
Schedulability analysis of global Deadline-Monotonic scheduling

Sanjoy Baruah

Abstract

The multiprocessor Deadline-Monotonic (DM) schedul-
ing of sporadic task systems is studied. A new sufficient
schedulability test is presented and proved correct. It is
shown that this test offers non-trivial quantitative guaran-
tees, including a resource augmentation bound.

Keywords: Multiprocessor scheduling; real-time sys-
tems; sporadic tasks; global scheduling; Deadline Mono-
tonic; schedulability analysis

1 Introduction

In this paper, we study the Deadline-Monotonic (DM)
scheduling of sporadic task systems upon preemptive multi-
processor platforms that allow global inter-processor migra-
tion. We derive a new sufficient schedulability test, and ob-
tain resource-augmentation bounds that quantify the “good-
ness” of this test.

We describe the problem in greater detail during the re-
mainder of this section.

Task Model. A real-time system is often modeled as a
finite collection of independent recurring tasks, each of
which generates a potentially infinite sequence of jobs.
Each job is characterized by an arrival time, an execution
requirement, and a deadline, and it is required that a job
complete execution between its arrival time and its dead-
line. Different formal models for recurring tasks place dif-
ferent restrictions on the values of the parameters of jobs
generated by each task. One of the more commonly used
formal models is the sporadic task model [6, 1].

A sporadic task τi = (Ci, Di, Ti) is characterized by a
worst-case execution requirement Ci, a (relative) deadline
Di, and a minimum inter-arrival separation parameter Ti,
also referred to as the period of the task. Such a sporadic
task generates a potentially infinite sequence of jobs, with
successive job-arrivals separated by at least Ti time units.
Each job has a worst-case execution requirement equal to

Ci and a deadline that occurs Di time units after its ar-
rival time. We refer to the interval, of size Di, between
such a job’s arrival instant and deadline as its scheduling
window. A sporadic task system is comprised of several
such sporadic tasks. Let τ denote a system of such sporadic
tasks: τ = {τ1, τ2, . . . τn}, with τi = (Ci, Di, Ti) for all
i, 1 ≤ i ≤ n. Task system τ is said to be a constrained
sporadic task system if it is guaranteed that each task τi ∈ τ
has its relative deadline parameter no larger than its period:
Di ≤ Ti for all τi ∈ τ . We restrict our attention here to con-
strained task systems. We assume tasks are indexed in order
or non-decreasing relative deadline parameters: Di ≤ Di+1

for all i, 1 ≤ i < n.

Processor Model. In this paper, we study the scheduling
of sporadic task systems upon a platform comprised of sev-
eral identical processors. We assume that the platform is
fully preemptive, — an executing job may be interrupted
at any instant in time and have its execution resumed later
with no cost or penalty. We assume that the platform allows
for global inter-processor migration – a job may begin ex-
ecution on any processor and a preempted job may resume
execution on the same processor as, or a different processor
from, the one it had been executing on prior to preemption.
(However, each job may execute on at most one processor
at each instant in time.)

Deadline Monotonic scheduling. Priority-driven
scheduling algorithms operate as follows: at each instant
in time they assign a priority to each job that is awaiting
execution, and choose for execution the jobs with the great-
est priority. The Deadline Monotonic (DM) scheduling
algorithm [5] is a priority-driven scheduling algorithm that
assigns priority to jobs according to the relative-deadline
parameter of the task that generates them: the smaller the
relative deadline, the greater the priority. (Since we assume
that tasks are indexed in order of non-decreasing deadlines,
this means that DM assigns jobs of τi priority over jobs of
τi+1, for all i.)

