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Abstract— In designing large complex safety-critical systems
that are subject to certification, current industrial practice is
centered on the use of high-level abstract design tools. Using such
tools greatly facilitates the process of coming up with certifiably
correct system designs; however it is a challenge to obtain
resource-efficient implementations of the designs thus produced
upon actual execution platforms. This paper explores the use
of some recent approaches to the scheduling of mixed-criticality
systems, to obtain efficient multiprocessor implementations of
systems that were designed using tools based on the popular
synchronous reactive paradigm of computation.

I. INTRODUCTION

In designing and implementing safety-critical real-time em-
bedded application systems, the system builders are motivated
by two significant concerns. On the one hand, the safety-
critical nature of the applications makes it imperative that the
systems be implemented in a correct – often, certifiably correct
– manner. On the other hand, since many embedded systems
are implemented upon severely resource-constrained platforms
it is desirable that the implementations make very efficient use
of platform resources.

In the early years of the discipline of real-time computing,
these twin goals of correctness and efficiency were achieved
by keeping things very simple. Safety-critical real-time sys-
tems were restricted to being responsible only for simple,
highly repetitive, functionalities. Such systems were often
implemented as carefully hand-crafted programs executing
upon very simple (and hence highly predictable) processors.
Gradually, however, things grew more complicated. The re-
quirements placed upon real-time systems became far more
complex. More powerful platforms were needed that were
typically less deterministic in that their run-time behavior
was not predictable at design time. It was no longer possible
to reason about an entire system in all its detail; instead,
abstractions needed to be introduced that highlighted certain
features of a system while concealing less important ones.

In designing such abstractions, the real-time systems re-
search community appears to have split into two and diverged
down two different paths.
• Some researchers focused primarily on the issue of

efficiency, and came up with abstractions that enable
resource-efficient implementation. (Many prominent re-
searchers engaged in this form of research are very
active in the ECRTS community, and a lot of outstanding
results of their research efforts have been presented
at prior editions of ECRTS.) Such abstractions include

recurrent –periodic and sporadic– task models; priority-
based scheduling algorithms; formal models for preemp-
tive and non-preemptive uni- and multi-processor com-
puting platforms; models, algorithms, and protocols for
real-time networking; etc. Systems specified according
to these abstractions can be implemented in a highly-
resource-efficient manner, but it is arguably true that
these abstractions are at too “low” a level to allow a
designer to specify large complex systems in a manner
that inspires great confidence regarding the correctness of
these specifications.

• Other researchers focused on provable correctness, and
came up with a different set of abstractions. These
abstractions have resulted in some very powerful model-
based design (MBD) techniques that find widespread use
in industry. The abstractions underlying MBD techniques
(including, e.g., the synchrony assumption [7], the actors
abstraction [19], etc.) tend to have a strong focus on
formal methodologies and proof techniques; for various
reasons, research into this kind of work has been under-
represented in ECRTS. Large complex systems may be
specified according to these abstractions and non-trivial
correctness (such as safety, liveness, progress, etc.) prop-
erties of these systems proved. But we do not know how
to obtain efficient implementations of systems specified
in this manner, upon current advanced platforms.

The research described in this paper is part of a larger
project that asks whether these two currently distinct paths of
real-time systems research can be re-integrated. That is, can
real-time scheduling theory techniques that were developed
to enable efficiency of implementation, be applied to obtain
more resource-efficient implementations of systems that are
specified according to higher-level abstractions focusing on
provable correctness? In this paper, we focus on the following
specific question: Can recent advances in real-time scheduling
theory be extended to allow for more efficient multiprocessor
implementations of mixed-criticality real-time systems that are
designed using the synchronous reactive model? We now
explain the various component phrases in this statement in
greater detail.

Mixed criticality systems. There is an increasing trend in
embedded systems towards integrating multiple functionalities
on a common platform. Such platforms support functionalities
of different degrees of importance or criticalities, with some
of the more safety-critical functionalities subject to mandatory



certification by statutory Certification Authorities (CAs).
Current approaches to achieving certification in such inte-

grated platforms are centered on ensuring complete isolation
between applications of different criticalities. However, it has
been observed that such separation makes sub-optimal use of
platform resources, since (i) the pessimism typically needed
for obtaining certification for the safety-critical functionalities
requires severe over-provisioning of platform resources to
these functionalities, and (ii) the very principle of separation
rules out the “reclaiming” of these over-provisioned resources
for executing non-critical functionalities. The problem of
meeting rigorous certification requirements in such systems
while simultaneously making efficient use of platform re-
sources has recently attracted widespread attention in the real-
time scheduling theory community (see, e.g., [29], [10], [2],
[14], [5]; in addition, this topic has been the subject of multiple
papers presented recently at ECRTS [4], [30], [24], [11], [25],
[1], [20].

Synchronous reactive (SR) systems. Software modeling and
development methodologies and commercial tools based on
the synchronous reactive [7], [15] model of computation, such
as Simulink from MathWorks(www.mathworks.com) and
SCADE from Esterel (www.esterel-technologies.
com), are widely used in the design and implementation of
embedded control systems, particularly in the automotive and
the aeronautics industries. In the SR approach, the semantics
– the behavioral aspects – of reactive systems are specified
or formulated under an assumption called the synchrony hy-
pothesis. The synchrony hypothesis asserts that the underlying
platform is infinitely fast and, hence, the reaction of the system
to an input event is instantaneous. The reaction intervals are
thus reduced to reaction instants and do not overlap with each
other. The behavior of a system can be thought of as going
through a potentially infinite series of steps, one occurring at
each “logical” time-instant (often called a tick or a round): the
system reads in its inputs at the time-instant corresponding to
the t’th round and, based on its current state and these inputs,
instantaneously computes the resulting outputs and updates
its current state, and then does nothing until the time-instant
corresponding to the (t+1)’th round. At this time-instant the
system again reads in its inputs and instantaneously computes
the resulting outputs and updates its state, and then waits until
the time-instant corresponding to the (t+ 2)’th round, and so
on.

