
Mixed-criticality scheduling upon unreliable
processors

Sanjoy Baruah Zhishan Guo
The University of North Carolina at Chapel Hill

Abstract— An unreliable processor is characterized by two
execution speeds: a normal speed and a degraded speed. Un-
der normal circumstances it will execute at its normal speed;
unexpected conditions may occur during run-time that cause it
to execute more slowly (but no slower than at its degraded speed).

The problem of executing an integrated workload, consisting
of some more important components and some less important
ones, upon such an unreliable processor is considered. It is
desired that all components execute correctly under normal
circumstances, whereas the more important components should
execute correctly (although the less important components need
not) if the processor runs at any speed no slower than its specified
degraded speed.

I. INTRODUCTION

In mixed-criticality (MC) systems, functionalities of differ-
ent degrees of importance (or criticalities) are implemented
upon a common platform. Such MC implementations are be-
coming increasingly common in embedded systems – consider,
for example, Integrated Modular Avionics (IMA) in avia-
tion [17] and the AUTOSAR initiative (www.autosar.org)
for automotive systems. As a consequence the real-time sys-
tems research community has recently devoted much attention
to better understanding the challenges that arise in implement-
ing such MC systems.

Much prior work on MC scheduling (see, e.g., [19], [5],
[2], [8], [3], [20], [16], [6], [18], [12] – this list is not meant
to be exhaustive) has taken the approach of validating the
correctness of highly critical functionalities under more pes-
simistic assumptions than the assumptions used in validating
the correctness of less critical functionalities. (For example,
a piece of code may be characterized by a larger worst-case
execution time (WCET) [19] in the more pessimistic analysis,
or recurrent code that is triggered by some external recurrent
event may be characterized by a higher frequency [1].) All
functionalities are expected to be demonstrated correct under
the less pessimistic analysis, whereas the analysis under the
more pessimistic assumptions need only demonstrate the cor-
rectness of the more critical functionalities.

In this paper we take a somewhat different perspective on
mixed-criticality scheduling: the system is analyzed only once,
under a single set of assumptions. The mixed-criticality nature
of the system arises in the fact that while we would like
all functionalities to execute correctly under normal circum-
stances, it is essential that the more critical functionalities
execute correctly even when circumstances are not normal.
To express this formally, we model the workload of a MC

system as being comprised of a collection of real-time jobs
— these jobs may be independent, or they may be generated
by recurrent tasks. Each job is characterized by a release date,
a worst-case execution time (WCET), and a deadline; each job
is further designated as being HI-criticality (more important)
or LO-criticality (less important). We desire to schedule the
system upon a single processor. This processor is unreliable
in the following sense: while under normal circumstances
it completes one unit of execution during each time unit
(equivalently, it executes as a speed-1 processor), it may at any
instant lapse into a degraded mode during which it can only
complete as few as s units of execution during each time unit,
for some (known) constant s < 1. It is not a priori known
when, or whether, such degradation will occur1. We seek a
scheduling strategy that guarantees to complete all jobs by
their deadlines if the performance of the processor does not
degrade during run-time, while simultaneously guaranteeing
to complete all HI-criticality jobs if the processor does suffer
a degradation in performance.

Example 1: Consider the following collection of two jobs,
to be scheduled on a preemptive processor with normal speed
1 and degraded speed s = 1

2 :

Job Criticality Release date WCET Deadline
J1 LO 0 3 5
J2 HI 1 4 10

An Earliest Deadline First (EDF) [13] schedule for this
system prioritizes J1 over J2. This is fine if the processor
does not degrade: J1 executes over the interval [0, 3) and J2
over [3, 7), thereby resulting in both deadlines being met.

Now suppose that the processor were to degrade at some
instant within the time-interval [0, 10]: a correct scheduling
strategy should execute the HI-criticality job J2 to complete by
its deadline (although it may fail to execute J1 correctly). But
consider the scenario where the processor degrades starting at
time-instant 3: in the EDF schedule J2 would obtain merely
(10− 3)× 1

2 = 3 1
2 units of execution prior to its deadline at

time-instant 10. Since J2’s WCET is 4, we conclude that EDF
does not schedule this system correctly.

