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Abstract—In modern embedded platforms, safety-critical func-
tionalities that must be certified correct to very high levels
of assurance may co-exist with less critical software that are
not subject to certification requirements. One seeks to satisfy
two, sometimes contradictory, goals upon such mixed-criticality
platforms: (i) certify the safety-critical functionalities under
very conservative assumptions, and (ii) achieve high resource
utilization during run-time, when actual behavior does not live
up to the pessimistic assumptions under which certification was
made. This paper describes efforts at designing fixed-priority
scheduling algorithms that balance these two requirements, when
scheduling recurrent tasks that are triggered by external events
of unknown exact frequency.

I. INTRODUCTION

The safety-critical functionalities of systems in many safety-
critical application domains (including the aerospace and
automotive domains) are subject to certification by statutory
certification authorities (CAs). The current trend in embedded
systems towards integrating multiple functionalities upon a
shared platform, as exemplified by Integrated Modular Avion-
ics [17] in aerospace, and the AUTOSAR (AUTomotive Open
System ARchitecture — www.autosar.org) specifications for
the automotive industry, means that even in highly safety-
critical systems it is typically the case that only a relatively
small fraction of the overall system is actually of high
criticality and subject to certification. The remainder of the
system — the non safety-critical parts — do not need to pass
certification by the CAs, although the system designer would
nevertheless like to validate that all functionalities, including
the non safety-critical ones, will perform correctly. Such task
systems in which different tasks have different “importances”
or criticalities and must therefore be validated correct to
different levels of assurance, are commonly known as mixed
criticality systems. Dealing with such mixed criticalities upon
shared platforms have been identified as a central requirement
for the emerging domain of cyber-physical systems (CPS),
and solutions to the problems associated with validating and
certifying the high-criticality parts of such systems are gaining
wide recognition as being foundational enabling technologies
for CPS.

Recurrent task models may be used to model event-driven
phenomena that occur repeatedly: each event gives rise to a job
that needs to be executed. If these events occur arbitrarily fre-
quently then it is not possible to offer deterministic guarantees
as to when these jobs will be serviced. Often, however, lower
bounds can be estimated beforehand on the minimum amount
of time that must elapse between successive occurrences of
these events (equivalently, upper bounds can be obtained on

the frequency of occurrence), and performance guarantees
can be made under the assumption that these bounds are
correct. The 3-parameter sporadic tasks model [16] is widely
used for modeling such recurrent tasks. In the 3-parameter
sporadic tasks model (henceforth simply called the sporadic
tasks model), each task τi is characterized by a worst-case
execution time (WCET) Ci, a relative deadline Di, and a
minimum inter-arrival separation Ti (for historical reasons, Ti
is often called the period of the task). Such a task is assumed
to generate an unbounded sequence of jobs at run-time, with
successive job-arrivals separated by at least Ti time units and
each job needing to execute for at most Ci time units by a
deadline that is Di time units after its arrival time.

As we had stated above, system analysis during design
time is made under certain assumptions about the run-time
behavior of the system. Certification Authorities (CAs) tend
to be very conservative, and hence it is often the case that the
assumptions demanded by the CA for obtaining certification
are far more pessimistic than those the system designer would
use during the system design process if certification was not
required. For instance, for the purposes of analysis by the
CA a sporadic task may be assigned a larger WCET (the
CA expects the task to execute for longer), and/ or a smaller
period parameter (the CA expects the triggering events to
occur more frequently), than would be assumed by the system
designer. Most previous papers dealing with the certification-
cognizant scheduling of mixed-criticality real-time systems
have dealt with increased pessimism in WCET with increasing
criticality levels. That is, they have considered the case where
the period parameters are exactly known but the WCETs are
not, and the system designer uses a less pessimistic (i.e.,
smaller) WCET estimate than the CA. The possibility of
having pessimism in the period parameter was mentioned
in [5], [10]; to our knowledge, though, [3] was the first paper
to analyze the effects of such pessimism, in the context of
preemptive uniprocessor scheduling. The current paper extends
the work in [3] to fixed-priority (FP) preemptive uniprocessor
scheduling.

Organization. The mixed-criticality model studied in this
paper is formally defined in Section II; the problem considered
is described in Section III. Some related work is described
in Section IV. Different priority-assignment algorithms are
presented and evaluated in Sections V-VII; their run-time
computational complexity is discussed in Section VIII. These
different algorithms are compared both theoretically (in Sec-
tion IX) and experimentally, via simulation (in Section X).



Section XI describes how these results may be extended in
several directions, to deal with more general workload models.

II. MODEL

Although the discussion in Section I only considered sys-
tems with two distinct criticality levels – tasks needing cer-
tification and tasks not needing to be certified – a single
system may in general contain more criticality levels. For
instance, the RTCA DO-178B software standard (widely used
in the avionics industry) specifies five different criticality
levels, with the system designer expected to assign one of
these criticality levels to each task. Similar standards are in
use in the automotive industry, and for factory automation –
these standards, too, specify more than two criticality levels.
However in this paper we will, for ease of exposition, restrict
our attention to dual-criticality systems – systems with just
two criticality levels, which we will denote as LO and HI.

We will characterize a mixed-criticality (MC) sporadic task
by a 5-tuple of parameters:

τi = (χi, Ci, Di, Ti(LO), Ti(HI)),

where
• χi ∈ {LO, HI} denotes the criticality of the task; we

assume that a τi with χi = HI must be certified correct
by the CA while a τi with χi = LO is not subject to
certification;

• Ci denotes the WCET of the task, and Di its relative
deadline;

• Ti(LO) denotes the minimum amount of time that the
system designer expects will elapse between the arrival
times of successive jobs of τi; while

• Ti(HI) denotes the minimum amount of time that the CA
expects will elapse between the arrival times of successive
jobs of τi.

