

1−UHi
− pi

)
.

Inductive Step: Assume that the lemma holds for all b ∈ N where
h ≤ b ≤ `− 1. Then,

∆` = (`− 1)pi + di − `ei
1−UHi

−
∑

τj∈THi
ej

1−UHi
(by definition)

=

[
(`− 2)pi + di − (`−1)ei

1−UHi
−

∑
τj∈THi

ej

1−UHi

]
−

(
ei

1−UHi
− pi

)

= ∆`−1 −
(

ei
1−UHi

− pi

)

= ∆h − (`− h− 1)
(

ei
1−UHi

− pi

)
−

(
ei

1−UHi
− pi

)

(by inductive hypothesis)
= ∆h − (`− h)

(
ei

1−UHi
− pi

)

2
Using the previous lemma, we can show that if the hth job of task

τi meets its deadline in the synchronous arrival sequence, then all
subsequent jobs of τi will always meet their deadlines if and only if

ei
1−UHi

≤ pi. The next lemma formalizes this statement.

Lemma 8 Given that ∆h ≥ 0, then ∃` ∈ N (` > h) such that t` >

(`− 1)pi + di if and only if ei
1−UHi

> pi.

Proof: We will prove the only if part, first. Assume that t` > (` −
1)pi + di and ` > h. By equation (18),

static_fptas_journal.tex; 25/05/2005; 11:53; p.28

29

t` − th ≥ t` − [(h− 1)pi + di]
> (`− 1)pi + di − (h− 1)pi − di (from the assumption on t`)
= (`− h)pi.

Observe, by Equation (17), t` − th = (`− h) ei
1−UHi

. So (`− h) ei
1−UHi

>

(`− h)pi, which implies ei
1−UHi

> pi.

Now proving the if direction, assume that ei
1−UHi

> pi. Define ` as
follows:

` =




∆h(
ei

1−UHi

)
− pi




+ 1 + h

Obviously, ` > h. We will show that for the `th job of task τi,
t` > (`− 1)pi + di.

∆` = ∆h − (`− h)
(

ei
1−UHi

− pi

)
(from Lemma 7)

= ∆h −






∆h(
ei

1−UHi

)
−pi




+ 1




(
ei

1−UHi
− pi

)
(from definition of `)

≤ ∆h −

 ∆h(

ei
1−UHi

)
−pi

+ 1




(
ei

1−UHi
− pi

)

= ∆h −∆h −
(

ei
1−UHi

− pi

)

< 0 (from assumption)

∆` < 0 implies (`− 1)pi + di − t` < 0. Thus, t` > (`− 1)pi + di. 2
We have shown that we can check the determine whether the hth

job and all subsequent jobs of task τi always meet their deadlines
(according to the approximation) by testing inequality (18) and check-
ing that ei

1−UHi
≤ pi. Figure 5 gives the pseudo-code for the algo-

rithm ApproxSecondStage. Finally, Figure 6 describes the full approx-
imation scheme for feasibility of sporadic static-priority task systems
with respect to a given priority assignment.

static_fptas_journal.tex; 25/05/2005; 11:53; p.29

30

ApproxSecondStage(τ, i, k, h):

Step 0: Set th := hei
1−UHi

+

∑
τj∈THi

ej

1−UHi
.

Step 1: If th > (h− 1)pi + di, return τi does not always meet all deadlines.

Step 2: If ei
1−UHi

> pi, return τi does not always meet all deadlines.

Step 3: Return τi always meets all deadlines.

Figure 5. The function ApproxSecondStage(τ, i, k, h) determines whether the hth job
and all subsequent jobs of task τi are schedulable. If so, it returns τi always meets
all deadlines, else it returns τi does not always meet all deadlines.

Approx(τ, ε):
Step 0: Initialize variables h to zero, and k := d1/εe − 1.

Step 1: For each τi ∈ τ :

a) If ApproxFirstStage(τ, i, k) does not return “τi does not always meet
all deadlines”, then set h := ApproxFirstStage(τ, i, k). Else return τ
is infeasible.

b) If ApproxSecondStage(τ, i, k, h) returns “τi does not always meet all
deadlines”, then return τ is infeasible.