The synchronous abstraction makes reasoning about con-
currency a lot easier by eliminating the non-determinism
resulting from interleaving of concurrent behaviors. This al-
lows deterministic semantics, therefore making synchronous
systems amenable to formal analysis and verification and
thereby facilitating the process of obtaining statutory certifi-
cation. These features help explain the immense popularity of
software development methodologies based on the SR model
of computation.

However, the undoubted benefits of SR models of compu-
tation do come at a price. The physical platforms on which

systems are to be implemented do not satisfy the synchrony
hypothesis: actions take time to execute. Semantics-preserving
implementations of an SR model must therefore choose a
time-unit large enough so that all the actions assumed to
occur atomically at one instant complete execution upon the
underlying platform strictly prior to the next instant1. Due
to this and related factors, techniques for obtaining actual
implementations (on real hardware) from SR models tend to
make poor use of the platform resources. This is particularly
true when compared to implementations of models that are
specified using task-based models (see, e.g., [21], [22]), and
scheduled using priority-based scheduling strategies such as
RM or EDF [21].

This, then, is the trade-off involved in using SR-based
design methodologies and tools in preference to earlier task-
based ones: one gets an easier to use and formally verify
methodology that, however, tends to make less efficient use
of resources. As embedded systems have become increasingly
more complex and difficult to design, this is a tradeoff that
system designers have generally been willing to make; even
more so since computational capabilities of computing plat-
forms have, in keeping with the predictions of Moore’s law,
continued to increase at an exponential rate thereby making the
efficiency issue less important. However, energy considerations
and thermal issues are bringing efficiency considerations back
to the forefront: even if plenty of computing capacity can be
made available on a platform, providing the energy needed
to enable all this computing capacity is fast becoming a
bottleneck. This problem is further exacerbated in mobile
platforms that are not tethered to the power-grid. The related
problem of heat-dissipation in order to prevent inadmissible
increases in the temperature of the platform is also often a
major concern.
Mixed criticality SR systems. As stated above, one of the
most significant benefits of the SR model is that it is usually
far easier to formally verify or validate the correctness of a
design. Sophisticated analysis tools based both on theorem-
proving [17], [6], [16] and on model-checking [28] have been
developed and shown effective. Verification tools associated
with specific tool-suites (e.g., with Esterel) have even been
certified for use in safety-critical system design.

However, these tools merely demonstrate the correctness
of the model, not the implementation. In order to retain
the correctness properties –and the certification– in moving
from a model to an implementation of that model, the im-
plementations are required to make extremely conservative
(and hence pessimistic) assumptions, which typically result in
severe under-utilization of platform resources. Consider, for
instance, the worst-case execution time (WCET) of a piece of
code. The exact WCET of any non-trivial piece of code is
extremely difficult to determine on today’s complex hardware
architectures; system analysis therefore depends on obtaining

1This requirement has been stated [9, p. 101] as the bounded delay property
of the implementation: there is a maximum delay in completing the execution
of the actions representing the system reaction to any input, which is strictly
less than the minimum time that elapses between successive rounds.



safe upper bounds on the actual WCET. A certification author-
ity may require that the estimate of the WCET of a piece of
code be made to a far higher level of assurance than a system
designer would have chosen on their own. This may result in
the same piece of code being characterized by two different
WCET estimates: one by the system designer that is probably
a reasonably safe over-estimation of the actual WCET of the
code, and a much more conservative one that may be far
larger (in some cases, orders of magnitude larger) than the
actual WCET or the system designer’s WCET estimate. When
implementing a model that has been certified correct, in order
to retain the certification it is necessary that adequate resources
be provisioned that would allow the code to execute for up to
its higher WCET estimate; since this is extremely unlikely to
happen in practice, most of these provisioned resources go
unused.

Under current practice, there is little that can be done about
this under-utilization of resources during run-time. However
the trend towards mixed-criticality platforms upon which func-
tionalities subject to certification co-exist with functionalities
that do not need to be certified, offers the possibility of using
the over-provisioned resources in order to execute non-critical
(i.e., not subject to certification) code. Such an approach
to achieving better resource utilization in embedded systems
that are subject to statutory certification requirements has
recently been widely studied in the real-time scheduling theory
community. The research reported in this manuscript explores
the viability of extending some of this research in order to
obtain more resource-efficient implementations of SR models
on multiprocessor platforms.

Organization. We briefly describe a (simplified version of)
the synchronous model of reactive computation in Section II.
In Section III we present a formal model for representing the
kinds of mixed-criticality SR systems we seek to implement;
in Section IV we describe the kinds of scheduling strategies
we consider appropriate, and provide arguments to justify
our choice. We describe an algorithm for implementing such
mixed-criticality SR systems on preemptive uniprocessors in
Section V. Section VI contains the technical heart of this
paper: an algorithm, accompanied by a correctness proof, for
implementing mixed-criticality SR systems efficiently upon
multiprocessor platforms. We conclude in Section VII with
a discussion on some possible generalizations to the models
considered in this paper.

II. SYNCHRONOUS REACTIVE SYSTEMS: A BRIEF
INTRODUCTION

This introductory section seeks to present SR systems
in a framework that is familiar to researchers in real-time
scheduling, and focuses only on those aspects that are relevant
to the remainder of this paper. It is not intended to be a
comprehensive introduction to the subject of SR modeling.