With respect to a given platform, a given sporadic task
system is said to be feasible if there exists a schedule meet-
ing all deadlines, for every collection of jobs that may be

1



generated by the task system. A given sporadic task sys-
tem is said to be (global) DM schedulable if DM meets all
deadlines for every collection of jobs that may be generated
by the task system. While every DM-schedulable task sys-
tem is trivially feasible, it is known that not all feasible task
systems are DM-schedulable. A schedulability test for DM
scheduling accepts as input the specifications of a sporadic
task system and an identical multiprocessor platform, and
determines whether the system is DM-schedulable upon the
platform. Such a test is exact if is correctly identifies all
DM-schedulable systems, and sufficient if it identifies some,
but not necessarily all, DM-schedulable systems (however,
it must not incorrectly declare some non DM-schedulable
system to be DM-schedulable).

Resource augmentation bounds. Resource augmenta-
tion bounds are used for quantifying the quality of sufficient
schedulability tests. A sufficient schedulability test is said
to have a resource-augmentation bound of c if

• Any task system deemed schedulable by the test is
guaranteed to actually be so; and

• For any task system that is not deemed schedulable by
the test, it is the case that the task system is actually not
schedulable upon a platform in which each processor
is 1

c times as fast.

Intuitively speaking, a resource augmentation bound of c for
a sufficient schedulability test implies that the inexactness
of the test penalizes its used by at most a speedup factor of
c when compared to an exact test. The smaller the resource
augmentation bound, the better the sufficient schedulability
test: a resource augmentation bound of 1 would mean that
the test is in fact an exact one.

Additional definitions. We conclude this section with
some definitions and notation that are used in the remain-
der of this paper.

• The density δi of a task τi is the ratio Ci/Di of its
execution requirement to its relative deadline.

• For each k, 1 ≤ k ≤ n, δmax(k) denotes the largest
density from among the tasks τ1, τ2, . . . , τk:

δmax(k) def=
k

max
i=1

(δi)

• For any interval length t, the demand bound func-
tion DBF(τi, t) of a sporadic task τi bounds the max-
imum cumulative execution requirement by jobs of τi

that both arrive in, and have deadlines within, any in-
terval of length t. It has been shown [1] that

DBF(τi, t) = max
(

0, (
⌊

t−Di

Ti

⌋
+ 1) Ci

)

• For each k, 1 ≤ k ≤ n, a load parameter, based upon
the DBF function, may be defined as follows:

LOAD(k) def= max
t>0

(∑k
i=1 DBF(τi, t)

t

)

2 Related work

In [2], a sufficient test was derived for determining
whether a given sporadic task system is global-DM schedu-
lable upon a preemptive multiprocessor platform comprised
comprised of m unit-capacity processors. We will now
briefly review this result from [2].

Consider any legal sequence of job requests of task sys-
tem τ , on which DM misses a deadline. Suppose that a job
Jk of task τk is the one to first miss a deadline, and that this
deadline miss occurs at time-instant [ta + Dk) (i.e., this job
arrives at time-instant ta).

It must be the case that all m processors were busy
executing jobs of priority greater than Jk’s priority, for
strictly more than (Dk − Ck) time units over Jk’s schedul-
ing window [ta, ta + Dk); hence, the total amount of ex-
ecution that DM tries to fit within Jk’s scheduling window
is > m(Dk − Ck) + Ck, with the added Ck denoting Jk’s
execution requirement.

In DM scheduling, all jobs of priority greater than Jk’s
priority must have relative deadline parameter (and hence,
scheduling window size) no larger than Dk. In order for
these scheduling windows to overlap with [ta, ta + Dk), it
must be the case that all such jobs arrive no earlier than Dk

time units prior to ta (i.e., after ta − Dk), and have their
deadlines no later than Dk time units after ta + Dk (i.e.,
before ta + 2Dk). In other words, all these jobs have their
arrival times and deadlines within the 3Dk-sized interval
[ak − Dk, ak + 2Dk). By definition of LOAD(k), the to-
tal execution requirement of all such jobs is bounded from
above by 3DkLOAD(k). Consequently, in order for job Jk

of task τk to miss its deadline under DM scheduling it is
necessary that

3DkLOAD(k) > m(Dk − Ck) + Ck

≡ LOAD(k) >
1
3
(m− (m− 1)δk) (1)

We can obtain a sufficient condition for DM-schedulability
by negating Inequality 1:

Theorem 1 (from [2]) Sporadic task system τ is global-
DM schedulable upon a platform comprised of m unit-
capacity processors, provided

LOAD(k) ≤ m− (m− 1)δk

3
(2)

for all k, 1 ≤ k ≤ n.