We make the assumption that Ti(HI) ≤ Ti(LO) for all
tasks τi; i.e., the CA is more pessimistic than the system
designer in that they assume that jobs of a task may arrive
more frequently. We also restrict our attention in this paper to
constrained-deadline sporadic task systems [7]; in the context
of mixed-criticality sporadic tasks of the form considered here,
this translates to requiring that Di ≤ Ti(HI) for each task τi.

A MC sporadic task system τ is a finite collection of MC
tasks: τ = {τ1, τ2, . . . , τn}. We study the problem of schedul-
ing such task systems on a fully preemptive uniprocessor using
fixed-priority scheduling (see Section III).

We close this section by formally defining what we expect
of a scheduling algorithm for mixed-criticality systems.

Behaviors. Any execution of the system satisfying the prop-
erty that for each task τi, successive jobs of τi arrive1 at
least Ti(LO) time units apart, is said to exhibit a LO-criticality
behavior. Any execution of the system that does not exhibit
LO-criticality behavior but which satisfies the property that for
each task τi, successive jobs of τi arrive1 at least Ti(HI) time
units apart is said to exhibit a HI-criticality behavior. Any

1Equivalently, the external events that trigger the arrival of jobs of τi occur

execution that does not exhibit HI-criticality or LO-criticality
behavior is said to be erroneous.

Correctness. An algorithm for scheduling MC task systems
is said to be correct if and only if it satisfies the property that
• Each job of each task τi completes execution within
Di units of arrival, in all LO-criticality behaviors of the
system; and

• Each job of each HI-criticality task τi (i.e., all τi with
χi = HI) completes execution within Di units of arrival,
in all HI-criticality behaviors of the system.

III. FIXED-PRIORITY SCHEDULING OF MC SYSTEMS

In this paper we consider the schedulability analysis of a
mixed criticality (MC) system scheduled by the standard fixed
priority (FP) preemptive dispatcher on a single processor.

The notion of FP dispatching is pretty well understood in
the context of non-MC task systems: each task is assigned
a distinct priority and during run-time at each instant the
currently active job generated by the task with the greatest
priority is chosen for execution. In MC systems, however,
some additional details must be spelled out: in particular, does
the run-time dispatcher monitor arrivals in order to detect
changes in behavior? That is, does the run-time dispatcher
keep track of arrival times of successive jobs of individual
tasks in order to determine whether arrival patterns are con-
sistent with the expectations of the system designer (in which
case the behavior is a LO-criticality one) or not (in which
case the behavior is HI-criticality or erroneous)? In order
to make such a determination, the implementation platform
must support the ability to monitor the arrivals of jobs of
individual tasks. Some platforms may provide an additional
ability to police job arrivals in order to enforce minimum
inter-arrival separations. A strong case can be made for this
ability to be part of the standard mechanisms for safety-critical
applications. Such functionality is already commonly available
on many real-time platforms and is widely assumed in, for
example, many implementations of servers (e.g., [1]), or in
real-time “open” environments that support the policing of
individual jobs or of collections of jobs.

Depending on whether support for run-time monitoring
and/or policing is available or not (and if available, what use is
made of it), three different FP scheduling schemes were evalu-
ated in [6] for the scheduling of MC task systems in which the
CA’s pessimism is expressed by having larger WCET values.
In this paper we adapt these same three FP scheduling schemes
—Partitioned Criticality (a standard scheme, sometimes called
criticality monotonic (CM) priority assignment, that is widely
used in industrial practice); Static Mixed Criticality (SMC);
and Adaptive Mixed Criticality (AMC)— for the scheduling
of MC task systems in which pessimism is expressed in the
period parameter.

In Partitioned Criticality, all HI-criticality tasks are assigned
higher priority than all LO-criticality tasks. The other two
schemes, SMC and AMC, allow the priorities of different
criticality tasks to be interleaved – we will see that this



improves schedulability. One variant of the static scheme
(SMC) polices job arrivals: it does not allow successive jobs
of any task τi to arrive sooner than Ti(LO) time apart. The
adaptive scheme (AMC) goes further and does not allow LO-
criticality jobs to execute at all if successive jobs of any task
τi arrive sooner than Ti(LO) time apart.

IV. RELATED WORK

Current industrial practice for ensuring non-interference on
safety-critical components from non-critical ones is primarily
based on strict isolation between components of different crit-
icalities. For the model considered in this paper, such isolation
would require that each task τi = (χi, Ci, Di, Ti(LO), Ti(HI))
be modeled by the “regular” (i.e., not mixed-criticality) spo-
radic task (Ci, Di, Ti(χi)). That is, each LO-criticality task is
assumed to arrive according to its LO-criticality period while
each HI-criticality task is assumed to arrive according to its
HI-criticality period. Although such isolation does indeed guar-
antee correctness, it is overly pessimistic in that some systems
that could be scheduled correctly using other approaches are
not schedulable using such an isolation-based approach.

To our knowledge, all prior research on mixed-criticality
certification-cognizant scheduling (other than [3], which con-
sidered non-FP scheduling) has only looked at pessimism
with regards to WCET — i.e., when the CA’s WCET esti-
mate is more pessimistic (larger) than the system designer’s.
Vestal [18] initiated this field of study: he proposed a fixed-
priority (FP) algorithm for assigning priorities optimally to the
tasks in such a system. Vestal’s algorithm was further analyzed
in [12]; generalizations were proposed in [6]. The non-FP
scheduling of such sporadic task systems was considered
in [15], [13], [4].