A basic unit of a SR system design is a component or
a block. Each such component has input, output, and state
variables; during each round the component reads its input

variables and, based on these input values and the current
values of its state variables, instantaneously updates its state
variables and assigns values to its output variables. The SR
model defines special forms of variables called events. In con-
trast to other (non-event) variables, an event variable may take
on a special value “absent” (often notated as ⊥). A component
with an input variable that is an event is said to be event-
triggered; an event-triggered component does not participate
in any round in which one or more of its input variables is
absent. This allows for the specification of components that
are not expected to participate in every round: for instance a
component with an input event variable that is only present
(i.e., not equal to ⊥) every T ’th round executes periodically
with a period equal to T rounds.

A SR system is designed by composing components, each of
which may in turn be composed from smaller components in a
hierarchical manner; the output variables of a component may
become the input variables of a different component. Since the
constituent components of a system are all assumed to execute
instantaneously during every round (unless a component is
event-triggered and its triggering event is absent during that
round), care must be taken in composing the components to
avoid inconsistent, impossible, or non-deterministic behaviors.
Each specific SR-based methodology has its own rules for
ensuring this; for the vast majority of such methodologies,
these rules restrict the dependencies during any round to being
acyclic2. Hence the actions (the “jobs,” in the parlance of task
models) that are to be executed during any round can be rep-
resented as a directed acyclic graph (DAG) with the directed
edges denoting precedence dependencies. Implementing an SR
model into code on a target execution platform requires that
during each round, all the actions (the jobs) in the DAG that
need to be executed for that round complete execution before
the start of the next round.

Current commercial code generators (e.g., the ones for im-
plementing Simulink models – these include Simulink Coder
(formerly known as Real-Time Workshop) from Mathworks
and TargetLink from dSPACE (www.dspace.com)) provide
correct but often inefficient implementations on some specific
target platforms. More sophisticated implementations have
been proposed in an academic setting (see, e.g., [23] and the
references therein). Most of these implementations are targeted
at uniprocessor platforms; although some commercial code
generators, e.g., Simulink Coder, allow for the specification
of multi-core target platforms, it is not clear whether they are
actually generating code for multiple processors, or simply
adapting uniprocessor code to execute on multiple processors.

2Some SR languages such as Esterel do not restrict that dependencies be
acyclic; they instead require that evaluation of all dependencies converge to
a unique fixpoint (see [8, p. 65] for an instructive description of the different
approaches taken by different languages). We note that if an a priori bound can
be established on the number of iterations needed to converge on the fixpoint,
then the fixpoint computation can be modeled as acyclic dependencies by
“unrolling” the cyclic dependencies the appropriate number of times; if such
an a priori bound cannot be established, then we cannot provide a guarantee
on the amount of (real, not logical) time taken to achieve convergence.



III. SYSTEM MODEL

An SR model has some inputs defined, and some outputs. In
the mixed-criticality framework, we envision that some of the
outputs are subject to certification and are designated as HI-
criticality outputs, while the rest are not subject to certification
(and designated as LO-criticality outputs)3. For instance, the
value computed by an SR component and sent to an actuator
may be considered a HI-criticality output; some additional data
that are logged for subsequent off-line analysis may be LO-
criticality.

Once an SR model of a system has been obtained, it is
subject to extensive analysis in order to validate its correctness,
and to obtain certification of the HI-criticality outputs. (Often,
this analysis is conducted using model-checking which results
in an exploration of reachable configurations of the system.)
After the model is determined to be correct, it remains to
obtain an implementation of the model upon a target execution
platform. It is this step that is of interest to us in the remainder
of this manuscript.

As stated in Section II above, most SR frameworks restrict
that the dependencies amongst the actions (the jobs) that
need to be executed during any given round are in the
form of a directed acyclic graph (DAG). In the extreme
case, this DAG would include all the actions in the SR
model; more realistically, the analysis of the model would
use information regarding the occurrence of external input
events to identify maximal subsets of actions that are enabled
during any round. (Such information is easily obtained as a
side-effect of performing certain forms of model-checking; it
may otherwise be obtained by analysis of, for example, the
periodicity of external input events and the manner in which
different components interact with one another.) Regardless of
how we obtain it, we assume the following model for the set
of actions that is to execute during any particular round:

1) The execution that needs to be performed on a mixed-
criticality SR system during any given round is repre-
sented as a directed acyclic graph (DAG) with designated
input nodes and output nodes. Each node in the DAG
represents a job that needs to be executed, while edges
represent dependencies – if (ji, jj) is an edge then job
ji must complete execution before job jj can begin exe-
cution. Input (output, respectively) nodes are responsible
for reading in the inputs to (producing the outputs from,
resp.) the system during that round.

2) Each node ji is characterized by a LO-criticality WCET
Ci(LO) and a HI-criticality WCET Ci(HI), denoting the
WCET for the job represented by the node as estimated

3Thus far in this paper, we have identified two criticality levels – needing
certification, and not needing certification. However, in many safety-critical
application domains more than two criticality levels (also called, e.g., Safety
Integrity Levels (SILs) or Design Assurance Levels (DALs) in different stan-
dards documents) are specified, with functionalities at higher criticality levels
subject to more rigorous validation requirements. For ease of presentation in
this paper, we will initially make the simplifying assumption that there are just
two criticality levels that we will call LO and HI. In Section VII we describe
how our results extend in a straight-forward manner to systems with more
than two criticality levels.

by the system designer and the certification authorities
(CAs) respectively. (We assume that the CA is more
pessimistic than the system designer: Ci(LO) ≤ Ci(HI)
for all ji.)

