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Abstract

A new technique was recently introduced [7] for the
analysis of real-time systems scheduled on multiproces-
sor platforms by the global Earliest Deadline First (EDF)
scheduling algorithm. In this paper, this technique is
adapted and applied to the schedulability analysis of real-
time systems scheduled on multiprocessor platforms by the
global Deadline-Monotonic (DM) scheduling algorithm. It
is shown that the resulting analysis technique is quantita-
tively superior to pre-existing DM schedulability analysis
tests; in addition, the degree of its deviation from any hypo-
thetical optimal scheduler (that may be clairvoyant) is also
quantitatively bounded.

Keywords: Global multiprocessor scheduling; sporadic
tasks; Deadline Monotonic; schedulability analysis; pro-
cessor speedup factor

1 Introduction

Real-time systems comprised of recurrent processes
or tasks are often represented using the sporadic task
model [11, 5]. The Deadline-Monotonic (DM) [10]
scheduling algorithm is widely used for scheduling such
task systems on uniprocessor platforms. Recently, work has
been done on extending DM to apply to multiprocessor plat-
forms as well; such work addresses both implementation
and analysis issues.

In this paper, we study the DM scheduling of sporadic
task systems on preemptive multiprocessor platforms, under
the assumption that inter-processor migration is permitted
and incurs no penalty. We derive a new sufficient schedu-
lability test, and quantify the “goodness” of this test by de-
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riving its processor speedup factor. We also prove a lower
bound on the processor speedup factor, thereby bounding
the degree by which our test deviates from an optimal one.

We describe the problem in greater detail during the re-
mainder of this section.

Task Model. A real-time system is often modeled as a
finite collection of independent recurring tasks, each of
which generates a potentially infinite sequence of jobs.
Each job is characterized by an arrival time, an execution
requirement, and a deadline, and it is required that a job
complete execution between its arrival time and its deadline.
Different formal models for recurring tasks place different
restrictions on the values of the parameters of jobs gener-
ated by each task. One of the more commonly used formal
models is the sporadic task model [11, 5]. A sporadic task
τi = (Ci, Di, Ti) is characterized by a worst-case execution
requirement Ci, a (relative) deadline Di, and a minimum
inter-arrival separation parameter Ti, also referred to as the
period of the task. Such a sporadic task generates a poten-
tially infinite sequence of jobs, with successive job-arrivals
separated by at least Ti time units. Each job has a worst-
case execution requirement equal to Ci and a deadline that
occurs Di time units after its arrival time. We refer to the
interval, of size Di, between such a job’s arrival instant and
deadline as its scheduling window. A sporadic task system
is comprised of several such sporadic tasks. Let τ denote
a system of such sporadic tasks: τ = {τ1, τ2, . . . τn}, with
τi = (Ci, Di, Ti) for all i, 1 ≤ i ≤ n. Task system τ is said
to be a constrained sporadic task system if it is guaranteed
that each task τi ∈ τ has its relative deadline parameter no
larger than its period: Di ≤ Ti for all τi ∈ τ . We restrict
our attention here to constrained task systems. For nota-
tional convenience, we assume tasks are indexed in order of
non-decreasing relative deadline parameters: Di ≤ Di+1

for all i, 1 ≤ i < n.

1



Processor Model. We consider a multiprocessor platform
that is comprised of several identical processors. We as-
sume that the platform is fully preemptive — an executing
job may be interrupted at any instant in time and have its
execution resumed later with no cost or penalty. We also
assume that the platform allows for global inter-processor
migration – a job may begin execution on any processor and
a preempted job may resume execution on the same proces-
sor as, or a different processor from, the one it had been
executing on prior to preemption. (However, each job may
execute on at most one processor at each instant in time.)