An alternative scheduling strategy could instead execute
jobs as follows on a normal (non-faulty) processor: J1 over

1We do however assume that the system is capable of self-monitoring:
it immediately knows if and when such degradation occurs. We leave the
analysis of systems in which such self-monitoring does not occur to future
work – see Section VI.

the interval [0, 1); J2 over [1, 3); J1 again, over [3, 5); and
finally J2 over [5, 7):

-
0 1 2 3 4 5 6 7 8 9 10

J1’s d’line

?

J2’s d’line

?J1 J2 J1 J2

If the processor degrades at any instant during this execution
then J1 is immediately discarded and the processor executes
J2 exclusively.

It may be verified, by exhaustive consideration of all pos-
sible instants at which the processor may degrade, that this
scheduling strategy will result in J2 completing by its deadline
regardless of when (if at all) the processor degrades, and in
both deadlines being met if the processor remains normal (or
degrades at any instant ≥ 5).

Contributions and Organization. The research described
in this paper aims to define a formal framework for the
scheduling-based analysis of mixed-criticality (MC) systems
of the kind described above, that execute upon unreliable pro-
cessors. To this end, in Section II we introduce a very simple
model for MC systems, that allows for the representation of
systems consisting of a finite number of independent jobs.
In Section III we present, and analyze, algorithms for the
preemptive scheduling of MC systems that can be represented
using this model; in Section IV, we consider the problem
when preemption is forbidden. In Section V, we consider a
more general model for MC systems: one that allows for
the modeling of systems comprised of recurrent tasks. We
conclude in Section VI by placing this work within the larger
context of mixed-criticality scheduling, and briefly enumerate
some important and interesting directions for further research.

A note. Although we have chosen to model the problem in
terms of real-time jobs executing on unreliable processors,
the model (and our results) are equally applicable to the
transmission of time-sensitive messages on potentially faulty
communication media. Specifically, they are particularly rele-
vant to data-communication problems in which time-sensitive
messages and message streams must be transmitted over
potentially faulty communications media which can provide
a high bandwidth under most circumstances but can only
guarantee a lower bandwidth: the high bandwidth would
correspond to the normal processor speed, and the lower
bandwidth to the degraded speed. We therefore believe that
this work is relevant to problems of factory communication,
communication within automobiles or aircraft, wireless sensor
networks, etc., in addition to processor scheduling of mixed-
criticality workloads.

II. MODEL

We start out considering a workload model consisting of
independent jobs; a model for representing recurrent tasks is
considered in Section V.

In our model, a mixed-criticality real-time workload is
comprised of basic units of work known as mixed-criticality
jobs. Each mixed-criticality (MC) job Ji is characterized by a

4-tuple of parameters: a release date ai, a WCET ci, a deadline
di, and a criticality level χi ∈ {LO, HI}. A mixed-criticality
instance I is specified by specifying

1) a finite collection of MC jobs {J1, J2, . . . , Jn}, and
2) an unreliable processor that is characterized by both a

normal speed (without loss of generality, assumed to be
equal to one) and a specified degraded processor speed
s < 1.

The interpretation is that the jobs {J1, J2, . . . , Jn} are to
execute on a single shared processor that has two modes:
a normal mode and a degraded or faulty mode. In normal
mode, the processor executes as a unit-speed processor and
hence completes one unit of execution per unit time, whereas
in degraded mode it completes less than one, but at least s,
units of execution per unit time.

The processor starts out executing at its normal speed. It is
not a priori known when, if at all, the processor will degrade
and begin executing at its degraded speed: this information
only becomes revealed during run-time when the processor
actually begins executing at the slower speed. We seek to
determine a correct scheduling strategy:

Definition 1 (correct scheduling strategy): A scheduling
strategy for MC instances is correct if it possesses
the property that upon scheduling any MC instance
I = ({J1, J2, . . . , Jn}, s),

• if the processor remains in normal mode throughout the
interval [mini{ai},maxi{di}), then all jobs complete by
their deadlines; and

• if the processor operates at or above its degraded speed
of s throughout the interval [mini{ai},maxi{di}), then
all jobs Ji with χi = HI complete by their deadlines.

That is, a correct scheduling strategy ensures that HI-
criticality jobs execute correctly regardless of whether the
processor executes in normal or degraded mode; LO-criticality
jobs are required to execute correctly only if the processor
executes throughout in normal mode.