3) A deadline or makespan bound D is specified for the
entire DAG – this is the maximum delay assumed for
the SR model by the bounded delay property [9, p. 101]
mentioned in Section I.4

4) Each output node is specified as being either HI-criticality
or LO-criticality; the CA is only interested in ensuring that
the HI-criticality output nodes complete by the deadline,
whereas the system designer seeks to ensure that all
output nodes complete by the deadline.

Example systems are depicted pictorially in Figures 1 and 3.
Given a system specified in this manner, the goal is to

determine a certifiably correct scheduling strategy. We will
discuss what constitutes an acceptable scheduling strategy
more deeply in Section IV; for now, we define a certifiably
correct scheduling strategy as follows:

Definition 1: A certifiably correct scheduling strategy is
one which guarantees that

1) If no node executes beyond its LO-criticality WCET, then
all the output nodes complete execution by time-instant
D; and

2) If no node executes beyond its HI-criticality WCET then
all the HI-criticality output nodes complete execution by
time-instant D.

In informal terms, if the system designers’ WCET assumptions
were the correct ones then all the outputs are obtained within
the specified deadline, whereas if the system designers’ WCET
assumptions turn out to be incorrect but the CA’s WCET
assumptions hold, then only the HI-criticality outputs are
guaranteed to be obtained.

As a preprocessing step, we assign each non-output node
in the DAG a criticality of LO or HI according to the following
rules:
• If a node is a predecessor of a HI-criticality node, then it

is assigned HI criticality.
• All nodes not assigned HI criticality by the above rule

are assigned LO criticality.
In the example of Figure 1, the non-output nodes j1 and

j2 are both assigned HI criticality since they are immediate
predecessors of the HI-criticality output node j4.

IV. CHARACTERIZING SUITABLE SCHEDULING
STRATEGIES

Before deriving algorithms for obtaining suitable scheduling
strategies for mixed-criticality SR systems, let us consider for

4An alternative possibility is that a deadline is not specified; instead,
the objective is to complete all output nodes as soon as possible. This is
achieved by modeling the scheduling problem as a makespan minimization
problem, which is then solved using techniques essentially identical to the
ones discussed in this paper. In this makespan minimization version, an
implementation of the SR system is viable if the sum of the makespans of
the DAGs representing a sequence of time-steps is no larger than a specified
end-to-end deadline bound.
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Fig. 1. An example task graph, and its scheduling tables. All edges in the task graph are assumed to be directed left to right. The ordered pair above node ji
denotes

(
Ci(LO), Ci(HI)

)
— the job’s WCET estimates at LO-criticality and HI-criticality. This task graph has a specified deadline D = 10. (The scheduling

tables are explained in Section IV. Each “tick” along the time axis in these tables represents one time-unit.)

a moment the kinds of properties we desire in a scheduling
strategy in order to facilitate the certification process.

In the time-triggered (TT) paradigm [18] of real-time
scheduling, activities in the system are triggered by the
progression of time. A schedule for the entire duration of
a system’s execution is computed prior to run-time, and
the scheduling decision that is made at each instant during
run-time is completely determined by examining this pre-
computed schedule, represented, e.g., in a scheduling table.

TT scheduling is characterized by complete determinism,
and is hence particularly easy to verify and have certified.
However, the TT paradigm offers limited flexibility: once the
schedule is computed (prior to run-time), it is not possible to
modify it in response to events that may have occurred during
run-time. Extensions to the basic time-triggered scheduling
paradigm have been proposed to remedy this shortcoming;
in one such extension [12], multiple scheduling tables are
pre-computed and the occurrence of certain run-time events
triggers a “mode change” and a consequent transition from
using one particular pre-computed schedule to using a different
one.

A time-triggered strategy for mixed-criticality schedul-
ing has recently been proposed [3], based upon such a
mode change approach5. According to this strategy, multiple
scheduling tables are constructed prior to run-time for any
given mixed-criticality system. During run-time all scheduling
decisions are initially made in accordance with one of these
scheduling tables. Certain run-time events (which are identi-
fied and specified prior to run-time) may trigger a change as
to which scheduling table to use.

Such a mode change approach to mixed-criticality schedul-
ing maintains much of the determinism of TT scheduling,
since the job selected for execution at each instant in time
during run-time depends only on what mode-change actions
(if any) have occurred prior to this time instant. The transition
itself is considered during schedule construction as well.
In this manner the appeal of time triggered execution for
certification is for the most part maintained, while providing
added efficiency with respect to the utilization of platform

5We point out that while [3] only considered systems that could be modeled
as collections of independent jobs implemented on preemptive uniprocessors;
in this paper we explain how this approach can be extended to more general
systems –those modeled as discussed in Section III– that are implemented on
preemptive and non-preemptive uni- and multi-processors.

resources.
Under such an approach, a possible set of scheduling tables

SLO and SHI for implementing the example task graph of
Figure 1 on a uniprocessor platform is depicted to the right of
the DAG. Initially, run-time dispatching decisions are taken in
accordance to schedule SLO. That is, jobs j2, j1, j4 and j3 are
allowed to execute over the time-intervals [0, 2), [2, 4), [4, 6),
and [6, 10) respectively. If any job completes execution be-
fore the end of its allocation, the processor is idled for the
remainder of this allocation. If a job reaches the end of its
allocation without completing execution, a mode-change is
immediately triggered and subsequent scheduling decisions are
made according to SHI. For instance suppose that j2 completes
within two time units but j1 does not complete within two time
units. At time-instant 4 the dispatcher immediately switches to
using the scheduling table SHI; as a consequence, j1 is allowed
to execute until time-instant 6, and j4 over [6, 10).