Deadline Monotonic scheduling. Priority-driven
scheduling algorithms operate as follows: at each instant
in time they assign a priority to each job that is awaiting
execution, and choose for execution the jobs with the great-
est priority. The Deadline Monotonic (DM) scheduling
algorithm [10] is a priority-driven scheduling algorithm that
assigns priority to jobs according to the relative-deadline
parameter of the task that generates them — the smaller
the relative deadline, the greater the priority — with ties
broken arbitrarily but consistently. (Since we assume here
that tasks are indexed in order of non-decreasing deadlines,
this means that DM assigns jobs of τi priority over jobs of
τi+1, for all i.)

With respect to a given platform, a given sporadic task
system is said to be feasible if there exists a schedule meet-
ing all deadlines, for every collection of jobs that may be
generated by the task system. A given sporadic task system
is said to be (global) DM schedulable if DM meets all dead-
lines for every collection of jobs that may be generated by
the task system. While every DM-schedulable task system
is trivially feasible, it is known that not all feasible task sys-
tems are DM-schedulable. A schedulability test for global
DM accepts as input the specifications of a sporadic task
system and an identical multiprocessor platform, and deter-
mines whether the system is global-DM schedulable upon
the platform. Such a test is exact if is correctly identifies all
schedulable systems, and sufficient if it identifies some, but
not necessarily all, schedulable systems (however, it must
not incorrectly declare some non schedulable system to be
global-DM schedulable).

Processor speedup factor Processor speedup factors rep-
resent a quantitative approach towards comparing differ-
ent sufficient schedulability tests. A schedulability test is
defined to have a processor speedup factor f , f ≥ 1, if
any task system not deemed to be schedulable by this test

upon a particular platform is guaranteed to not be feasible
– schedulable by an optimal clairvoyant scheduler – upon
a platform in which each processor is at most 1/f times as
fast. More formally,

Definition 1 (Processor speedup factor) A schedulability
test has a processor speedup factor f , f ≥ 1, if it is guar-
anteed that any task system that is feasible upon a speci-
fied platform is deemed to be schedulable by the test upon a
platform in which each processor is at least f times as fast.

Intuitively, the processor speedup factor of a schedulabil-
ity test quantifies both the pessimism of the test and the non-
optimality of the scheduling algorithm. According to this
metric, schedulability tests with smaller processor speedup
factors are superior to ones with larger processor speedup
factors, with a processor speedup factor equal to one imply-
ing both that the scheduling algorithm is optimal and that
the test is exact.

It is reasonable to ask whether it makes sense to bundle
both the non-optimality of the scheduling algorithm and the
pessimism of the test into a single metric. From a pragmatic
perspective, we believe that the answer is “yes” for our do-
main of interest, which is hard-real-time systems. Since it
must be a priori guaranteed in such hard-real-time systems
that all deadlines will be met during run-time, a scheduling
algorithm is only as good as its associated schedulability
test. In other words, a scheduling algorithm, no matter how
close to optimal, cannot be used in the absence of an as-
sociated schedulability test able to guarantee that all dead-
lines will be met; what matters is that the combination of
scheduling algorithm and schedulability test together have
desirable properties.

Our contributions. The main contribution contained in
this paper is a new sufficient schedulability test (Theorem 4)
for the global DM scheduling of constrained-deadline spo-
radic task systems. We prove (Section 5) that our test
has a superior processor speedup factor when compared to
previously-proposed tests (some of these prior tests are de-
scribed in Section 3). We also bound the amount by which
our schedulability test may deviate from a hypothetical opti-
mal test, by proving a lower bound on the processor speedup
factor of any sufficient schedulability test for global DM.

Organization. The remainder of this paper is organized
as follows. In Section 2 we present an abstraction for quan-
tifying the computational demand of a sporadic task system.
In Section 3, we present some related work that is particu-
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larly relevant to the work we are doing here. In Section 4
we derive our new sufficient schedulability test, and in Sec-
tion 5 we derive its processor speedup factor: these sections
are the technical heart of the paper. In Section 6 we obtain a
lower bound on the processor speedup factor of any global-
DM schedulability test, by constructing a feasible task sys-
tem that is not schedulable using global DM unless all pro-
cessors are sped up by a certain minimum amount.