The non-FP scheduling of systems of sporadic mixed-
criticality tasks with pessimism expressed along the frequency
dimension was studied in [3]: a correct scheduling strategy,
based on EDF, was presented and proved correct, and a
utilization bound derived.

Several other real-time scheduling papers have dealt with
mixed-criticality systems, although not from our perspective
of scheduling for certification. They are therefore not directly
relevant to the work we describe here.

V. CRITICALITY MONOTONIC SCHEDULING

In Partitioned Criticality, commonly called Criticality
Monotonic (CM), scheduling, all HI-criticality tasks are as-
signed higher priority than all LO-criticality tasks. Within each
criticality, priorities may be assigned assigned according to the
deadline monotonic (DM) priority assignment scheme [14],
which is known to be optimal for constrained-deadline regular
– non-MC – task systems.

This partitioned approach has the advantage that the
scheduling of HI-criticality jobs is not impacted in any manner
by LO-criticality jobs.. No additional run-time support (beyond
that needed to implement a fixed-priority scheduler in “regu-
lar” – non-MC – systems) is required for implementing such
a FP scheduling scheme. However, these advantages come at

a significant cost in terms of schedulability, in the sense that
CM fails to correctly schedule very many systems that can be
correctly FP-scheduled using some other priority assignment
scheme. Consider the following example:

Example 1: Let τ denote a task system with two tasks τ1
and τ2, with parameters as follows:

τi χi Ci Di Ti(LO) Ti(HI)
τ1 LO 1 10 10 10
τ2 HI 10 200 250 200

CM priority-assignment would require that τ2 be assigned
higher priority, and τ1’s jobs could miss deadlines (consider,
e.g., the scenario in which jobs of both tasks arrive simulta-
neously). It may be verified that assigning τ1 higher priority
yields a correct scheduling strategy.

The efficacy of CM scheduling may be shown to be ar-
bitrarily pessimistic by increasing the periods and deadline
parameters of τ2 in this example.

VI. STATIC MIXED CRITICALITY - SMC

We consider two variants here: one in which no run-
time monitoring or policing is done, and a second in which
admission control is performed to prevent successive jobs of
any LO-criticality task τi (i.e., with χi = LO) from arriving
sooner than Ti(LO) apart2. In both variants, SMC assigns
priorities to the tasks in the MC sporadic task system by
applying the Audsley optimal priority assignment strategy [2].
Priority assignment according to this strategy proceeds by
identifying some task that would meet its timing constraints if
it were assigned lowest priority; once this task is identified, it
is assigned the lowest priority and removed from consideration
and the process repeated on the remaining tasks. (That is,
some remaining task is identified that would meet its timing
constraints if it were assigned lowest priority amongst the
remaining tasks –second-lowest priority in the overall system,
and so on.)

To specify the two priority assignment strategies, it remains
to specify how we determine whether a particular task will
meet its timing constraints if it were assigned lowest priority;
this is done below in Section VI-A for the variant with no
run-time monitoring or policing, and in Section VI-B for the
variant that requires admission control.

A. SMC with no admission control

SMC with no admission control requires no additional run-
time support (over and above that expected for supporting FP
scheduling of “regular –non-MC– task systems) for handling
the mixed-criticality nature of the workload. That is, the sys-
tem design is subject to analysis prior to implementation (using
the technique we discuss below); once it passes analysis, run-
time scheduling is performed using a regular FP scheduler.

We specify how it is determined whether a particular job
may be assigned lowest priority. Suppose we are seeking to

2The rationale for the use of the adjective “static” in naming these priority
assignment schemes will become clear when we discuss an adaptive priority
assignment scheme in Section VII.



determine whether τi, with criticality level χi ∈ {LO, HI},
can be the lowest-priority task. Mixed-criticality semantics
specify that jobs of τi should meet their deadlines, provided
arrival patterns of all the tasks in the system respect their
χi period parameters (i.e., jobs of each task τj arrive with a
minimum inter-arrival separation of Tj(χi)). It then follows
from response-time analysis (RTA) [19] that the maximum
response time of τi’s jobs is given by the smallest fixed-point
solution of the following recurrence:

t =
∑
∀ j

⌈
t

Tj(χi)

⌉
Cj (1)

This recurrence can be solved using standard techniques from
RTA; if the solution is no larger than Di then τi may indeed
be assigned lowest priority.

B. SMC with admission control
With this scheme admission control is done during run-time

in order to ensure that successive jobs of any task τi arrive
no sooner than Ti(χi) time apart. (How earlier arrivals are
dealt with depends on application semantics – jobs that arrive
sooner than permitted may either be discarded, or queued
and admitted later, at the permitted rate.) In particular, this
means that jobs of a task τj with χj = LO are only admitted
with a minimum inter-arrival separation of Tj(LO). Once again
applying RTA, we conclude that the maximum response time
of τi’s jobs is given by the smallest fixed-point solution of the
following recurrence:

t =
∑
∀ j

⌈
t

Tj(min(χi, χj))

⌉
Cj (2)

where the min operator when applied to criticalities has the
interpretation that

min(χ1, χ2) =

{
LO, if χ1 = LO ∨ χ2 = LO
HI, otherwise

This recurrence, too, can be solved using standard techniques
from RTA; τi may only be assigned lowest priority if the
solution is no larger than Di.

Example 2: This task system {τ1, τ2} illustrates that SMC
with admission control may be able to schedule task systems
that cannot be scheduled in the absence of admission control.