The reader may verify that scheduling in this manner is
a correct scheduling strategy, in the sense that if all jobs
complete execution upon having executed for no more than
their LO-criticality WCETs then both the output jobs j3 and
j4 complete execution, whereas if any job executes for more
than its LO-criticality WCET (but no job executes for more
than its HI-criticality WCETs) then the HI-criticality output
job j4 completes execution, by the specified deadline of 10.

To reiterate what we have previously stated: the system
designers, who are the ones responsible for generating these
scheduling tables, do not expect to ever have a mode-change
occur — their expectation is that their own WCET estimates
are correct, and the LO-criticality mode scheduling table SLO

will always suffice. However, they need to construct the other
schedule — the one that the system would transition to using
in case their WCET assumptions turn out to be incorrect —
in order to have their design pass certification by the CAs.

Preemptions and migrations. A schedule is said to include
preemptions if an executing job may be preempted and have
its execution resumed at a later point in time; such a schedule
is called a preemptive schedule. A preemptive schedule upon a
multiprocessor platform has migrations if some preempted job
resumes its execution upon a processor that is different from
the one it had been executing upon prior to being preempted.

Allowing preemptions and migrations in a scheduling strat-
egy affords benefits (in terms of increased schedulability –



a greater likelihood that a viable schedule will be found)
and drawbacks (primarily, increased run-time overhead, and
a more difficult problem of WCET estimation). Although a
detailed discussion of these benefits and drawbacks is beyond
the scope of this document, we will briefly touch upon some
of the issues in Section VII. For now, we merely point out here
that our uniprocessor scheduling strategy (Section V) is non-
preemptive whereas our multiprocessor scheduling strategy
(Section VI) uses both preemptions and migrations. This
multiprocessor strategy can easily be modified to disallow
preemptions and migrations, at a cost of reduced schedulability
– the precise loss of schedulability in doing so is quantified
in Lemma 7.

V. CONSTRUCTING UNIPROCESSOR SCHEDULING TABLES

Given a system represented as a DAG G and a deadline
D that is to be implemented on a single processor, we first
obtain a topological ordering of the nodes in the DAG, with
HI-criticality nodes listed first whenever possible.

Let us simulate this step on the example graph of Figure 1.
Recall that we had determined that during the preprocessing
step nodes j1, j2, and j4 are all labeled as HI-criticality nodes,
while node j3 is labeled a LO-criticality node.

1) We can first list either j1 or j2, since neither has any
unlisted predecessors. Let us suppose we choose to list
j2 first.

2) This results in j3 also becoming eligible for listing: it
has no unlisted predecessors. The set of nodes eligible
for being listed next is therefore {j1, j3}. Since we are
required to list HI-criticality nodes before LO-criticality
ones, we must list j1.

3) This results in j4 now becoming eligible for listing;
the set of nodes eligible for being listed next is there-
fore {j3, j4}. Since j4 is HI-criticality while j3 is LO-
criticality, we list j4 next, and j3 last.

The final topological ordering of the nodes that we obtain
is thus j2, j1, j4 and j3.

Lemma 1: All HI-criticality nodes appear before all LO-
criticality nodes in this topological ordering.
Proof: Suppose for a contradiction that some HI-criticality
node j` were to appear immediately after a LO-criticality node
jk. Since our ordering scheme favors HI-criticality jobs over
LO-criticality ones, this implies that there is a directed edge
from jk to j`. But by our method for allocating criticalities
to nodes, this would require that node jk also be labeled as
a HI-criticality node, thereby obtaining a contradiction to the
assumption that jk is a LO-criticality node.

Once a topological ordering of the vertices has been ob-
tained, we obtain the two scheduling tables as follows:

• SLO is obtained by scheduling each job according to this
topological ordering, with each job ji being assigned an
execution amount equal to Ci(LO) . By Lemma 1, this
implies that all HI-criticality jobs all allocated execution
before any LO-criticality job is allocated execution.

• SHI is obtained by scheduling only the HI-criticality jobs,
in the order in which they appear in this topological or-
dering, with each such job ji being assigned an execution
amount equal to Ci(HI).

Finally, we declare success if and only if the makespan
(the duration) of both schedules does not exceed the specified
bound D.

Lemma 2: This schedule-generation algorithm is correct, in
the sense that scheduling a system according to the procedure
described in Section IV by using the scheduling tables gen-
erated as described above, corresponds to a certifiably correct
scheduling strategy (Definition 1).
Proof: According to the procedure described in Section IV,
we start out during run-time executing jobs according to the
scheduling table SLO. If we never transition to SHI then it is
evident that the lemma holds: all jobs have completed within
their allocated execution times.

Suppose now that we transition to using table SHI, because
some job ji executes beyond its LO-criticality WCET without
completing. Our obligation, to show certifiable correctness, is
to demonstrate that each HI-criticality output job will complete
execution (provided each such job executes for no more than
its HI-criticality WCET). To show this, we observe that
• If ji is a LO-criticality job, then all HI-criticality jobs

must have already completed execution. This follows
from Lemma 1 and the fact that SLO executes jobs in
the same order as they appear in the topological sorting.

• If ji is a HI-criticality job, then no LO-criticality job has
received any execution thus far. And, since both SLO and
SHI execute the HI-criticality jobs in the same order, it
must be the case that

1) All HI-criticality jobs that were scheduled prior to ji in
SHI have already completed execution (since they were
also scheduled prior to ji in SLO and did not trigger a
mode-change).