2 The forced-forward demand bound func-
tion

In order to devise schedulability tests, it is necessary
to quantify the cumulative execution requirement that se-
quences of jobs may place on a computing platform. Given
a sequence of jobs J and a specified time-interval [ta, tf ),
the demand of J over [ta, tf ) is defined to be the sum of the
execution requirements of all jobs in J with arrival times
≥ ta and deadlines ≤ tf . The demand bound function
DBF(τ, t) of sporadic task system τ for an interval length
t is then defined to be the largest demand by any legal se-
quence of jobs that may be generated by τ over any interval
of length t.

However, Baker and Cirinei [1] observed that even jobs
whose scheduling windows only intersect partially with an
interval can require computation within the interval and
hence contribute to the computational demand within it.
They introduced a notion that they call minimum demand,
which refines the demand concept as defined above. The
minimum demand of a given collection of jobs in any spe-
cific time interval is the minimum amount of execution that
the sequence of jobs could require within that interval in
order to meet all its deadlines. An essentially identical con-
cept was independently proposed in [7], and called the nec-
essary demand; a related concept called forced-forward de-
mand was also introduced. This metric was further gener-
alized in [3], to the form discussed below — this metric is
general enough to allow for the specification that the execu-
tion may be occurring on speed-σ processors, for arbitrary
σ > 0.

Let τi denote a sporadic task, t any positive real number,
and σ any positive real number≤ 1. The forced forward de-
mand bound function FF-DBF(τi, t, σ) is defined as follows:

FF-DBF(τi, t, σ)
def
=

qiCi +





Ci if ri ≥ Di

Ci − (Di − ri)σ if Di > ri ≥ Di − Ci
σ

0 otherwise

(1)

where

qi
def=

⌊
t

Ti

⌋
and ri

def= t mod Ti ,

Informally speaking, FF-DBF(τi, t, σ) can be thought of
as a bound on the demand of τi for interval-length t, when
execution outside the interval occurs on a speed-σ proces-
sor. This function is illustrated for an example task in Fig-
ure 1.

As with DBF, the FF-DBF concept extends from individ-
ual tasks to task systems as well; for a task system τ

FF-DBF(τ, t, σ) def=
∑
τ`∈τ

FF-DBF(τ`, t, σ)

FF-LOAD(τ, σ) def= max
t>0

(
FF-DBF(τ, t, σ)

t

)
(2)

Some additional notation that we will use in this paper. Let
τ denote a task system, and τk any task in τ :

density DENSk
def= Ck/Dk .

For the entire task system τ ,

Utilization U(τ) def=
∑
τi∈τ

Ci/Ti .

Maximum density DENSmax(τ) def= max
τi∈τ

DENSi.

Hyperperiod P (τ) def= lcmτi∈τ{Ti} .

3 Prior global-DM schedulability tests

In this section, we briefly review some previously-
derived sufficient DM-schedulability tests. We will focus
on those tests for which quantitative performance bounds,
in the form of processor speedup factors, have been deter-
mined. While some other tests have been proposed that have
only been evaluated by extensive experimental simulations,
such tests are not directly comparable to the new one we
will derive here, and hence orthogonal to this paper. The in-
terested reader is referred to Bertogna’s dissertation [6] for
a comprehensive discussion of such schedulability tests.

In [9], a sufficient test was derived for determining
whether a given sporadic task system is global-DM schedu-
lable upon a preemptive multiprocessor platform comprised
comprised of m unit-capacity processors. Assume that the
tasks in τ are indexed in deadline-monotonic order (Di ≤
Di+1 for all i), and let
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Figure 1. Illustrating FF-DBF(τi, t, σ).

Theorem 1 (from [9]) Sporadic task system τ is global-
DM schedulable upon a platform comprised of m unit-
capacity processors, provided

LOAD(k) ≤ m− (m− 1)DENSk

3
(3)

for all k, 1 ≤ k ≤ n.