Step 2: Return τ is feasible.

Figure 6. The function Approx(τ, ε) determines whether the task system τ is feasible.
If Approx returns τ is feasible, then τ is guaranteed to be feasible on a processor of
unit capacity. Otherwise, if Approx returns τ is infeasible, then τ is guaranteed to
be infeasible on a processor of (1− ε) capacity.

4.2. Proof of Correctness for Arbitrary Task Systems

In this section, we will give a proof sketch of correctness for Approx.
The goal is to show that:

If Approx(τ, ε) returns “feasible”, then the task set is guaranteed
to be feasible on the processor for which it had been specified. If
Approx(τ, ε) returns “infeasible”, the task set is guaranteed to be

static_fptas_journal.tex; 25/05/2005; 11:53; p.30

31

infeasible on a slower processor , of computing capacity (1−ε) times
the computing capacity of the processor for which the task system
had been specified.

This section is organized as follows: we first prove a claim about
the connection between the total system utilization and the slope of
the Ŵ function. This claim is used to prove an important invariant of
ApproxFirstStage (Lemma 9). The invariant quantifies the set of jobs
of task τi that are guaranteed, according to ApproxFirstStage, to have
their execution request met prior to their respective deadlines. We show
(Lemma 10) that Approx will return “τ is feasible” if and only if the
approximate cumulative request-bound function for each jobs of each
task has a fixed point prior to each job’s deadline. We then invoke a
result from (Lehoczky, 1990) to arrive at the stated goal, above.

First, let us prove a claim that will be useful in proving the invariant
of ApproxFirstStage. In words, the claim states that if the total system
utilization is at most one, then the slope of the linear interpolation of
Ŵi,`(t) is at most one. Formally,

Claim 2 For any adjacent t1,t2 ∈ S̃i (where t1 < t2), if the system

utilization U =
∑n

j=1
ej

pj
≤ 1, then Ŵi,`(t2)−Ŵi,`(t1)−ri(t1)

t2−t1
≤ 1.

Proof: We prove the contrapositive of the claim. Assume that

Ŵi,`(t2)− Ŵi,`(t1)− ri(t1)
t2 − t1

> 1.

Then,

t2 − t1 < Ŵi,`(t2)− Ŵi,`(t1)− ri(t1)
=

∑
τj∈THi

[δ(τj , t2)− δ(τj , t1)]− ri(t1)

=
∑
{τj∈THi

:t2>(k−1)pj}[δ(τj , t2)− δ(τj , t1)]

+
∑
{τj∈THi

:(t2≤(k−1)pj)∧(pj |t1)}[δ(τj , t2)− δ(τj , t1)]

+
∑
{τj∈THi

:(t2≤(k−1)pj)∧(pj -t1)}[δ(τj , t2)− δ(τj , t1)]− ri(t1)

If t2 ≤ (k−1)pj and pj divides t1, a job of τj is released at time t1; since
t1 and t2 are adjacent, δ(τj , t2)− δ(τj , t1) = ej . Otherwise, if t2 ≤ (k−

static_fptas_journal.tex; 25/05/2005; 11:53; p.31

32

1)pj and pj does not divide t1, no job of τj is released at t1; therefore,
δ(τj , t2)−δ(τj , t1) = 0. Observe,

∑
{τj∈THi

:(t2≤(k−1)pj)∧(pj |t1)}[δ(τj , t2)−
δ(τj , t1)]− ri(t1) ≤ 0. Therefore,

Ŵi,`(t2)− Ŵi,`(t1)− ri(t1) <
∑
{τj∈THi

:t2>(k−1)pj}[δ(τj , t2)− δ(τj , t1)]

≤ ∑
{τj∈THi

:t2>(k−1)pj}(t2 − t1)
ej

pj

≤ (t2 − t1)U

⇒ Ŵi,`(t2)− Ŵi,`(t1)− ri(t1)
t2 − t1

< U

The above inequality implies that the total system utilization is greater
than one. 2

The next lemma states the invariant that identifies the set of jobs
that are schedulable according to each iteration of ApproxFirstStage. Let
lowest activea be the value of lowest active prior to the ath iteration
of the for loop of ApproxFirstStage.