2) By the time-instant that the transition from using SLO

to SHI occurred, job ji must have received at least as
much execution in SLO as it would have if we had
been following SHI from the very beginning. Hence
there is sufficient computing capacity allocated in SHI

for all the remaining HI-criticality jobs (including ji)
to complete by the deadline D.

The lemma follows.

Lemma 3: This uniprocessor schedule-generation algorithm
is optimal, in the sense that it can generate scheduling tables
for any DAG that can be scheduled correctly by any algorithm
(including clairvoyant ones).
Proof: We first derive a necessary condition for a system to
be schedulable.
• First, consider the behavior of the system in which each

job ji needs exactly Ci(LO) units of execution – by
definition, such a behavior has criticality level LO. It is
therefore necessary for schedulability that this behavior
be schedulable in such a manner that each job ji receives
at least Ci(LO) units of execution. Let FLO denote the



completion time of the last job in any preemptive work-
conserving schedule, in which each ji receives exactly
Ci(LO) units of execution.

• Consider next the behavior of the system in which each
job ji needs exactly Ci(HI) units of execution – by
definition, such a behavior has criticality level HI. It is
necessary that this behavior be schedulable in such a
manner that each HI-criticality job ji receives at least
Ci(HI) units of execution (while the LO-criticality jobs
need receive no execution). Let FHI denote the completion
time of the last job in any preemptive work-conserving
schedule, in which each HI-criticality job ji receives ex-
actly Ci(HI) units of execution while each LO-criticality
job receives no execution at all.

A necessary schedulability condition is hence as follows:

max{FLO, FHI} ≤ D

Notice that the makespan of the schedule SLO is exactly equal
to FLO, and that of schedule SHI exactly equal to FHI. It
therefore follows that both these schedules will complete by
the deadline specified for the DAG if and only if this necessary
schedulability condition is satisfied.

VI. CONSTRUCTING MULTIPROCESSOR SCHEDULING
TABLES

Designing an algorithm for generating scheduling tables
for scheduling mixed-criticality SR systems on multiprocessor
platforms turns out to be far more challenging than it was in
the uniprocessor case. Before proceeding further, we briefly
review (Section VI-A below) some well-known results con-
cerning the scheduling of “regular” (i.e. not mixed-criticality)
systems upon multiprocessor platforms.

A. Multiprocessor scheduling to minimize makespan

It is known that determining a schedule with minimum
makespan for a given collection of regular precedence-
constrained jobs is NP-hard in the strong sense [27]. (In fact
if preemption is forbidden, this intractability result holds for
collections of independent jobs; i.e., even if the precedence
constraints are empty.) Fortunately, an efficient algorithm,
known as List Scheduling (LS) [13] is known for solving this
problem approximately. LS can be defined non-preemptively
or preemptively. In either form LS accepts as input a collection
of jobs with inter-job precedences represented as a DAG and
a total priority ordering defined on the jobs6.
• Non-preemptive LS: Whenever a processor is idled, LS

chooses for execution the highest-priority ready job
(that is, some unscheduled job whose predecessors have
all completed execution), and executes this job non-
preemptively to completion. (If there are no ready jobs,
then the processor is idled until some job becomes ready
due to the completion of the execution of its predecessors
on other processors.)

6This total priority ordering can be represented as a list of the jobs – hence
the name List Scheduling.

GENSCHEDMULTIPROC(G,D,m)

1) Build the m-processor schedule SHI by applying non-
preemptive LS to only the HI-criticality jobs in G, under the
assumption that each job may need to execute for up to its HI-
criticality WCET. Any priority ordering of these jobs may be
used.

2) Define a priority ordering ≺ amongst the jobs in G. The priority
assigned to HI-criticality jobs are based on the time they begin
executing in the scheduling table SHI obtained above: jobs with
an earlier start time are assigned greater priority (ties broken
arbitrarily). All HI-criticality jobs have priority over any LO-
criticality job; the LO-criticality jobs may have any priority
ordering defined amongst themselves.

3) Build the m-processor schedule SLO by applying preemptive
LS on all the jobs in G with these job priorities, under the
assumption that each may execute for up to its LO-criticality
WCET.

4) Declare failure if either SLO or SHI has makespan > D

Fig. 2. Pseudocode representation of the multiprocessor schedule-generation
algorithm

• Preemptive LS: At each instant the m processors are
executing the m highest-priority ready jobs that have
not yet completed execution. Hence if a processor is
executing some job ji and some higher-priority job jj
becomes ready, the processor preempts the execution of
ji and begins executing jj instead. (Job ji will resume
execution later when it becomes one of the m highest-
priority jobs that have not yet completed execution.)

LS was shown [13] to have a worst-case approximation
ratio of

(
2− 1

m

)
when implemented on an m-processor iden-

tical platform. Specifically, it was shown that if an optimal
algorithm can generate an m-processor schedule (preemptive
or non-preemptive) of length L then either version of LS,
provided with any priority ordering on the jobs, generates
a schedule of length ≤

(
2− 1

m

)
× L. It has recently been

shown [26] that (2 − ξ) is likely to be a lower bound on
the worst-case approximation ratio of any polynomial-time
approximation algorithm, for some positive constant ξ that
tends to zero; hence from the perspective of this metric LS is
probably close to the best polynomial time algorithm possible.