τi χi Ci Di Ti(LO) Ti(HI)
τ1 LO 5 5 15 10
τ2 HI 10 15 15 15

Since C1 = D1, it is evident that τ1 cannot be guaranteed
to meet its deadline in any behavior (including LO-criticality
ones) unless it is assigned highest priority. Hence τ2 must be
assigned lowest priority.
• Under SMC with no admission control, the Recur-

rence (1) for τ2 is
t = dt/T1(χ2)eC1 + dt/T2(χ2)eC2

= dt/T1(HI)eC1 + dt/T2(HI)eC2

= dt/10e × 5 + dt/15e × 10

for which there is no non-negative solution ≤ D2.
Hence the system is not FP-schedulable in the absence
of admission control.

• If run-time support for admission control is available,
then successive jobs of τ1 can be prevented from arriving

sooner than T1(LO) = 15 time units apart. Under SMC
in the presence of admission control, the Recurrence (2)
for τ2 is therefore

t =

⌈
t

T1(min(χ1, χ2))

⌉
C1 +

⌈
t

T2(min(χ2, χ2))

⌉
C2

= dt/T1(LO)eC1 + dt/T2(HI)eC2

= dt/15e × 5 + dt/15e × 10

for which the smallest solution is 15. Since D2 = 15,
the system is thus deemed FP-schedulable if admission
control can be performed.

VII. ADAPTIVE MIXED CRITICALITY - AMC

We now discuss an adaptive dispatching scheme. This
scheme is adaptive in the sense that it monitors the arrival
of the jobs of each task during runtime; if successive jobs
of any task arrive sooner than the task’s LO-criticality period
apart, it immediately drops all LO-criticality jobs and only
executes HI-criticality ones. The following example illustrates
that the ability of AMC to drop LO-criticality jobs enables it
to schedule task systems that cannot be scheduled by SMC
algorithms.

Example 3: Consider a task system comprised of three
tasks {τ1, τ2, τ3}, with attributes as follows:

τi χi Ci Di Ti(LO) Ti(HI)
τ1 LO 1 2 2 2
τ2 HI 1 2 10 2
τ3 HI 4 100 100 100

Since C3 is larger than both D1 and D2, it is evident that
τ1 and τ2 must be assigned greater priority than τ3 in any
fixed-priority scheduling scheme that schedules LO-criticality
behaviors correctly.

It may be verified that assigning τ1 and τ2 priorities in
either order, and both being assigned greater priority than
τ3, will result in τ1 and τ2 meeting all their deadlines in
all LO-criticality and HI-criticality behaviors. It remains to
determine whether τ3 would meet its deadlines under either
SMC scheme.

Under SMC with no admission control, the maximum
response time of τ3’s jobs is given by the smallest fixed-point
solution to Recurrence (1):

t = dt/T1(χ3)eC1 + dt/T2(χ3)eC2 + dt/T3(χ3)eC3

= dt/T1(HI)eC1 + dt/T2(HI)eC2 + dt/T2(HI)eC3

= dt/2e × 1 + dt/2e × 1 + dt/100e × 4

for which there is no non-negative solution ≤ 100. Hence
the system is not FP-schedulable in the absence of admission
control.

Under SMC with admission control, the maximum response
time of τ3’s jobs is given by the smallest fixed-point solution
to Recurrence (2)
t = dt/T1(min{χ1, χ3})eC1 + dt/T2(min{χ2, χ3})eC2

+ dt/T3(min{χ3, χ3})eC3

= dt/T1(LO)eC1 + dt/T2(HI)eC2 + dt/T3(HI)eC3

= dt/2e × 1 + dt/2e × 1 + dt/100e × 4



which is the same recurrence as the one above, and therefore
also has no non-negative solution ≤ 100. Hence this system
is not FP-schedulable under SMC even if admission control is
enabled.

Under our adaptive scheme, however, the run-time dis-
patcher immediately discards the LO-criticality task τ1 if τ2’s
jobs arrive sooner than 10 time units apart. We will see later
that as a consequence it can guarantee to complete τ3’s job
well within its specified deadline of 100 time units.

In Section VII-A, we describe the algorithm used for
determining which job should execute at each instant during
run-time, assuming that priorities have been assigned to the
tasks. The algorithm for assingining priorities is described in
Section VII-B.

A. An adaptive dispatcher

The algorithm used for run-time dispatching of jobs is
provided with a mixed-criticality sporadic task system along
with an assignment of unique distinct priorities to the tasks in
the system. Dispatching of jobs for execution occurs according
to the following rules:

1) The dispatcher maintains a criticality level indicator Γ,
initialized to LO.

2) While (Γ ≡ LO), at each instant the waiting job generated
by the task with highest priority is selected for execution.

3) If a job arrives sooner than expected (i.e., a job of some
task τi arrives prior to Ti(LO) time having elapsed since
the arrival of τ ′is previous job), then Γ← HI.

4) Once (Γ ≡ HI), jobs with criticality level ≡ LO will not
execute. Henceforth, therefore, at each instant the waiting
job generated by the HI-criticality task with the highest
priority is selected for execution.

5) An additional rule could specify the circumstances when
Γ gets reset to LO. This could happen, for instance, if
no HI-criticality jobs are active at some instant in time.
(We will not discuss the process of resetting Γ← LO any
further in this paper.)

B. AMC priority assignment

We now describe our AMC priority-assignment scheme for
assigning the priorities that are used by the adaptive dispatcher
described in Section VII-A above. Priorities assignment is
again done according to the Audsley Optimal Priority Assign-
ment strategy [2]. That is, some task is identified that may
be assigned the lowest priority; this task is assigned lowest
priority and removed from consideration; and the process is
recursively applied to the remaining tasks.