It was shown that the processor speedup factor for this
global-DM schedulability test is at most (4 − 1

m ), when
implemented upon m-processor platforms. This result was
subsequently improved [2], and extended to sporadic task
systems [4] which are not constrained (i.e., in which indi-
vidual tasks’ relative deadlines may exceed their periods):

Theorem 2 (from [2, 4]) Sporadic task system τ is global-
DM schedulable upon a platform comprised of m unit-
capacity processors, provided

LOAD(k) ≤ max

(
µk

3
,
µk − (dµke − 1)DENSmax(k)

2

)
(4)

for all k, 1 ≤ k ≤ n, where µk is as defined as follows:

µk
def= m− (m− 1)DENSk

and DENSmax(k) denotes the quantity maxk
i=1{DENSi} (re-

call that we’re assuming that the tasks in τ are indexed in
deadline-monotonic order).

The processor speedup factor for this improved schedu-
lability test was shown to equal

2(m− 1)
(4m− 1)−√12m2 − 8m + 1

(5)

This approaches 2
√

3 (which is ≈ 3.73) as m →∞.

4 An improved sufficient schedulability con-
dition

In this section, we derive a new sufficient schedulability
condition for global DM scheduling of constrained-deadline
sporadic task systems, that characterizes DM-schedulability
in terms of the forced forward demand bound function.
Later, we will show that this new test offers superior per-
formance guarantees — i.e., a smaller processor speedup
factor — when compared to the test in Theorem 2.

Theorem 3 Suppose that constrained-deadline sporadic
task system τ is not DM-schedulable upon a platform
comprised of m unit-capacity processors. For each
s, DENSmax(τ) < s ≤ 1,

FF-LOAD(τ, s) >
m− (m− 1)s

2
(6)

Proof: Suppose that sporadic task system τ is not
DM-schedulable. Let s ≥ DENSmax(τ) denote some
value for σ. We will derive a corresponding L such that
FF-DBF(τ, L, s) > (m− (m− 1)s)× L.

Consider a minimal sequence of jobs of τ upon which
DM misses deadlines. Let to denote the (first) instant at
which a deadline miss occurs. Let j1 denote a job that
misses its deadline at to, and let t1 denote j1’s arrival-time.

Since lower-priority jobs have no effect on the schedul-
ing of greater-priority jobs, the minimal sequence of jobs on
which DM misses a deadline does not include any job with
relative deadline > (to − t1). Hence, we note that no jobs
with deadline> to + (to − t1) are executed in this minimal
schedule.

We define a sequence of jobs ji, time-instants ti, and an
index k, according to the pseudo-code in Figure 2 (also see
Figure 3).
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for i ← 2, 3, . . . do
let ji denote a job that

– arrives at some time-instant ti < ti−1;
– has a deadline after ti−1;
– has not completed execution by ti−1; and
– has executed for strictly less than (ti−1 − ti) · s units over the interval [ti, ti−1).

if there is no such job then
k ← (i− 1)
break (out of the for loop)

end if
end for

Figure 2. Proof of Theorem 3: defining the ji’s, the ti’s and k.

Let L denote the length of the interval [tk, to+(to−t1)):

L
def= (t0 − tk) + (to − t1)

= 2to − t1 − tk

Since tk ≤ t1, we observe that (to − tk) is ≥ (to − t1) and
must

(to − tk) ≥ L/2 (7)

For each i, 1 ≤ i ≤ k, let Wi denote the total amount of
execution that occurs over the interval [ti, ti−1).

Lemma 3.1 FF-DBF(τ, L, s) ≥ ∑k
i=1 Wi.

Proof: All jobs that execute in [tk, to) (and hence con-
tribute to

∑k
i=1 Wi) have their deadlines within the interval

[tk, 2to − t1). Some of them will also have arrived within
this interval, while others may not.