B. Algorithm GENSCHEDMULTIPROC: description

We now turn our attention back to our problem of build-
ing scheduling tables for mixed-criticality SR systems on
multiprocessor platforms. Given a system represented as a
DAG G and a deadline D that is to be implemented on a
platform consisting of m identical processors, the procedure
for generating the scheduling tables SLO and SHI is given in
Figure 2. As can be seen from the pseudo-code listing, this
algorithm

1) first generates the HI-criticality scheduling table SHI using
non-preemptive LS with any priority listing amongst the
jobs;

2) uses the schedule SHI so determined to define a priority
ordering that will be the “list” used for list-scheduling
when generating SLO; and



3) generates SLO using preemptive LS, with the list being
the priority ordering determined in the step above.

Failure is declared if either SLO of SHI has makespan greater
than the specified bound D.

We illustrate this procedure by constructing a two-processor
schedule for the simple example SR system depicted in Fig-
ure 3 on the left (the generated scheduling tables are depicted
on the right). Note that both output nodes of this SR system
are labeled as HI-criticality outputs, that all the HI-criticality
WCETs are 5, and that j2’s LO-criticality WCET is 4 while
all other nodes’ LO-criticality WCETs are 5.
• It may be validated that the preprocessing step assigns HI

criticality to all the nodes in this DAG – this is only to
be expected, since there are no LO-criticality outputs in
the DAG and all the non-output nodes are predecessors
to some output node.

• We obtain the HI-critcality scheduling table SHI shown
in the figure by applying LS to these jobs, under the
assumption that each may execute for its HI-criticality
WCET (i.e., for five time units). We use the lexicographic
priority ordering to obtain this table; as stated in Figure 2,
any priority ordering may be used.

• Based on this schedule we define the following priority
ordering ≺ on the jobs, which respects the requirement
that jobs that begin execution earlier in SHI have greater
priority (ties broken arbitrarily):

j1 ≺ j2 ≺ j3 ≺ j4 ≺ j5 ≺ j6

(We note that since all the predecessors of a job ji must
complete execution before job ji begins execution, these
predecessors must also have begun execution prior to job
ji. Therefore, it follows that all predecessors of each job
ji occur prior to ji in this total priority ordering.)

• Finally, we use preemptive LS with this defined priority
ordering and under the assumption that each job may
execute for its LO-criticality WCET (i.e., j2 may execute
for 4 time-units and the other jobs each for 5).

– At time-instant 4, job j2 completes execution. Since
jobs j3 and j4 are not yet ready (since their prede-
cessor job j1 has not completed), j5 is the highest-
priority job that is eligible to execute. It therefore
begins execution at time-instant 4.

– At time-instant 5, j1 completes execution; this causes
j3 and j4 to become ready to execute. Since preemp-
tive LS is being used, this results in the preemption
of the execution of the lower-priority job j5 at time-
instant 5.

– Job j5 resumes execution at time-instant 10, after
jobs j3 and j4 complete execution and vacate their
processors.

The resulting LO-critcality scheduling table SLO shown in
the figure. (Note that j5 resumes on a different processor
than the one it has been execution in prior to preemption,
since we allow for inter-processor migration.)

C. Algorithm GENSCHEDMULTIPROC: properties

Since much of the work in Algorithm GENSCHEDMUL-
TIPROC is done in the calls to the list scheduling algorithm
LS, it should be evident that GENSCHEDMULTIPROC can be
implemented about as efficiently as LS; i.e., with a run-time
complexity that is a low-order polynomial in the number of
nodes (jobs) in the DAG.

We now derive correctness and performance properties of
Algorithm GENSCHEDMULTIPROC. We will formally show
that Algorithm GENSCHEDMULTIPROC is correct (Lemma 5),
and that although it is not optimal7, its deviation from optimal-
ity is no more than that of LS when LS is scheduling regular
(non mixed-criticality) DAGs (Lemma 6).

But first, we need an additional result – Lemma 4 below,
which asserts that at all times each HI-criticality job makes at
least as much progress towards completion in schedule SLO,
as it does in schedule SHI.

Lemma 4: Consider schedules SLO and SHI for some DAG,
constructed by Algorithm GENSCHEDMULTIPROC.

1) If a HI-criticality job has not completed execution in SLO

by some time-instant t, then it has executed for at least
as much in SLO as in SHI over the interval [0, t).

2) Each HI-criticality job completes execution no later in
SLO than in SHI.

Proof: We observe first that since all predecessors of HI-
criticality jobs are also HI-criticality jobs and since LO-
criticality jobs are assigned lower priority than HI-criticality
jobs, the presence of LO-criticality jobs has no influence
whatsoever on the scheduling of the HI-criticality jobs in the
preemptive schedule SLO. This lemma only makes assertions
about HI-criticality jobs; henceforth in this proof, therefore,
we can safely ignore the LO-criticality jobs.

Let j′1, j
′
2, . . . , denote the priority ordering on the HI-

criticality jobs determined during the second step of Algo-
rithm GENSCHEDMULTIPROC: j′` ≺ j′`+1 for all `. Our proof
is by induction on the jobs, according to this priority ordering.
• [Basis]: Since each job’s LO-criticality WCET is ≤ its

HI-criticality WCET, job j′1 completes no later in SLO

than in SHI. Furthermore, j′1 begins executing at time-
instant zero in SLO, and executes non-preemptively to
completion. The statement of the lemma therefore holds
for job j′1.

• [Induction:] Suppose all the jobs j′1, . . . , j
′
`−1 complete

no later in SLO than in SHI. Then j′` becomes ready
to execute (in the sense that all its predecessors have
completed) no later in SLO than in SHI. Hence if j′` is
executing at some instant in SHI but not in SLO, it must be
because it has already completed execution prior to that
instant in SLO. It immediately follows that j′` completes
no later in SLO than in SHI; prior to the instant that it
completes in SLO, it executes in SLO at all time-instants
that j′` executes in SHI. The statement of the lemma
therefore holds for job j′` as well.