Related work. A lot of research has recently been done
on various aspects of mixed-criticality scheduling. As stated
in Section I above, though, most of this prior work draws
inspiration from the seminal work of Vestal [19], which
asked how a single MC system could be subject to multi-
ple different analyses, each under different assumptions and
with different requirements on the system’s behavior. We
are not aware of other work in real-time mixed-criticality
scheduling theory that addresses our model: all jobs should
complete under normal circumstances and HI-criticality jobs
should complete (although LO-criticality jobs may not) under
degraded conditions. To the best of our knowledge, current
practice in implementation of such mixed-criticality systems
to assign greater scheduling priority to HI-criticality jobs, but
this approach can easily be seen to perform arbitrarily poorly
even in scheduling under non-degraded conditions.

-
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

J3’s d’line

?

J1’s d’line

?

J4’s d’line

?

J2’s d’line

?J1 J3 J1 J4 J2

Fig. 1. Scheduling table S(I) for the MC instance I of Example 2

III. PREEMPTIVE SCHEDULING

In this section we present efficient strategies for scheduling
preemptable mixed-criticality instances. We start out with a
general overview of our strategy. Given an instance I , our
scheduling strategy is as follows. Prior to run-time we will
construct a scheduling table S(I), for use while the processor
is in normal (i.e., not faulty) mode. This scheduling table
should possess the property that each job Ji receives ci units of
execution over the interval [ai, di). During run-time scheduling
decisions are initially made according to scheduling table
S(I). If at any instant it is detected that the processor has
transited to faulty mode, scheduling table S(I) is no longer
used; instead, we immediately discard all LO-criticality jobs
and henceforth execute the (remaining) HI-criticality ones
according to EDF.

In the remainder of this section we present, and prove the
correctness of, simple efficient algorithms for constructing
these scheduling tables S(I) optimally. By optimal, we mean
that if there is a correct scheduling strategy –Definition 1– for
an instance I , then the scheduling strategy described above
is also a correct scheduling strategy with the tables we will
construct. For pedantic reasons, we start out in Section III-A
by considering MC instances in which all jobs have a common
release date – this section should help develop the intuition
and insights that are subsequently used to solve the general
problem in Section III-B. We have implemented the algorithm
that solves the general problem, and have performed some
simulation experiments that seek to determine the tightness
of some lower bounds derived in Section III-B; we report on
these simulation experiments in Section III-C.

A. Synchronous instances

Definition 2 (Synchronous instance): A mixed-criticality
instance I is said to be synchronous if all jobs Ji in the
instance I have the same release date ai; without loss of
generality, we may assume that this common release date is
zero.

We now describe a procedure for generating the scheduling
table S(I) for any synchronous instance I; this procedure is
then illustrated via a simple example (Example 2):

1) First, schedule each LO-criticality job to execute as late
as possible.
This can be accomplished by considering the LO-
criticality jobs in non-increasing order of deadlines (i.e.,
with the latest-deadline job considered first); in consid-
ering a job, we schedule it as close to its deadline as

possible2.
2) Next construct an EDF schedule for the HI-criticality jobs

in the remaining processor capacity.
3) If this fails then report failure and exit: there does not

exist a schedule that can guarantee to meet all deadlines
upon the normal (non-degraded) processor.

4) Else, validate whether this schedule will perform satis-
factorily during degraded mode. This is done as follows.

a) At the start of each continuous interval during which
HI-criticality jobs are scheduled, determine whether all
remaining HI-criticality deadlines will be met under an
EDF schedule of only the remaining HI-criticality jobs
on a degraded processor.

b) If this fails then report failure and exit.
5) Report success

Example 2: Consider an instance I comprised of four jobs
with parameters as shown below, to be implemented upon
an unreliable processor with normal speed one and degraded
speed s = 1/2.

Ji ai ci di χi
J1 0 4 10 HI
J2 0 2 16 HI
J3 0 3 4 LO
J4 0 5 12 LO

First, our algorithm generates the scheduling table S(I) as
follows (see Figure 1):
• First, schedule the LO-criticality jobs to execute as late

as possible. This results in J4 executing over [7, 12), and
J3 executing over [1, 4).

• Next, schedule the HI-criticality jobs in the remaining
capacity, using EDF. Job J1 therefore executes over [0, 1)
and [4, 7), while J2 executes over [12, 14).