To completely specify the priority assignment strategy, it
remains to describe how the lowest-priority task is identified.
At a high level, the approach is similar to the one used in both
variants of SMC (Sections VI-A and VI-B): we determine the
worst-case response time of a task τi if it were assigned lowest
priority, and check whether this is ≤ the relative deadline of
the task. However, there is a new problem with realizing this
approach for AMC scheduling: unlike in the SMC variants,

for which it was known that the response time of the lowest-
priority task is maximized when all other tasks arrive in the
synchronous arrival sequence3, for AMC we do not know how
to determine the maximum response time of the lowest-priority
task. The following example illustrates that the synchronous
arrival sequence does not result in the maximum response
time:

Example 4: Consider once again the task system of Exam-
ple 3, and suppose that the tasks are prioritized as τ1 > τ2 >
τ3. We seek to determine the worst-case response time of task
τ3’s job.

Task τ3’s worst-case response time in any LO-criticality
behavior is easily seen to be equal to 10. Let us now compute
its worst-case response time in HI-criticality behaviors.
• In a HI-criticality behavior, successive jobs of τ2 may

arrive as few as 2 time units apart. Suppose then that all
three tasks had jobs arrive simultaneously at time-instant
zero, and τ2 had its second job arrive at time-instant two.
The arrival of τ ′2’s job at time-instant two would result
in all current and future jobs of τ1 being discarded; as a
consequence, the schedule would look like this:

-
0 1 2 3 4 5 6 7 8 9 10 11

τ1 τ2 τ2 τ3 τ2 τ3 τ2 τ3 τ2 τ3

The response time of τ3 is therefore once again 10.
• Suppose instead that τ2 had its second job arrive at time-

instant three (rather than its earliest time of two). The
second job of τ1 was scheduled before the dispatcher
had determined that the behavior is a HI-criticality one
and jobs of τ1 may be discarded; as a consequence, the
schedule would now look like this:

-
0 1 2 3 4 5 6 7 8 9 10 11

τ1 τ2 τ1 τ2 τ3 τ2 τ3 τ2 τ3 τ2 τ3

The response time of τ3 in this scenario is seen to equal
11, which is larger than the value of 10 identified in the
scenario above in which all jobs arrive as soon as legally
entitled to do so.

We do not yet know how to determine the exact worst-
case response time of tasks scheduled under the adaptive
dispatching scheme discussed in Section VII-A above. In the
remainder of this section, we describe how we can compute
an upper bound on this response time. We will then use these
upper bounds to determine safe priority assignments.

We introduce some notation: Let LLO (LHI, respectively)
denote an upper bound on the length of the longest busy
interval during any LO-criticality (HI-criticality, resp.) behavior
of τ . It is evident that any LO-criticality task τi satisfying
Di ≥ LLO may be assigned lowest priority: since no LO-
criticality behavior can span the entire interval between the

3The synchronous arrival sequence for a set of tasks occurs when each task
has a job arrive at the same instant, and subsequent jobs all arrive as soon as
legally permitted to do so.



• Determine LLO as the smallest positive value of t satisfying
Equation 3. If there is some LO-criticality task τi with Di ≥
LLO, assign it lowest priority.

• Else determine LHI as the smallest positive value of t satisfying
Equation 4. If there is some HI-criticality task τi with Di ≥ LHI,
assign it lowest priority.

• Else declare failure.

Fig. 1. AMC: Determining the lowest-priority task.

release of any job of τi and its deadline, no such job will
miss its deadline if τi is assigned lowest priority. Similarly,
any HI-criticality task τi satisfying Di ≥ LHI may be assigned
lowest priority.

Based on results from Response-Time Analysis (RTA) [19]
it is straightforward to observe that LLO can be set equal to
the smallest positive value of t satisfying

t =
∑
∀j

⌈
t

Tj(LO)

⌉
Cj (3)

We seek to determine LHI next. Without loss of generality, let
us suppose that the longest busy interval in any HI-criticality
behavior occurs on a sequence of jobs of τ in which the first
job arrives at time zero. Let t1 denote the time-instant at which
the criticality level indicator Γ sees its value changed from LO
to HI. (That is, t1 is the first instant at which a job of some
task τi arrives, despite strictly less than Ti(LO) time having
elapsed since the arrival of the previous job –if any– of τi.)
No job of any LO-criticality task will receive any execution
after time-instant t1. Hence for any τj with χj = LO, at
most dt1/Tj(LO)e jobs of τj may execute in this longest busy
interval.

Since LLO is, by definition, an upper bound on the length
of the largest busy interval in any LO-criticality behavior, it
follows that t1 ≤ LLO. Hence the total amount of execution
by jobs of LO-criticality tasks in this longest busy interval
of any HI-criticality behaviour is bounded from above by∑
j:χj=LO

(
dLLO/Tj(LO)e · Cj

)
. And for any value of t, the

total amount of execution of HI-criticality jobs over the interval
[0, t) in any HI-criticality behaviour is bounded from above by∑
j:χj=HI

(
dt/Tj(HI)e · Cj

)
. It therefore follows that LHI, an

upper bound on the length of the longest HI-criticality busy
interval, can be set equal to the smallest value of t that is
≥ L(LO), satisfying

t =
∑

j:χj=LO

⌈
LLO

Tj(LO)

⌉
Cj +

∑
j:χj=HI

⌈
t

Tj(HI)

⌉
Cj (4)

Plugging the value for LLO obtained by solving Equation 3
into recurrence Equation 4, we can determine the value of LHI

by using standard techniques for determining fixed-points.
The algorithm for determining a lowest-priority task is

summarized in Figure 1.
Example 5: Consider again the task system of Example 3.