Lemma 9 After a − 1 iterations and prior to the ath iteration of the
for loop of ApproxFirstStage, the following condition holds:

∀` ∈ {1, . . . , lowest activea − 1} ::
(∃t ∈ ((`− 1)pi, (`− 1)pi + di] : Ŵi,`(t) ≤ t)

Proof: The proof is by induction on a. Let ta be the ath element in
the ordered set S̃i (t0 represents element 0).

Base Case: Let a = 1. Since lowest activea is initialized to 1 prior
to first iteration, the condition is vacuously true.

Inductive Step: Assume that the condition is true after the first
a− 1 iterations of the for loop, and prior to the ath iteration where
1 < a < |S̃i| − 1. We must show then that the following is true:

∀` ∈ {lowest activea, . . . , lowest activea+1 − 1},
∃t ∈ ((`− 1)pi, (`− 1)pi + di] : Ŵi,`(t) ≤ t

Assume that ApproxFirstStage does not terminate during the ath

iteration. If lowest activea+1 = lowest activea, the above condi-

static_fptas_journal.tex; 25/05/2005; 11:53; p.32

33

tion is vacuously true by the inductive step. Therefore, assume
that lowest activea+1 > lowest activea. This implies that

⌈
ta
pi

⌉
−

Zi(ta) > 0. We know from Lemma 5 that

∀` ∈ {1, . . . , lowest activea+1 − 1}, Wi,`(ta) ≤ ta

Notice at most one job’s deadline elapses between ta−1 and ta, the
only job whose deadline could elapse is lowest activea. Therefore,

∀` ∈ {lowest activea + 1, . . . , lowest activea+1 − 1},
∃t ∈ ((`− 1)pi, (`− 1)pi + di] : Ŵi,`(t) ≤ t

We need to only check if lowest activea met its deadline. It now
remains to be shown that

∃t ∈ ((lowest activea − 1)pi, (lowest activea − 1)pi + di]
:: (Ŵi,lowest activea(t) ≤ t)

(20)

If (lowest activea − 1)pi + di ≥ ta, then Equation (20) is true.
Otherwise, we execute Step 2.a.i. Since ApproxFirstStage does not
terminate in the ath step, there exists a t′, calculated by Step 2.a.i,
such that t′ ≤ (lowest activea− 1)pi + di and Ŵi,lowest activea(t

′) =
t′. If t′ ≥ ta−1, then t′ > (lowest activea − 1)pi and (20) is true.
If t′ < ta−1, then we know by definition of t′ and Claim 2 that
Ŵi,lowest activea (ta)−Ŵi,lowest activea (t′)

ta−t′ is equal to

Ŵi,lowest activea(ta)− Ŵi,lowest activea(ta−1)− ri(ta−1)
ta − ta−1

≤ 1.

Thus, Ŵi,lowest activea(ta) ≤ ta.

∴ ∀` ∈ {1, . . . , lowest activea+1−1} :: (∃t ∈ ((`−1)pi, (`−1)pi+di] :
Ŵi,`(t) ≤ t)

2
(Lehoczky, 1990) showed: if for each job j of task τi there exists a

time t between the release and deadline of j such Wi,j(t) ≤ t, then τi

always meets all deadlines. We will use this result to show that the

static_fptas_journal.tex; 25/05/2005; 11:53; p.33

34

task set τ is feasible when Approx(τ, ε) returns “τ is feasible,” and τ is
infeasible on a processor of (1−ε) capacity when Approx(τ, ε) returns “τ
is infeasible.” We restate Lehoczky’s results in the following theorem.

Theorem 5 (from (Lehoczky, 1990)) A sporadic task system τ is fea-
sible if and only if ∀τi ∈ τ, `(> 0) ∈ N, ∃t ∈ ((` − 1)pi, (` − 1)pi + di]
such that Wi,`(t) ≤ t.