2



- time
ti to ta td

6
?

6
?

deadline miss

¡
¡¡ª

∆¾ -

Dk¾ -

Di¾ -

Figure 1. Notation. A job of task τk arrives at ta and misses its deadline at time-instant td.

3 An improved test

In this section, we derive (Theorem 2) a new DM-
schedulability test that out-performs the test from [2], de-
scribed in Section 2 above, for many task systems. By com-
bining this new test with the prior one, a superior test (The-
orem 3) is obtained.

As in Section 2 above, consider any legal sequence of job
requests of task system τ , on which DM misses a deadline.
Suppose that a job Jk of task τk is the one to first miss a
deadline, and that this deadline miss occurs at time-instant
td (see Figure 1). Let ta denote this job’s arrival time: ta =
td −Dk.

Discard from the legal sequence of job requests all jobs
of tasks with priority lower than τk’s, and consider the DM
schedule of the remaining (legal) sequence of job requests.
Since lower-priority jobs have no effect on the scheduling of
greater-priority ones under preemptive DM, it follows that a
deadline miss of τk occurs at time-instant td (and this is the
earliest deadline miss), in this new DM schedule.

Since all jobs with priority lower than Jk’s have been
removed and since we are restricting our attention to con-
strained systems, observe that the presence of Jk has no
effect whatsoever on whether and when the other jobs in
this job arrival sequence are scheduled by DM. We now in-
troduce some notation: for any time-instant t ≤ td,

• let W (t) denote the total amount that all jobs other
than Jk execute over the interval [t, td) in this DM
schedule, plus Ck. (Informally, W (t) denotes the
amount of work that DM needs –but fails– to execute
over [t, td).)

• Let Ω(t) denote W (t) normalized by the interval-
length: Ω(t) def= W (t)/(td − t).

Since Jk receives strictly less than Ck units of execution
over [ta, td), all m processors must be executing tasks other
than Jk for a total duration greater than (Dk−Ck) over this
interval. Hence it must be the case that

W (ta) > (Dk − Ck)m + Ck

i.e.,

Ω(ta) >
(Dk − Ck)m + Ck

Dk

= m− (m− 1)
Ck

Dk

= m− (m− 1)δk

Let
µk

def= m− (m− 1)δk (3)

Let to denote the smallest value of t ≤ ta such that
Ω(t) ≥ µk. Let ∆ def= td − to (see Figure 1).

Now the work done by DM over [to, td) (which we de-
note as W (to)) arises from two sources: those jobs that ar-
rived at or after to, and those that arrived prior to to but have
not completed execution in the DM schedule by time-instant
to. We will refer to jobs arriving prior to to that need exe-
cution over [to, td) as carry-in jobs. (The job of τi arriving
at time-instant ti in Figure 1 is an example of a carry-in job,
provided it is still active at time-instant to.)

How many carry-in jobs can there be? This question is
addressed in the following lemma.

Lemma 1 There are at most dµke − 1 carry-in jobs.

Proof: Let ε denote an arbitrarily small positive num-
ber. By definition of the instant to, Ω(to − ε) < µk while
Ω(to) ≥ µk; consequently, strictly fewer than µk jobs must
have been executing at time-instant to. And since µk ≤ m
(as can be seen from Equation 3 above), it follows that some
processor was idled over [to − ε, to), implying that all jobs
active at this time would have been executing. This allows
us to conclude that there are strictly fewer than µk – equiv-
alently, at most (dµke − 1) – carry-in jobs.

Since there are at most (dµke−1) carry-in jobs, the total
amount of carry-in work is bounded from above by the sum
of the (dµke − 1) largest Ci’s from among the execution
requirements C1, C2, . . . , Ck:

Definition 1 Let CΣ(k) denote the sum of the (dµke − 1)
largest values from among [C1, C2, . . . , Ck].