We seek to determine an upper bound on τ3’s response time.
LLO is determined by finding the smallest positive solution

to Recurrence 3:
t = dt/T1(LO)eC1 + dt/T2(LO)eC2 + dt/T3(LO)eC3

= dt/2e+ dt/10e × 1 + dt/100e × 4

for which the smallest positive solution is t = 10. We

therefore have LLO = 10 for our example system.
To compute LHI, we must obtain the smallest positive

solution to Recurrence 4:
t = dLLO/T1(LO)eC1 + dt/T2(HI)eC2 + dt/T3(HI)eC3

= d10/2e+ dt/2e+ dt/100e × 4

= 5 + dt/2e+ 4

for which the smallest positive solution is t = 18. We
therefore have LHI = 18 for our example system. This is the
desired upper bound on the worst-case response time of τ3;
since it is ≤ D3, we conclude that τ3 may indeed be assigned
lowest priority.

VIII. RUN-TIME COMPLEXITY

Both variants of the SMC priority assignment scheme in
Section VI, and the AMC priority assignment scheme of Sec-
tion VII, make use of the Audsley optimal priority assignment
strategy [2]. The word optimal needs to be qualified in this
context: as stated above, the algorithm in Section VII is not
an optimal AMC priority assignment scheme. Instead, the
optimality holds in the following narrower sense: observe that
the algorithm of Figure 1 is non-deterministic in the sense that
it leaves unspecified which τi to choose if there are multiple
candidates satisfying the desired constraint. This algorithm is
optimal in the sense that ties may be broken arbitrarily: if
some choice of tie-breaks at each step would have resulted in
a successful priority assignment, then any choice of tie-breaks
will result in a successful priority assignment. Similarly for
both variants of SMC: in choosing some task with deadline
parameter ≥ the solution to Recurrence (1) for SMC with no
admission control, or Recurrence (2) for SMC with admission
control, if some choice of tie-breaks at each step would have
resulted in a successful priority assignment, then any choice
of tie-breaks will result in a successful priority assignment.

Priority assignment according to the Audsley optimal pri-
ority assignment strategy [2] requires that some task be
identified that may be assigned lowest priority; once this task is
identified, it is assigned the lowest priority and removed from
consideration, after which some remaining task is identified
that may be assigned second-lowest priority, and so on. For
an n-task system there are n tasks that may potentially need to
be considered as being eligible to be assigned lowest priority;
(n − 1) tasks that may potentially need to be considered as
being eligible to be assigned second-lowest priority; etc. Hence
in the worst case n+ (n−1) + (n−2) + · · ·+ 2 + 1 = Θ(n2)
recurrences of the form (1)-(4) may need to be solved. The
following lemma tells us that in fact far fewer recurrences
need to be solved for constrained-deadline mixed criticality
sporadic task systems.

Lemma 1: Suppose that the priority-assignment algorithms
described in Section VI-A (SMC with no admission control),
Section VI-B (SMC with admission control), or Section VII
(AMC) is successful in determining a correct priority ordering.
Then a correct priority ordering exists that has all tasks with
the same criticality assigned priorities in deadline monotonic
priority order.



Proof: The proof follows the standard method of proving that
deadline monotonic priority ordering is optimal for tasks with
constrained deadlines (as described in any standard textbook
such as [11]). Assume τi is deemed schedulable at the lowest
priority (i.e., its computed response time bound Ri is ≤ Di).
Let τk be any task with the same criticality level as τi but a
larger deadline: Dk > Di. If τi is exchanged with τk (so it
becomes the lowest priority task) then τk will suffer exactly
the same interference from LO and HI tasks and hence the
busy period for τk will be the same as that for τi when it
was assigned the lowest priority (both will contain a single
Ci and a single Ck term as Di ≤ Ti(HI) ≤ Ti(LO) for all
tasks). Hence the computed response time bound Rk of τk is =
Ri ≤ Di ≤ Dk (where Ri is the value computed when τi was
assigned the lowest priority). It follows that τk is schedulable
at the lowest priority and that the task with the longest deadline
(but identical criticality) is also eligible to be assigned lowest
priority.

Hence in seeking to determine whether some task may
be assigned lowest priority, there are only two potential
candidates to consider: the LO-criticality task with the largest
relative deadline and the HI-criticality task with the largest
relative deadline. This implies that a total of at most O(|τ |)
recurrences need to be solved in order to assign priorities to
the tasks in the MC sporadic task system τ (where |τ | denotes
the number of tasks in τ ).

IX. COMPARING THE AMC AND SMC ALGORITHMS

We first compare the two SMC schemes; we show that if
the platform upon which the task system is being implemented
allows for admission control, it is always beneficial (from the
schedulability perspective) to exploit this feature and imple-
ment the SMC version that incorporates admission control.

Lemma 2: If SMC with no admission control successfully
assigns priorities to the tasks in a task system τ , then so does
SMC with admission control.
Proof Sketch: Suppose that SMC with no admission control
determines that some task τi ∈ τ may be assigned lowest
priority. This implies that the smallest positive solution of
Equation 1 is ≤ Di. Since the denominator of each term in the
summation on the RHS of Equation 2 is at least as large as the
denominator of the corresponding term in the summation on
the RHS of Equation 1, it is evident that the smallest positive
solution of Equation 2 is no larger than the smallest positive
solution of Equation 1, and is hence also ≤ Di.