Before proving that Approx correctly identifies the feasible tasks, we
will state a corollary that follows from Lemma 3. The corollary simply
shows that Lemma 3 holds for the set S̃i. The following corollary will
be used in the proof of Lemma 10:

Corollary 1 For adjacent elements, t1, t2 ∈ S̃i, if Ŵi,`(t1) > t1 and
Ŵi,`(t2) > t2, then Ŵi,`(t) > t, ∀t in interval (t1, t2).

We can now prove that Approx(τ, i, ε) will return “τ is feasible” if
and only if for each task τi of τ and for all jobs ` of τi, there exists a
time t between the release of job ` and its deadline where Ŵi,`(t) ≤ t.
The next lemma formally proves this statement.

Lemma 10 Approx(τ, ε) returns “τ is feasible” if and only if

∀τi ∈ τ, ` ∈ N(` > 0) ::
(∃t ∈ ((`− 1)pi, (`− 1)pi + di] : Ŵi,`(t) ≤ t).

(21)

Proof: Proving the “only if” direction first, assume that Approx(τ, ε)
returns “τ is feasible.” Consider any task τi ∈ τ . Let hi be the
value returned from ApproxFirstStage(τ, i, k). Notice that hi is equal
to lowest active at the last iteration of ApproxFirstStage(τ, i, k). Thus,
by Lemma 9,

∀` ∈ {1, . . . , hi − 1} :: (∃t ∈ ((`− 1)pi, (`− 1)pi + di] : Ŵi,`(t) ≤ t).

Since, Approx(τ, ε) returns “τ is feasible”, it must be the case that
both,

thi ≤ (hi − 1)pi + di, and
ei

1− UHi

≤ pi.

static_fptas_journal.tex; 25/05/2005; 11:53; p.34

35

If either condition is false, ApproxSecondStage(τ, i, k, hi) would re-
turn “τi does not always meet all deadlines.” This would contradict our
assumption that Approx(τ, ε) returns “τ is feasible.”

Notice, thi
≤ (hi − 1)pi + di implies by definition of thi

that ∃t ∈
((hi − 1)pi, hi − 1)pi + di] such that Ŵi,hi(t) ≤ t. Also, by Lemma 8,

ei
1−UHi

≤ pi

⇒ ∀`(∈ N) > h, t` ≤ (`− 1)pi + di

⇒ ∀`(∈ N) > h, ∃t ∈ ((`− 1)pi, (`− 1)pi + di] : Ŵi,`(t) ≤ t

We can see by combining the set of jobs for which ∃t ∈ ((`−1)pi, (`−
1)pi + di] such that Ŵi,`(t) ≤ t, we have proven:

∀τi ∈ τ, `(∈ N) > 0, ∃t ∈ ((`− 1)pi, (`− 1)pi + di] : Ŵi,`(t) ≤ t.

We have, thereby, completed the proof of the “only if” direction.

Now we will prove “if” direction by proving the contrapositive. In
other words, we will assume that Approx(τ, ε) returns “τ is infeasible.”
It must be the case that some task τi of task system τ has been declared
that “τi dos not always meet all deadlines” by either ApproxFirstStage

or ApproxSecondStage. There are two cases:

1) ApproxFirstStage returns “τi does not always meet all deadlines”:
Let a > 0 be the iteration of Step 2 in ApproxFirstStage that returns
τi does not always meet all deadlines. By Step 2.a.i, t′ is defined
by the intersection of f(t) = t and the line consisting of points
(ta, Ŵi,lowest activea(ta)) and
(ta−1, Ŵi,lowest activea(ta−1)+ri(ta−1)). t′ > (lowest activea−1)pi+
di by Step 2.a.ii; therefore, for all t ∈ (ta−1, (lowest activea−1)pi+
di], Ŵi,lowest activea(t) > t.

To prove the remainder of Case 1, we must show that for all t ∈
((lowest activea − 1)pi, ta−1], Ŵi,lowest activea(t) > t. Let Jx be the
elements of S̃i that intersect with the time interval during which
the xth job of task τi is active. More formally,

static_fptas_journal.tex; 25/05/2005; 11:53; p.35

36

Jx
def=

{
t ∈ S̃i | (x− 1)pi < t ≤ (x− 1)pi + di

}
.