Now it may be verified that the amount of execution that
jobs of any task τ` contribute to

∑k
i=1 Wi is bounded from

above by the scenario in which a job of τ` has its deadline
coincident with the end of the interval, and prior jobs have
arrived exactly T` time-units apart. Under this scenario, the
jobs of τ` that may contribute to

∑k
i=1 Wi include

• at least q`
def
= bL/T`c jobs of τ` that lie entirely within the

interval [tk, 2to − t1); and

• (perhaps) an additional job that has its deadline at time-
instant tk + r`, where r`

def
= L mod T`.

We now consider two separate cases:

1. r` ≥ D`; i.e., the additional job with deadline at tk + r`

arrives at or after tk. In this case, its contribution is C`.

2. r` < D`; i.e., the additional job with deadline at tk + r`

arrives prior to tk. From the exit condition of the for-loop, it
must be the case that this job has completed at least (D` −

r`)× s units of execution prior to time-instant tk; hence, its
remaining execution is at most max(0, C`− (D`− r`)× s).

In either case, it may be seen that the upper bound
on the total contribution of τ` to

∑k
i=1 Wi is equal to

FF-DBF(τ`, L, s) (see Equation 1). The lemma follows, by
summing over all tasks τ` ∈ τ .

Lemma 3.2 For each i, 1 ≤ i ≤ k,

Wi > ((m− (m− 1)s)× (ti−1 − ti)

Proof: Let x denote the total length of the time-intervals
over [ti, ti−1) during which job ji executes. By choice of
job ji, it is the case that

x < (ti−1 − ti) · s

By choice of job ji, it has not completed execution by time-
instant ti−1. Hence over [ti, ti−1), all m processors must
be executing whenever ji is not; it follows that

Wi ≥ m(ti−1 − ti − x) + x

= m(ti−1 − ti)− (m− 1)x

> m(ti−1 − ti)− (m− 1)(ti−1 − ti)s

= (m− (m− 1)s)× (ti−1 − ti)

and the lemma is proved.

5



- t

j1

t1 to to + (to − t1)

(to − t1)-¾

j2

t2

j3
· · · · · ·

ji−1

ti−1

ji

ti

· · · · · ·

Figure 3. Proof of Theorem 3: notation. Suppose that job j1 misses its deadline at to under DM
scheduling. No job with a deadline after to + (to − t1) need be considered.

We now observe that
k∑

i=1

Wi

>

k∑
i=1

((m− (m− 1)s)× (ti−1 − ti)) (By Lemma 3.2)

= (m− (m− 1)s)×
k∑

i=1

(ti−1 − ti)

= (m− (m− 1)s)× (to − tk)

≥ (m− (m− 1)s)× L

2
(By Equation 7)

By Lemma 3.1, we therefore have

FF-DBF(τ, L, s) > (m− (m− 1)s)× L

2

≡ FF-DBF(τ, L, s)
L

>
1
2
(m− (m− 1)s)

⇒ FF-LOAD(τ, s) >
m− (m− 1)s

2

and Theorem 3 is proved.
Theorem 3 above asserts that, for any DM-schedulable

τ , there is some s ≥ DENSmax(τ) for which Condition 6
is violated. To determine whether a given τ is global DM-
schedulable, therefore, our approach would be to method-
ically search through the range [DENSmax(τ), 1) of candi-
date values for s, seeking to determine whether there is any
such s that causes Condition 6 to be violated and thereby
validates the schedulability of τ . (A similar search in the
context of global-EDF schedulability is detailed in [3] — as
can be seen from perusing that paper, the search is some-
what non-trivial.)

However, our objective in this paper is to obtain global-
DM schedulability test with the best possible processor
speedup factor. For this purpose, it turns out that the fol-
lowing specialized form of Theorem 3 suffices. (This is a
“specialization” of Theorem 3 in the sense that it is essen-
tially only checking whether Condition 6 is violated at the
single value s ← DENSmax(τ); therefore, while all systems

deemed schedulable by Theorem 4 will also be deemed
schedulable by Theorem 3, the converse is not true: there
are task systems determined to be schedulable according to
Theorem 3 that Theorem 4 will not deem schedulable —
those for which Condition 6 is only violated for values of s

other than DENSmax(τ).)