We are now ready to derive a global-DM schedulability
test.

3



Theorem 2 Sporadic task system τ is global-DM schedula-
ble upon a platform comprised of m unit-capacity proces-
sors, provided that for all k, 1 ≤ k ≤ n,

CΣ(k)
Dk

+ 2 LOAD(k) < µk , (4)

where µk and CΣ(k) are as defined in Equation 3 and Def-
inition 1 above.

Proof: Let us bound the total amount of execution that
contributes to W (to).

• First, there are the carry-in jobs: as seen above, their
total contribution to W (to) is bounded from above by
CΣ(k).

• All other jobs that contribute to W (to) arrive within
the ∆-sized interval [to, td), and hence have their dead-
lines within [to, td + Dk), since their relative dead-
lines are all ≤ Dk. Their total execution require-
ment is therefore bounded from above by (∆ + Dk)×
LOAD(k).

Considering both sources together, we obtain the following
bound on W (to):

W (to) ≤ (∆ + Dk)LOAD(k) + CΣ(k) (5)

Since, by the definition of to, it is required that Ω(to) be
at least as large as µ, we must have

(
1 +

Dk

∆

)
LOAD(k) +

CΣ(k)
∆

≥ µk

as a necessary condition for DM to miss a deadline; equiv-
alently, the negation of this condition is sufficient to ensure
DM-schedulability:�

1 +
Dk

∆

�
LOAD(k) +

CΣ(k)

∆
< µk

⇐ (since Dk < ∆)

2 LOAD(k) +
CΣ(k)

Dk
≤ µk

which is as claimed in the theorem.
We can combine the results from Theorem 1 and Theo-

rem 2 to come up with the following result:

Theorem 3 Sporadic task system τ is global-DM schedula-
ble upon a platform comprised of m unit-capacity proces-
sors, provided for all k, 1 ≤ k ≤ n,

LOAD(k) ≤ max
(

µk

3
,
µk − CΣ(k)/Dk

2

)
(6)

where µk is as defined in Equation 3 above.

3.1 Analysis

The test in Theorem 3 above is the most accurate one
we derive in this paper, and should be used for actual
schedulability-testing. However, the simpler albeit less ac-
curate form of this test derived in Corollary 1 below is use-
ful for analyzing our test, and comparing it to prior tests.

First, a technical lemma:

Lemma 2

CΣ(k)
Dk

≤ (dµke − 1)δmax(k) .

Proof: Since Di ≤ Dk for all i ≤ k, it follows that each of
C1, C2, . . . , Ck is ≤ (Dk δmax(k)). Therefore CΣ(k), the
sum of (dµke − 1) Ci’s from among C1, C2, . . . , Ck, is ≤
(dµke − 1)(Dk δmax(k)). The lemma follows, by dividing
both sides by Dk.

Lemma 2 immediately yields the following corollary to
Theorem 3:

Corollary 1 Sporadic task system τ is global-DM schedu-
lable upon a platform comprised of m unit-capacity proces-
sors, provided for all k, 1 ≤ k ≤ n,

LOAD(k) ≤ max
(

µk

3
,
µk − (dµke − 1)δmax(k)

2

)
(7)

where µk is as defined in Equation 3 above.

The bound of Corollary 1 is depicted visually in Figure 2,
for platforms comprised of a large number of processors
(m → ∞). The largest density (δmax(k)) is plotted on the
x-axis, and the load normalized by the number of processors
(LOAD(k)/m) on the y-axis. The straight line corresponds
to the previously-known bound (the one in Theorem 1), and
the curve denotes the bound in Theorem 2. Any task sys-
tem for which (δmax(k), LOAD(k)/m) lies beneath one or
both of these curves for all k, is guaranteed to be (correctly)
identified as being DM-schedulable by our test. The two
curves intersect at a maximum density of 1

3 ; we thus see
that on such platforms the new test is superior to the old
one for sporadic task systems in which the maximum den-
sity δmax(n) is < 1

3 , while the previous test is superior for
systems with δmax(n) > 1

3 .