Note that each element of Jlowest activea represents an iteration of
Step 2 of ApproxFirstStage where job lowest activea is active. If
for any element t ∈ Jlowest activea , lowest activea ≤

⌈
t
pi

⌉
−Zi(t), by

Lemma 5 this would contradict the variable lowest activea at itera-
tion a (since lowest activea is non-decreasing). So, lowest activea >⌈

t
pi

⌉
− Zi(t), ∀t ∈ Jlowest activea . By Lemma 6 this implies ∀t ∈

Jlowest activea , Ŵi,lowest activea(t) > t . By Corollary 1, for all t ∈
((lowest activea − 1)pi, ta−1], Ŵi,lowest activea(t) > t. We can then
conclude that

∀t ∈ ((lowest activea − 1)pi, (lowest activea − 1)pi + di] :
Ŵi,lowest activea(t) > t.

2) ApproxSecondStage returns “τi does not always meet all deadlines”:
We analyze the two possibilities and show in each case that there
exists a job h of task τi such that for all t where h is active
Ŵi,h(t) > t.

a) Step 1 of ApproxSecondStage returns “τi does not always meet
all deadlines”:

Let h be the value returned from ApproxFirstStage. If h < k,
job h’s deadline must be strictly after maxj∈{1,...,i}{(k − 1)pj}
(otherwise, the fact that ApproxFirstStage returned h is con-
tradicted). So, for all t ∈ ((h − 1)pi, maxj∈{1,...,i}{(k − 1)pj}],
Ŵi,h(t) > t. In other words, for the hth job of τi, Ŵi,h(t) does not
fall below t prior to maxj∈{1,...,i}{(k−1)pj}. However, since th >

(h−1)pi +di, for all t ∈ (maxj∈{1,...,i}{(k−1)pj}, (h−1)pi +di],
Ŵi,h(t) > t. Therefore,

∀t ∈ ((h− 1)pi, (h− 1)pi + di], Ŵi,h(t) > t.

static_fptas_journal.tex; 25/05/2005; 11:53; p.36

37

b) Step 2 of ApproxSecondStage returns “τi does not always meet
all deadlines”:

By Lemma 8 and definition of t`,

∃`(` > h) ∈ N :: (∀t ∈ ((`− 1)pi, (`− 1)pi + di], Ŵi,`(t) > t).

We have shown in each of the above cases that if Approx(τ, ε) returns
“τ is infeasible”, then

∃τi ∈ τ, ` ∈ N :: (∀t ∈ ((`− 1)pi, (`− 1)pi + di], Ŵi,`(t) > t).

2
The following theorem proves formally that if Approx declares “τ is

feasible”, then τ is, in fact, feasible.

Theorem 6 A sporadic, τ , is feasible if Approx(τ, ε) returns “τ is fea-
sible” (where 0 < ε < 1).

Proof: If Approx(τ, ε) returns “τ is feasible,” then by Lemma 10,

∀τi ∈ τ, ∀`(∈ N) > 0,

∃t ∈ ((`− 1)pi, (`− 1)pi + di] : Ŵi,`(t) ≤ t.

By Lemma 1,

∀τi ∈ τ, ∀`(∈ N) > 0,

∃t ∈ ((`− 1)pi, (`− 1)pi + di] : Wi,`(t) ≤ t.

The theorem follows by applying Theorem 5. 2
In the next theorem, we state the implications of Approx(τ, ε) re-

turning “τ is infeasible”:

Theorem 7 If for a sporadic task system, τ , and ε ∈ (0, 1), Approx(τ, ε)
returns “τ is infeasible,” then τ is infeasible on a processor of capacity
(1− ε).

static_fptas_journal.tex; 25/05/2005; 11:53; p.37

38

Proof: The proof is by contradiction. Assume that Approx(τ, ε) returns
“τ is infeasible,” and τ is feasible on a processor of capacity (1− ε). By
Lemma 10,

∃τi ∈ τ, ` ∈ N ::
∀t ∈ ((`− 1)pi, (`− 1)pi + di], Ŵi,`(t) > t.