Theorem 4 Any constrained-deadline sporadic task system
τ satisfying

FF-LOAD(τ, DENSmax(τ)) ≤ 1
2
(
m−(m−1)DENSmax(τ)

)

(8)
is guaranteed to be DM-schedulable upon a platform com-
prised of m unit-capacity processors.

Proof: Immediately follows from Theorem 3, by instanti-
ating the variable s in Inequality 6 to DENSmax(τ).

5 A speedup result

First, we observe that a necessary multiprocessor feasi-
bility condition can be derived in terms of FF-LOAD:

Lemma 1 If FF-LOAD(τ, s) > ms then τ is not feasible on
m speed-s processors.

Proof: Suppose that FF-LOAD(τ, s) > ms. Let to denote
a value for t that maximizes the RHS of Equation 2:

FF-LOAD(τ, s) =

∑
τ`∈τ FF-DBF(τ`, to, s)

to

By definition of FF-DBF, each task τ` can generate a se-
quence of jobs that together require ≥ FF-DBF(τ`, to, s)
units of execution over some interval of length to, when ex-
ecuting upon speed-s processors. Since the different tasks
of a sporadic task system are assumed to be independent
of each other, such intervals for the different tasks can be
aligned; the total execution requirement by all the tasks over
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the aligned interval is

≥
∑
τ`∈τ

FF-DBF(τ`, to, s)

= FF-LOAD(τ, s)× to (By definition of to)

> msto (Since FF-LOAD(τ, s)is assumed to be > ms)

But msto denotes the total computing capacity over an
interval of size to upon m speed-s processors. We there-
fore conclude that the total execution requirement by all the
tasks in τ over the interval cannot be met, and some dead-
line must necessarily be missed.

Lemma 2 If task system τ fails the DM schedulability test
of Theorem 4, then it is not feasible upon a platform com-
prised of m speed- m

3m−1 processors

Proof: Suppose that τ fails the EDF schedulability test of
Theorem 4.

If DENSmax(τ) > (m/(3m − 1) then τ is trivially not
feasible on a platform comprised of (any number of) speed-
(m/(3m− 1) processors, and we are done.

Assume now that DENSmax(τ) ≤ (m/(3m − 1). Since
τ fails the DM schedulability test of Theorem 4, it must be
the case that

FF-LOAD(τ, DENSmax(τ)) >
1

2

(
m− (m− 1)

m

3m− 1

)

=
3m2 −m−m2 + m

2(3m− 1)

= m
m

3m− 1

≥ m DENSmax(τ)

It therefore follows from Lemma 1 above that τ is not fea-
sible upon a platform comprised of m speed-DENSmax(τ)
processors. Since DENSmax(τ) is assumed to be ≤
(m/(3m − 1)), it is therefore not feasible upon a platform
comprised of m speed- m

3m−1 processors.
By taking the contrapositive of Lemma 2 above and ob-

serving that 1/( m
3m−1 ) is equal to (3− 1

m ), we have

Theorem 5 The global-DM sufficient schedulability test of
Theorem 4 has a processor speedup factor equal to [3 −
(1/m)] .

The bound of Theorem 5 approaches 3 as m → ∞.
Since the best previously-known speedup factor (Equa-
tion 5) approaches ≈ 3.73, we see that this asymptotically
represents a significant improvement.

6 A lower bound on processor speedup factor

We have seen, in Theorem 5 above, that our sufficient
schedulability test has a processor speedup factor of (3 −
(1/m)). In this section, we will obtain a lower bound on the
processor speedup factor of any global-DM schedulability
test. To do so, we will now construct a sporadic task system
and show that it is both

1. feasible on a platform comprised of m speed-(x + ε)
processors where ε is an arbitrarily small positive num-
ber while the precise value of x will be specified later1;
and

2. not schedulable using global-DM on a platform com-
prised of m speed-1 processors.