4 A resource augmentation bound

In this section, we obtain a resource augmentation bound
for the new DM-schedulability test of Theorem 2. Our ap-
proach is as follows. We will identify (Lemma 4) the small-
est value of x ≤ 1 for which we can prove that any sporadic
task system not deemed DM-schedulable upon m speed-1
processors by the test of Theorem 2 is infeasible upon m

4



0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Load bound as a function of maximum density

maximum density

N
or

m
al

iz
ed

 lo
ad

Figure 2. Graphical depiction of Corollary 1.
The bound on LOAD(k)/m is represented as a
function of δmax(k), for m → ∞. The straight
line represents the first term in the max, and
the curved line the second.

speed-x processors. It then follows that 1
x is a resource aug-

mentation bound for the test of Theorem 2.
We first use Lemma 2 to obtain the following corollary

to Theorem 2:

Corollary 2 Sporadic task system τ is global-DM schedu-
lable upon a platform comprised of m unit-capacity proces-
sors, provided that for all k, 1 ≤ k ≤ n,

LOAD(k) ≤ 1
2
(m− (m− 1)δk)(1− δmax(k)) (8)

Proof: From Theorem 2, we know that τk meets its dead-
line provided

2 LOAD(k) +
CΣ(k)

Dk
≤ µk

⇐ By Lemma 2
2 LOAD(k) + (dµke − 1)δmax(k) ≤ µk

≡ LOAD(k) ≤ µk − (dµke − 1)δmax(k)
2

⇐ Since dµke − 1 < µk

LOAD(k) ≤ 1
2

µk (1− δmax(k))

≡ LOAD(k) ≤ 1
2
(m− (m− 1)δk)(1− δmax(k))

which is as claimed in the corollary.

We are almost ready to obtain a resource-augmentation
bound. But first, we need another technical lemma.

Lemma 3 Any sporadic task system τ that is feasible upon
a multiprocessor platform comprised of m speed-x proces-
sors must satisfy

δmax(k) ≤ x and LOAD(k) ≤ mx (9)

for all k, 1 ≤ k ≤ n.

Proof Sketch: Suppose that task system τ is feasible upon
m speed-x processors. To prove that δmax(k) ≤ x, consider
each task τi separately. Since any individual job of τi can
receive at most Di × x units of execution by its deadline,
we must have Ci ≤ Di × x; i.e., Ci/Di ≤ x. Taken over
all tasks in τ , this observation yields the first condition.

To prove that LOAD(k) ≤ mx, recall the definition of
LOAD(k) from Section 1. Let t′ denote some value of t
which defines LOAD(k):

t′ def= argmax

(∑k
i=1 DBF(τi, t)

t

)
.

Suppose that all tasks in {τ1, τ2, . . . , τk} generate a job at
time-instant zero, and each task τi generates subsequent
jobs exactly Ti time-units apart. The total amount of execu-
tion that is available over the interval [0, t′) on this platform
is equal to mxt′; hence, it is necessary that LOAD(k) ≤ mx
if all deadlines are to be met.

Using Corollary 2 and Lemma 3, we obtain below a
bound on the processor speedup that is sufficient in order
for the test of Theorem 2 to identify DM-schedulability:

Lemma 4 Any sporadic task system that is feasible upon
a multiprocessor platform comprised of m speed-x proces-
sors platform is determined to be global-DM schedulable on
m unit-capacity processors by the DM-schedulability test of
Corollary 2, provided

x ≤ (4m− 1)−√12m2 − 8m + 1
2(m− 1)

(10)

Proof: Suppose that τ is feasible upon a platform com-
prised of m speed-x processors. From Lemma 3, it must be
the case that LOAD(k) ≤ mx and δmax(k) ≤ x. For τ to
be determined to be DM-schedulable upon m unit-capacity
processors by the test of Corollary 2, it is sufficient that:

LOAD(k) ≤ 1
2
(m− (m− 1)δk)(1− δmax(k))

⇐ mx ≤ 1
2
(m− (m− 1)x)(1− x)

≡ (m− 1)x2 − (4m− 1)x + m ≥ 0

Solving for x using standard techniques for the solution of
quadratic inequalities yields Equation 10.