Next, this schedule must be validated to determine whether
it would meet all HI-criticality deadlines in the event of a
degradation in processor speed. For this validation step, there
are three continuous intervals of HI-criticality execution to
consider: [0, 1), [4, 7), and [12, 14).
• If the processor degrades to speed 1/2 at time-instant

0 and only J1 and J2 need to complete, then an EDF
schedule on these two jobs would have J1 execute over
[0, 8) and J2 over [8, 12). Both jobs thus complete by
their deadlines.

• Suppose next that the processor degrades to speed 1/2 at
time-instant 4 and only J1 and J2 need to complete. J1

2Observe that each job executes non-preemptively in such a schedule;
therefore, the number of distinct contiguous blocks of execution in this partial
schedule is bounded by the number of LO-criticality jobs.

has 3 units of remaining execution while J2 has 2 units
of remaining execution. An EDF schedule would have J1
execute over [4, 10) and J2 over [10, 14). Both jobs thus
complete by their deadlines.

• Suppose finally that the processor degrades to speed 1/2
at time-instant 12 and only J1 and J2 need to complete.
J1 has already completed execution; J2 has 2 units of
remaining execution. An EDF schedule would execute
J2 over [12, 16), thus complete it by its deadline.

The schedule is therefore validated.

Theorem 1: Our algorithm is correct: if it reports success
then during run-time the dispatch policy guarantees to both
(i) meet all deadlines if the processor executes at normal speed
throughout; and (ii) meet all HI-criticality deadlines if the
processor begins executing at degraded speed after some (a
priori unknown) point in time.
Proof: Suppose that the algorithm generates a scheduling table
and reports success.
• If the processor executes throughout at normal speed, it

is evident that the schedule will complete each job by its
deadline.

• Suppose now that the processor begins executing at some
speed s′ at time t, where s ≤ s′ < 1. We consider two
possibilities, depending on whether some HI-criticality
job is executing or not at time-instant t

1) Some HI-criticality job is executing at time-instant t.
Let [a, b) denote the contiguous block of HI-criticality
execution such that t ∈ [a, b). We had determined
(during the validation step) that the HI-criticality jobs
remaining at time-instant a would be EDF-scheduled
to meet all deadlines on a speed s processor. It follows
from the speed-sustainability of preemptive uniproces-
sor EDF (speed of the processor, at one, is greater over
[a, t); s′ ≥ s) that our dispatch strategy will also meet
all HI-criticality deadlines provided the speed of the
processor remains above s.

2) Some HI-criticality job is not executing at time-instant
t. Let a denote the earliest start time of a contiguous
block of HI-criticality execution such that t ≤ a. We
had determined during step 2 that the HI-criticality jobs
remaining at time-instant a would be EDF-scheduled
to meet all deadlines on a speed s processor. It once
again follows from the sustainability of preemptive
uniprocessor EDF that our dispatch strategy will also
meet all HI-criticality deadlines provided the speed of
the processor remains above s.

Theorem 2: Our algorithm is optimal: if it reports failure,
then no non-clairvoyant scheduling strategy can guarantee to
both (i) meet all deadlines if the processor executes at normal
speed throughout; and (ii) meet all HI-criticality deadlines if
the processor begins executing at degraded speed after some
(a priori unknown) point in time.
Proof: If our algorithm reports failure while generating the
scheduling table, it is straightforward to show that the in-

stance is infeasible on a speed-1 processor. We therefore
consider the case when our algorithm reports failure during
the validation phase. Specifically, suppose that our algorithm,
upon considering a contiguous block [a, b) of high-criticality
execution in the scheduling table, determines that all HI-
criticality execution remaining at time-instant a cannot be
guaranteed to complete on time when they are EDF-scheduled
upon a speed-s processor.

The crucial observation here is that the scheduling table that
we generate executes HI-criticality work as soon as possible
(since it schedules all LO-criticality jobs for execution as late
as possible). Hence it must be the case that at time-instant a no
other schedule could have completed more HI-criticality work
than our schedule does. Furthermore, within this HI-criticality
execution our schedule executes the HI-criticality jobs in EDF
order. Since our schedule cannot complete all the remaining
HI-criticality work on time upon a speed-s processor, it follows
that no other algorithm will be able to, either. Hence, any other
algorithm will also report failure.