This implies from Lemma 2 that

∃τi ∈ τ, ` ∈ N ::
∀t ∈ ((`− 1)pi, (`− 1)pi + di],

(
Wi,`(t) > k

k+1 t ≥ (1− ε)t
)

.

However, if τi always meets all deadlines on a processor of (1 − ε)
capacity, Theorem 5 implies ∀τi ∈ τ, `(> 0) ∈ N, ∃t ∈ ((` − 1)pi, (` −
1)pi +di] such that Wi,`(t) ≤ (1− ε)t. This is a contradiction; thus, the
theorem is true. 2

Thus, by Theorems 6 and 7, Approx is correct.

4.3. Computational Complexity

The computational complexity of Approx(τ, ε) depends entirely on the
size of the testing set, S̃i. It is easy to see that the size of S̃i is at most:

1 + i(k − 1) (22)

This corresponds to the number of iterations that ApproxFirstStage

must make for each task, τi. In our implementation of approximate
feasibility-analysis, the condition in Step 2 of ApproxFirstStage would
be executed at most Σn

i=1(1+ (i)(k− 1)) times, which is O(n2k). (Note
that the functions Ŵi,`, W̃i, and Zi can be precomputed for the points
in S̃i in O(ik) time; the total time to precompute these functions for all
tasks of τ is O(n2k). Therefore, the evaluation of each of these functions
in Approx requires constant time.)

static_fptas_journal.tex; 25/05/2005; 11:53; p.38

39

5. A Fully Polynomial-Time Approximation Scheme

5.1. Approximation Schemes

For sporadic task systems, the precise computational complexity of
determining if a task set is feasible for a given uniprocessor system is
currently unknown. However, since current tests for feasibility in this
model require at least pseudo-polynomial time, we have directed our
attention at developing approximations that require only polynomial-
time. As traditionally defined, an algorithm A for a given optimization
problem is an approximation scheme if given input I, and accuracy
parameter ε > 0 it produces a solution that is a bounded factor (in
terms of ε) away from the optimal solution. Specifically, if OPT is
the optimal value for the given minimization problem, we require the
“cost” of the solution produced by A to not exceed (1 + ε) ·OPT (for
a maximization problem the solution must not be less (1− ε) · OPT).
A polynomial-time approximation scheme is an approximation scheme
that produces a solution for each constant ε > 0 in time polynomially
bounded in terms of |I|. A fully polynomial-time approximation scheme
is an approximation scheme that produces a solution for arbitrary ε > 0
in running time that is polynomially bounded by |I| and 1/ε. For further
general information on approximation schemes see (Vazirani, 2001).

However, the feasibility problem for static-priority scheduling on
uniprocessors is not an optimization problem; hence, the notion of
approximation employed in this paper is as follows. The (1 − ε) term
quantifies the capacity of the processor we must “sacrifice” for the
approximation algorithm result to be correct. In other words, if our
approximation returns “feasible”, the task system is guaranteed to be
feasible on the specified uniprocessor. However, if the approximate test
returns “infeasible”, the task system is only guaranteed to be infeasible
on a processor of (1−ε) of the original capacity. We will see in the next
subsection the implications of our FPTAS and that its running time is
polynomially bounded in terms of n and 1/ε.

static_fptas_journal.tex; 25/05/2005; 11:53; p.39

40

5.2. Our Results

For a given accuracy, ε, the running time of the approximate feasibil-
ity test is O(n2/ε). Thus, these algorithms are members of a family
of algorithms that collectively represent a fully polynomial-time ap-
proximation scheme for uniprocessor feasibility analysis, with respect
to a given priority assignment, for both sporadic tasks systems in a
static-priority system. The following theorem states this formally.

Theorem 8 For any ε in the range (0, 1), there is an algorithm Aε

that has run-time O(n2/ε) and exhibits the following behavior: On any
sporadic task system τ ,

− if τ is infeasible on a unit-capacity processor then Algorithm Aε

correctly identifies it as being infeasible;

− if τ is feasible on a processor of computing capacity (1− ε) then
Algorithm Aε correctly identifies it as being feasible;

− else Algorithm Aε may identify τ as being either feasible or in-
feasible.