7This is not at all surprising, since the simpler problem of scheduling DAGs
of non-mixed-criticality jobs to minimize makespan is strongly NP-hard.
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Fig. 3. Example DAG, and 2-processor scheduling tables. Each scheduling table is depicted visually by stacking the schedule on each of the two processors
atop each other. The ∗ denotes that the job j5 is preempted/ resumed.

Lemma 4 above has established that at each time-instant t
each HI-criticality job has either

1) Completed execution in SLO by time-instant t, or
2) Executed for at least as much in SLO as in SHI over the

interval [0, t).
These facts allow us to demonstrate the correctness of our

scheduling algorithm:
Lemma 5: Algorithm GENSCHEDMULTIPROC is correct, in

the sense that scheduling a system according to the procedure
described in Section IV by using the scheduling tables gener-
ated by GENSCHEDMULTIPROC, corresponds to a certifiably
correct scheduling strategy8.
Proof: According to the time-triggered run-time scheduling
procedure that is described in Section IV, we start out ex-
ecuting according to the scheduling table SLO. If we never
transition to SHI then it is evident that the lemma holds: all
jobs have completed within their allocated execution times.

Suppose now that we transition to using table SHI, because
some job has executed beyond its LO-criticality WCET without
signaling that it has completed execution. To prove certifiable
correctness it suffices to demonstrate that each HI-criticality
job will complete execution by the deadline D, provided each
executes for no more than its HI-criticality WCET.

Let t denote the time-instant at which the transition from
using SLO to SHI occurs. By Lemma 4 above, in SLO each
HI-criticality job ji has either already completed execution or
has received at least as much execution over [0, t) as it would
have in SHI during the same interval. But since each such ji
is guaranteed to receive Ci(HI) units of execution in SHI by
the deadline D, it follows that ji will therefore receive enough
execution after the transition to complete by the deadline D.

Lemma 5 above asserts the correctness of Algorithm GEN-
SCHEDMULTIPROC; Lemma 6 below characterizes its perfor-
mance.

Lemma 6: If an optimal clairvoyant algorithm can sched-
ule a given DAG on m processors by a deadline D, then
Algorithm GENSCHEDMULTIPROC generates m-processor

8Recall that certifiably correct scheduling strategies are defined in Defini-
tion 1.

scheduling tables SLO and SHI for the same DAG with specified
deadline

(
2− 1

m

)
D.

Proof: This is a direct consequence of the
(
2− 1

m

)
approxi-

mation ratio of LS. It is evident that if an optimal clairvoyant
algorithm can schedule a given DAG on m processors by a
deadline D, an optimal schedule for only the HI-criticality jobs
would be of duration ≤ D. Hence the scheduling table SHI,
which is constructed using nonpreemptive LS, has duration
≤

(
2− 1

m

)
D. Similarly an optimal schedule for all the jobs

in which each executes for its LO-criticality WCET would
also be of duration ≤ D. The scheduling table SLO, which is
constructed using preemptive LS, therefore also has duration
≤

(
2− 1

m

)
D.

VII. SUMMARY AND DISCUSSION

The research described in this document addresses the
following question: can we obtain efficient multiprocessor
implementations of mixed-criticality real-time systems that are
modeled using the synchronous reactive model? We believe the
answer to this question is “yes”; in this document, we have
taken an initial step towards validating this belief by applying
advanced (traditional) multiprocessor scheduling theory as
well as recent results from real-time scheduling to design an
algorithm for implementing mixed-criticality SR systems upon
multiprocessor platforms. In order to be able to do so, we have
needed to devise appropriate scheduling models for the kinds
of SR systems we seek to schedule, and to formalize the kinds
of scheduling strategies that may be considered appropriate
for such systems. We conclude this paper with a discussion
on some additional issues that merit mention, but that were
not directly discussed in the earlier sections.

More than two criticality levels. Our framework and al-
gorithms are easily extended to deal with mixed-criticality
application domains that have more than two criticality levels
specified. In scheduling an instance with k distinct criticality
levels, we would pre-construct k different scheduling tables,
one corresponding to each criticality level. We would start
out making dispatching decisions according to the scheduling
table that corresponds to the lowest criticality level; if the run-
time behavior is revealed to be of a higher criticality level, we
immediately switch to making dispatching decisions according
to the scheduling table that corresponds to that criticality level.



Thus a maximum of (k− 1) such switches may occur during
any given execution of the system.

Preemptions and migrations. As we had mentioned in
Section IV, there are benefits and drawbacks to allowing
preemptions and migrations in the schedules we seek to
construct. The benefit is enhanced schedulability; the most
obvious drawback is increased overhead: depending upon the
characteristics of the platform, performing each preemption
and/ or each migration may require a significant amount of
time. Additional drawbacks include the unpredictability that
results from allowing preemptions or migrations (for instance,
in determining WCETs).

Although our uniprocessor scheduling strategy gener-
ates non-preemptive scheduling tables, the scheduling tables
for multiprocessor platforms that are generated by Algo-
rithm GENSCHEDMULTIPROC may have preemptions and mi-
grations. These can be gotten rid of, but at a cost of decreased
schedulability: we state without proof the following result

Lemma 7: If an optimal clairvoyant algorithm can schedule
a given DAG on m processors by a deadline D, then a mod-
ification of Algorithm GENSCHEDMULTIPROC generates m-
processor scheduling tables with no preemptions or migrations
for the same DAG, with specified deadline 2×

(
2− 1

m

)
D.

Equivalently, disallowing preemptions and migrations in-
creases the makespan of the resulting scheduling tables by
a further factor of 2.
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