Next, we show below (Thm. 1) that AMC strictly dominates
the SMC algorithm: by showing that (i) every task system
that can be scheduled in a certifiably correct manner by SMC
can also be scheduled in a certifiably correct manner by
AMC (Lemma 3); and (ii) there are task systems schedulable
by AMC, that SMC cannot schedule in a certifiably correct
manner. Given the result of Lemma 2 above, it suffices to
demonstrate this for SMC with admission control alone.

Lemma 3: If SMC with admission control successfully as-
signs priorities to the tasks in task system τ , then so does

AMC.
Proof Sketch: Suppose that SMC with admission control
determines that some task τi ∈ τ may be assigned lowest
priority. This implies that the smallest positive solution of
Equation 2 is ≤ Di. We will show that this task may also be
assigned lowest priority under AMC. We consider separately
the cases when this lowest-priority task τi is a LO-criticality
task (χi = LO) and when it is a HI-criticality task (χi = HI).

• In the case when χi = LO, notice that Equation 3 is
identical to Equation 2. Recall that LLO is, by definition,
equal to the smallest positive solution to Equation 3.
Hence, the fact that the smallest positive solution of
Equation 2 is ≤ Di implies that LLO is also ≤ Di.
Since τi is a LO-criticality task, it is consequently possible
under AMC to assign it the lowest priority.

• It remains to consider the case when χi = HI. Since
we assumed that τi has been assigned lowest priority by
the technique of Section VI, it must be the case that
the smallest positive solution to Equation 2 is ≤ Di.
Equation 2 can be rewritten as

t =
∑
∀j

⌈
t

Tj(min(HI, χj))

⌉
Cj

=
∑

j:χj=LO

⌈
t

Tj(LO)

⌉
Cj +

∑
j:χj=HI

⌈
t

Tj(HI)

⌉
Cj

≥
∑

j:χj=LO

⌈
LLO

Tj(LO)

⌉
Cj +

∑
j:χj=HI

⌈
t

Tj(HI)

⌉
Cj

(5)

Upon comparing Inequality 5 above to Equation 4, it
becomes evident that the smallest positive solution to
Equation 5 (and hence, to Equation 2) is no smaller
than the smallest positive solution to Equation 4. Recall
that LHI is defined to be equal to the smallest positive
solution to Equation 4. We may therefore conclude that
LHI ≤ Di, which in turn implies that AMC may assign
lowest priority to τi.

We thus see that for any task system for which SMC identifies
a lowest-priority job, AMC does likewise. The lemma proves,
by repeated applications of this argument.

Examples 3 and 5 bear witness to the fact that there are MC
sporadic task systems to which SMC cannot assign priorities
in a certifiably correct manner, whereas AMC can. It follows
from Lemma 3 that every task system that can be scheduled in
a certifiably correct manner by SMC can also be scheduled in
a certifiably correct manner by AMC, allowing us to conclude
that at least from the perspective of certifiable correctness,

Theorem 1: AMC dominates the priority assignment tech-
nique of SMC.

X. EXPERIMENTAL EVALUATION

In this section we present the results we obtained from our
experimental analysis. We randomly generated task sets and
determined the percentage of task sets that are schedulable



under different priority assignment techniques that we consid-
ered. In some cases we computed the weighted schedulabil-
ity [8].

The method we used to generate the task sets is inspired
by, and hence very similar to, that used in [6].
• The UUnifast algorithm [9] was used to generate the task

utilizations (Ui = Ci/Ti).
• The low criticality period, Ti(LO), for each task was

generated according to a log-uniform distribution in
the range 10ms to 1000ms. The high criticality period,
Ti(HI), was a fixed multiplier of the low criticality period,
Ti(HI) = CF × Ti(LO) and CF ≤ 1. All task periods
were set to integer values, by rounding down from any
non-integer value.

• Task deadlines, Di, were set equal to Ti(HI).
• The worst-case execution times, Ci, were set equal to
Ui × Ti(LO).

• The probability that a generated task was a high criticality
task was given by the parameter CP . For example, if
CP = 0.5 then on an average 50% of the generated
tasks were expected to have high criticality.

Our task set parameter generation method is different from
the one used in [6] only in the following way: In [6] each
task had a HI-criticality worst case execution time which was
CF (CF ≥ 1) times the LO-criticality worst-case execution
time. However, in our case, each task has a HI-criticality time
period, Ti(HI) which is CF (CF ≤ 1) times the LO-criticality
time period, Ti(LO).

The different priority assignment techniques that we con-
sidered are:
• CM: Criticality monotonic priority ordering described in

Section V.
• SMC-no: SMC with no admission control described in

Section VI-A.
• SMC: SMC with admission control described in Sec-

tion VI-B.
• AMC: The AMC priority assignment scheme described

in Section VII.
• UBHL: UBHL, described in [6], gives the upper bound

on the schedulability of a task set: if a task set is not
schedulable under UBHL then it is not schedulable ac-
cording to any priority assignment (UBHL is a mnemonic
for “upper bound – HI and LO”). To pass this test the task
set must be shown to be schedulable in both Steps 1 and
2 described below:

– Step 1 - All tasks in the task set are arranged as per
deadline monotonic priority ordering and response
time analysis is done assuming that all tasks are
executing with low criticality time period.

– Step 2 - Only the high criticality tasks are arranged
as per deadline monotonic priority ordering and re-
sponse time analysis is done assuming that only high
criticality tasks are executing with high criticality
time period.