Taken together, these facts imply a lower bound of 1
x (more

precisely, limε→0
1

x+ε ) on the processor speedup factor of
any global-DM schedulability test.

§1. The task system. Our technique for constructing the
desired task system is inspired by a similar construction
in [8]. Let x denote a constant, 0 < x < 1

2 , whose value we
will derive later. Let n denote a very large positive integer
(n →∞).

Let k be defined as follows (since n is assumed to→∞,
observe that k → 0):

k
def=

2n− 2
1− x

For each j, 1 ≤ j < n, let

Tj
def= x +

n + j − 2
k

Let τ denote the sporadic task system comprised of the
following m(n− 1) + 1 tasks:

• For each j, 1 ≤ j < n, there are m tasks each with
execution requirement 1/k, and relative deadline and
period both equal to Tj .

• There is one task with relative deadline and period both
equal to one, with execution requirement greater than
x by an arbitrarily small amount.

1This value will turn out to depend on the number of processors m;
for m → ∞, x = (W (2e) − 1) ≈ 0.3748, where W (t) denotes the
well-known Omega function). This value of x is derived in the remainder
of this section.
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Observe that by the definition of the Tj’s,

T1 =
1

2
+

x

2

Tj+1 = Tj +
1

k
for all j, and

Tn−1 = 1− 1

k

§2. Demonstrating DM-unschedulability. Suppose that
each task has its first job arrive at time-instant 0, and subse-
quent jobs as soon as legally permitted to do so. According
to DM priorities, the m(n − 1) jobs each with execution-
requirement 1/k will be assigned greater priority; together,
their execution requirement is

(
m(n− 1)× 1

k

)
=

(
m(n− 1)× 1− x

2n− 2

)
=

(
m× 1− x

2

)

Hence, these jobs execute on all m processors over the in-
terval [0, 1−x

2 ).The earliest that the 2nd job of any of these
high-priority tasks arrives is T1 = 1

2 + x
2 ; hence over the in-

terval [ 1−x
2 , 1+x

2 ), which is of length x, the only executing
job is the job of the lowest-priority task while the remaining
(m − 1) processors are idled. Since its execution require-
ment exceeds x, this lowest-priority job has not completed
execution at time-instant

(
1+x
2

)
when more higher-priority

jobs arrive.
Since exactly m jobs with period Tj and execution-

requirement 1
k arrive at each Tj , 1 ≤ j ≤ n−1, and succes-

sive Tj’s are exactly 1
k time units apart, these higher-priority

jobs completely consume the processor over the interval
[ 1+x

2 , 1). Therefore the lowest-priority job receives no fur-
ther execution prior to its deadline at time-instant 1, and
consequently misses its deadline (and thus bears witness to
the non-schedulability of this task system τ by global-DM).

§3. Computing τ ’s utilization. In order to determine the
utilization U(τ) of the task system τ specified above, let us
first compute the total utilization of all the tasks other than

the lowest-priority one:

n−1∑

j=1

(
m

Cj

Tj

)

=

n−1∑

j=1

m
1/k

x + (n + j − 2)/k

=

n−1∑

j=1

m

kx + n + j − 2

=

n−1∑

j=1

m
2n−2
1−x

x + n + j − 2

≤ m

∫ (
2n−2
1−x

x+2n−3
)

(
2n−2
1−x

x+n−1
) 1

x− 1
dx (See Figure 4)

= m ln
(2n− 2

1− x
x + 2n− 4

)
−m ln

(2n− 2

1− x
x + n− 2

)

= m ln
( (2n− 2)x + (2n− 4)(1− x)

(2n− 2)x + (n− 2)(1− x)

)

= m ln
( 2n + 2x− 4

n(1 + x)− 2

)

As n is made arbitrarily large (n → ∞), this utilization
bound approaches m ln

(
2

1+x

)
.