5



m res. aug. bound
3 1.438613184
4 1.81191016
5 2.080891765
10 2.761302893
20 3.199969097
30 3.365582213
50 3.506187357
100 3.616767217
1000 3.720302285

Table 1. The resource augmentation bound
as a function of m.

Lemma 4 above bounds from above the values of x such
that task systems feasible on speed-x processors are cor-
rectly identified as being DM-schedulable by the test of The-
orem 2. The resource augmentation bound of Theorem 2 is
obtained by taking the multiplicative inverse of this x:

Corollary 3 The DM-schedulability test of Theorem 2 has
a resource augmentation bound of

2(m− 1)
(4m− 1)−√12m2 − 8m + 1

(11)

Equation 11 expresses the resource augmentation bound
as a function of the number of processors m in the platform.
The computed values for selected example values of m are
listed in Table 1 above. As seen from this table, the bound
seems to increase with increasing m. Standard techniques
may be used to show that it is indeed the case that the bound
of Equation 11 increases with increasing m, approaching
(2 +

√
3) as m →∞.

We already know that global DM is not an optimal
scheduling algorithm. It is also easy to show that the
schedulability test of Theorem 3 is not optimal. The sig-
nificance of this resource-augmentation result lies in what
it tells us about the “goodness” of both global DM and of
our schedulability test: in essence, it is asserting that a pro-
cessor speedup of (2 +

√
3) ≈ 3.73 compensates for both

the non-optimality of global DM and the inexactness of our
schedulability test.

5 Conclusions

We have derived a new sufficient schedulability test for
determining whether a given constrained-deadline sporadic
task system is DM-schedulable upon a preemptive multi-
processor platform, when global inter-processor migration

is permitted. We have shown that this test is superior to
previously-known tests for sporadic task systems in which
all tasks have density no greater than one-third.

We have also obtained a resource-augmentation bound
for our test. This resource bound of (2 +

√
3) ≈ 3.73 tells

us that any constrained-deadline sporadic task system that
is feasible upon a multiprocessor platform is correctly iden-
tified by our test as being DM-schedulable upon a platform
in which each processor is 3.73 times as fast.

References

[1] BARUAH, S., MOK, A., AND ROSIER, L. Preemptively
scheduling hard-real-time sporadic tasks on one processor. In
Proceedings of the 11th Real-Time Systems Symposium (Or-
lando, Florida, 1990), IEEE Computer Society Press, pp. 182–
190.

[2] FISHER, N., AND BARUAH, S. Global static-priority schedul-
ing of sporadic task systems on multiprocessor platforms. In
Proceeding of the IASTED International Conference on Par-
allel and Distributed Computing and Systems (Dallas, TX,
November 2006), IASTED.

[3] HA, R. Validating timing constraints in multiprocessor and
distributed systems. PhD thesis, Department of Computer
Science, University of Illinois at Urbana-Champaign, 1995.
Available as Technical Report No. UIUCDCS-R-95-1907.

[4] HA, R., AND LIU, J. W. S. Validating timing constraints in
multiprocessor and distributed real-time systems. In Proceed-
ings of the 14th IEEE International Conference on Distributed
Computing Systems (Los Alamitos, June 1994), IEEE Com-
puter Society Press.

[5] LEUNG, J., AND WHITEHEAD, J. On the complexity of
fixed-priority scheduling of periodic, real-time tasks. Perfor-
mance Evaluation 2 (1982), 237–250.

[6] MOK, A. K. Fundamental Design Problems of Distributed
Systems for The Hard-Real-Time Environment. PhD the-
sis, Laboratory for Computer Science, Massachusetts Insti-
tute of Technology, 1983. Available as Technical Report
No. MIT/LCS/TR-297.

6