For the experiments reported in Figure 2 task sets were

generated with utilizations in the range 0.025 to 0.975 in
increments of 0.025. For each utilization value, 1000 task
sets were generated such that each task set had 20 tasks
(N = 20), and on average 50% of these tasks had HI criticality
(CP = 50%). For all tasks the HI-criticality time period
was 0.5 times its LO-criticality time period (CF = 0.5), and
the deadline was set equal to its HI- criticality time period,
Di = Ti(HI). For each of the task sets priorities were assigned
according to the different priority assignment schemes. The
graph in Figure 2(a) shows that percentage of schedulable task
sets under the respective priority assignment schemes.

In Figure 2(b) we repeated the experiment with the param-
eters described above and set the deadline of each task, Di,
to a random value chosen uniformly between Ci and Ti(HI).
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Fig. 2. Percentage of Schedulable Task sets
From the graphs in Figure 2 we see that the AMC priority

assignment scheme outperforms CM, SMC-no, and SMC.
Also, as expected, the curves that correspond to the different
priority assignment schemes are below the curve that corre-
sponds to the UBHL test.

In Figure 3 we show our results in terms of weighted
schedulability. Similar weighted schedulability tests are de-
scribed in [6]. The weighted schedulability measure Wy(p) [8]
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Fig. 3. Weighted Schedulability

for schedulability test y, as a function of parameter p, com-
bines results of all task sets τ , generated for a set of equally
spaced utilization values. Let Sy(τ, p) be the binary result (1
or 0) of schedulability test y for a task set τ with parameter
value p:

Wy(p) = (
∑
∀τ

u(τ).Sy(τ, p))/
∑
∀τ

u(τ)

where u(τ) is the utilization of task set τ .
In our experiments we computed the weighted schedulabil-

ity for each of the priority assignment schemes, as a function
of the key parameters: criticality factor, CF , percentage of
tasks with high criticality, CP , and size of the task set, N . We
varied one of the key parameters at a time. The other parame-
ters were set to the values assigned to them in the experiments
for Figure 2. For each value of the varying parameter, we
computed the weighted schedulability by generating task sets
with utilization in the range 0.025 to 0.975 in increments of
0.025. For each of the utilization values 1000 task sets were
generated.

The weighted schedulability measure reduces what would
otherwise be a 3-dimensional plot to 2 dimensions [8]. A
higher weighted schedulability reflects that task sets with
higher utilization are schedulable.

Figures 3(a)- 3(c) show the results of varying each of
the key parameters. Figure 3(a) varies the criticality factor,
Figure 3(b) varies the percentage of tasks with HI criticality,
and Figure 3(c) varies the size of the task set. The following
observations can be made:
• In all the graphs we see that the weighted schedulability

of AMC is greater than or equal to the weighted schedu-
lability of CM, SMC-no, and SMC.

• In Figure 3(a), as the criticality factor, CF , increases the
value of the HI-criticality period, Ti(HI), for each task
increases, which also implies that the task deadlines, Di,
are greater. Thus, as CF increases we see an increase in
the weighted schedulability of all the priority assignment
schemes. Also, when CF = 1, Ti(LO) = Ti(HI). In this
case it can easily be shown that the schedulability under
SMC-no, SMC, and AMC will be the same and this can
also be observed in Figure 3(a).

• In Figure 3(b), the curve for CM is U-shaped because
each end of the interval represents a task set with more
tasks of the same criticality. When there are more tasks
of the same criticality, the priorities assigned by CM are
closer to optimal.

• In Figure 3(c), varying the task set size does not signif-
icantly vary the weighted schedulability of the different
priority assignments schemes.

The overall observation that we make from our experimental
results and theoretical analysis is that AMC is an effective pri-
ority assignment scheme for scheduling fixed-priority, mixed
criticality systems.

XI. CONCLUSION

Obtaining certification for safety-critical applications in
mixed-criticality systems is particularly challenging due to
potential interference by lower-criticality applications. Ap-
proaches based on preventing such interference by enforcing
strict isolation amongst applications of different criticalities



can lead to poor resource utilization, thereby defeating one of
the major objectives of platform-sharing.

Recently, some exciting research has been done on design-
ing scheduling strategies that are easy to certify and that simul-
taneously ensure efficient use of platform resources. Much of
this research has focused on dealing with pessimism regarding
WCET parameters. In this document, we have described some
ongoing work on scheduling mixed-criticality systems when
certification pessimism is expressed in terms of increased
frequency of occurrence of events needing certification. The
algorithms described above are easily generalized in several
directions; we briefly list some of these extensions below.

More than two criticality levels. We have thus far assumed
two criticality levels, denoted LO and HI. In many safety-
critical application domains, there may be more than two levels
specified. For instance, the DO-178B standard specifies five
criticality levels, while the IEC 61508 international standard
for industrial use recommends four different Safety Integrity
Levels (SILS). Our techniques may be extended to deal with
multiple criticality levels, by separately considering the tran-
sition between each adjacent pair of criticality levels.

Multiple specifications along both dimensions. To keep
the discussion simple, we have chosen to suppose that while
the period parameters are specified more pessimistically at
higher criticality levels, the WCET parameters remain the
same across all levels. Much previous work has discussed
certification-cognizant scheduling of systems in which the
period remains the same but the WCET parameters get more
pessimistic with increasing criticality; to our knowledge, this
work is the first to consider increased pessimism for periods.
It is relatively straightforward to combine both forms of pes-
simism into a single framework, and come up with scheduling
strategies that are able to deal with added pessimism in both
WCET and period at higher criticality levels.
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