The utilization of the entire task system is obtained by
adding the lowest-priority task’s utilization (which exceeds
x/1 by an arbitrarily small amount) to this; i.e., U(τ) ex-
ceeds

(
x + m ln

(
2

1+x

))
by an arbitrarily small amount.

§4. Obtaining the processor speedup factor. First, we
determine the platform comprised of m processors of the
slowest speeds, on which τ is feasible.

Lemma 3 Task system τ is feasible upon a platform com-
prised of m speed-(x + ε) processors, where x satisfies

x
(
1− 1

m

)
= ln

( 2
1 + x

)
(9)

and ε is an arbitrary small positive number.

Proof: Observe that each task in the task system τ that
we have constructed has its relative deadline and period pa-
rameters equal to each other. It is well known that such
“implicit-deadline” systems are feasible on multiprocessor
platforms provided the processor speed is ≥ DENSmax(τ)
and the total capacity of the platform is ≥ U(τ). Now,
DENSmax(τ) is equal to the density of the lowest-priority
task (since the densities of all other tasks is arbitrarily small
as n → ∞), and hence exceeds x by an arbitrarily small
amount. Therefore τ is feasible on a platform comprised of
m processors of speed exceeding x by an arbitrarily small

8
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Figure 4. Illustrating that the left Riemann sum
(

1
a + 1

a+1 + · · ·+ 1
b−1 + 1

b

)
is upper-bounded by

∫ b

a
1

x−1 dx.
The area beneath the jagged line between a and b on the x-axis equals the summation; the area
beneath the curved line between a and b on the x-axis equals

∫ b

a
1

x−1 dx.

m : 2 3 4 5 10

x : 0.532 0.466 0.439 0.424 0.398

Table 1. Values of x that satisfy Equation 9 for
selected values of m.

amount, where x satisfies

mx = x + m ln(2/(1 + x)

≡ x(1− (1/m)) = ln(2/(1 + x)

as claimed in the statement of the lemma.
We have therefore constructed a task system that is not

schedulable using global-DM on m unit-speed processors
but is feasible on m processors each of speed just a bit more
than x, where x is as defined by Equation 9. It hence follows
that

Theorem 6 No global-DM schedulability test can have a
processor speedup factor smaller than 1/x, where x is as
defined by Equation 9.

Equation 9 can be solved numerically for different fixed
values of m; some of these solutions are presented in Ta-
ble 1. For very large m, 1/m becomes very small; hence

as m → ∞ the value of x is asymptotically equal to the
solution of the equation

x = ln
( 2

1 + x

)

≡ ex =
2

1 + x

≡ (1 + x)e1+x = 2e

from which we conclude that

x = W (2e)− 1 ,

where W (t) denotes the Lambert W-function (also known
as the Omega function). Mathematical tables tell us that
W (2e) ≈ 1.3748; i.e., x asymptotically approaches 0.3748
as the number of processors increases. That is, for m →∞,
(1/0.3748) —≈ 2.668 — is a lower bound on the processor
speedup factor of any global-DM schedulability test. By
contrast, as m → ∞ the processor speedup factor of the
test of Theorem 4 is 3.

7 Conclusions

We have derived a new sufficient schedulability test
(Theorem 4) for determining whether a given constrained-
deadline sporadic task system is DM-schedulable upon

9



a preemptive multiprocessor platform, when global inter-
processor migration is permitted. We have shown that the
processor speedup factor for our test is equal to (3−(1/m)),
thereby demonstrating that any constrained-deadline spo-
radic task system that is feasible upon an m-processor mul-
tiprocessor platform is correctly identified by our test as be-
ing DM-schedulable upon a platform in which each proces-
sor is (3 − (1/m)) times as fast. We have also computed
a lower bound on the processor speedup factor of any suf-
ficient schedulability test for global DM, thereby bounding
the degree by which our test deviates from a hypothetical
optimal one.
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