2
The synchronous arrival sequence exactly models the job arrival se-

quence in a synchronous periodic task system. In a synchronous periodic
task system, the first job of each task arrives at time instant zero, and
subsequent jobs of each task τi arrive every pi time units. Therefore, it
is useful to note that the results of Theorem 8 trivially extend to the
synchronous periodic task model without modification.

6. Summary

It has been shown (Albers and Slomka, 2004) that there exists a fully
polynomial-time approximation scheme (FPTAS) for uniprocessor fea-
sibility analysis of sporadic task sets in dynamic-priority systems. We
have constructed a similar FPTAS for static-priority feasibility analysis

static_fptas_journal.tex; 25/05/2005; 11:53; p.40

41

of uniprocessor synchronous periodic and sporadic task systems for
the implicit-deadline, constrained, and arbitrary task model. We have,
thus, shown that dynamic- and static-priority systems have equivalent
approximate feasibility-analysis “tools” available.

The fully polynomial-time approximation tests presented in this
paper offer a reduction in complexity for feasibility tests. These ap-
proximate feasibility tests may be useful for quick estimates of task
system feasibility in automatic system-synthesis tools.

References

K. Albers and F. Slomka. An event stream driven approximation for the analysis of

real-time systems. In Proceedings of the EuroMicro Conference on Real-Time

Systems, pages 187–195, Catania, Sicily, July 2004. IEEE Computer Society

Press.

N. C. Audsley, A. Burns, M. F. Richardson, and A. J. Wellings. Hard Real-Time

Scheduling: The Deadline Monotonic Approach. In Proceedings 8th IEEE Work-

shop on Real-Time Operating Systems and Software, pages 127–132, Atlanta,

May 1991.

N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. Wellings. Applying new

scheduling theory to static priority preemptive scheduling. Software Engineering

Journal, 8(5):285–292, 1993.

G. C. Buttazzo. Rate monotonic vs. EDF: Judgment day. Real-Time Systems,

29(1):5–26, 2005.

M. Dertouzos. Control robotics : the procedural control of physical processors. In

Proceedings of the IFIP Congress, pages 807–813, 1974.

J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling algorithm: Exact

characterization and average case behavior. In Proceedings of the Real-Time

Systems Symposium - 1989, pages 166–171, Santa Monica, California, USA,

December 1989. IEEE Computer Society Press.

J. P. Lehoczky. Fixed priority scheduling of periodic tasks with arbitrary deadlines.

In IEEE Real-Time Systems Symposium, pages 201–209, December 1990.

J. Leung and J. Whitehead. On the complexity of fixed-priority scheduling of

periodic, real-time tasks. Performance Evaluation, 2:237–250, 1982.

C. Liu and J. Layland. Scheduling algorithms for multiprogramming in a hard

real-time environment. Journal of the ACM, 20(1):46–61, 1973.

A. K. Mok. Fundamental Design Problems of Distributed Systems for The

Hard-Real-Time Environment. PhD thesis, Laboratory for Computer Science,

static_fptas_journal.tex; 25/05/2005; 11:53; p.41

42

Massachusetts Institute of Technology, 1983. Available as Technical Report

No. MIT/LCS/TR-297.

A. Mok. Task management techniques for enforcing ED scheduling on a periodic

task set. In Proc. 5th IEEE Workshop on Real-Time Software and Operating

Systems, pages 42–46, Washington D.C., May 1988.

D. Mossé, T. Baker, S. Baruah, G. Buttazzo, A. Burns, L. Sha, and J. Stankovic.

Fixed or dynamic priority? That is the question (panel discussion). In Proceedings

of the Real-Time Systems Symposium, page 9, Lisbon, Portugal, December 2004.

IEEE Computer Society Press.

Vijay V. Vazirani. Approximation Algorithms. Springer-Verlag, Berlin-Heidelberg-

New York-Barcelona-Hong Kong-London-Milan-Paris-Singapur-Tokyo, 2001.

static_fptas_journal.tex; 25/05/2005; 11:53; p.42