B. General (not necessarily synchronous) instances

We start out identifying the following (obvious) necessary
conditions for MC-schedulability:

Lemma 1: In order that a correct scheduling strategy exist
for MC instance I = ({J1, J2, . . . , Jn}, s), it is necessary
that (i) EDF correctly schedule all the jobs in I on a speed-1
processor, and (ii) EDF correctly schedule all the HI-criticality
jobs in I on a speed-s processor.

Given any instance I , it can be efficiently determined
whether I satisfies the necessary conditions of Lemma 1:
simply simulate the EDF scheduling of all the jobs in I upon
a unit-speed processor, and of the HI-criticality jobs in I upon
a speed-s processor. In the remainder of this section, let us
therefore assume that any instance under consideration satis-
fies these necessary conditions. (In other words, an instance
that fails these necessary conditions can obviously not have a
correct scheduling strategy, and is therefore flagged as being
unschedulable.)

Given a (not necessarily synchronous) MC instance I =
({J1, J2, . . . , Jn}, s) that satisfies the conditions of Lemma 1,
we now describe how to construct a linear program of size
polynomial in the size of the instance I , such that a feasible
solution for this linear program can be used to construct the
scheduling table S(I). It is known that a linear program can be
solved in polynomial time by the ellipsoid algorithm [10] or
the interior point algorithm [9]. (In addition, the exponential-
time simplex algorithm [4] has been shown to perform ex-
tremely well “in practice,” and is often the algorithm of choice
despite its exponential worst-case behavior.)

Without loss of generality, assume that the HI-criticality jobs
in I are indexed 1, 2, . . . , nh and the LO-criticality jobs are
indexed nh+1, . . . , n.

Let t1, t2, . . . , tk+1 denote the at most 2n distinct values
for the release date and deadline parameters of the n jobs, in

Given the MC instance ({J1, J2, . . . , Jn}, s), with the job
release-dates and deadlines partitioning the time-line over
[mini{ai},maxi{di}) into the k intervals I1, I2, . . . , Ik

Determine values for the
(
n× k

)
variables{

xi,j

}
i=1,...,n,j=1,...,k

satisfying the following constraints:

• For each i, 1 ≤ i ≤ n,(∑
(j|tj≥ai ∧ di≥tj+1

xi,j

)
≥ ci (1)

• For each j, 1 ≤ j ≤ k,(n∑
i=1

xi,j
)
≤ tj+1 − tj (2)

• For each `, 1 ≤ ` ≤ k, for each m, ` < m ≤ (k + 1)(∑
i:(χi=HI)∧(di≤tm)

(m−1∑
j=`

xi,j
))
≤ s(tm − t`) (3)

Fig. 2. Linear program for constructing scheduling table S(I) for a given
MC instance ({J1, J2, . . . , Jn}, s)

increasing order (tj < tj+1 for all j). These release dates and
deadlines partition the time-interval

[
mini{ai},maxi{di}

)
into k intervals, which we will denote as I1, I2, . . . , Ik; Ij :=
[tj , tj+1)

To construct our linear program we define n× k variables
xi,j , 1 ≤ i ≤ n; 1 ≤ j ≤ k. The variable xi,j denotes the
amount of execution we will assign to job Ji in the interval
Ij , in the scheduling table that we are seeking to build.

We use the following n constraints to specify that each job
receives adequate execution in the normal schedule:(∑

(j|tj≥ai ∧ di≥tj+1

xi,j

)
≥ ci, for each i, 1 ≤ i ≤ n (1)

and the following k constraints to specify the capacity con-
straints of the intervals:(n∑

i=1

xi,j
)
≤ tj+1 − tj , for each j, 1 ≤ j ≤ k (2)

Within each interval, we will execute all the HI-criticality jobs
assigned execution within that interval first, followed by all the
LO-criticality jobs assigned execution within that interval. That
is, the interval Ij will have a block of HI-criticality execution
of duration

∑nh

i=1 xi,j , followed by a block of LO-criticality
execution of duration

∑n
i=nh+1 xi,j .

It should be evident that any scheduling table generated in
this manner from xi,j values satisfying the above (n + k)
constraints will execute all jobs to completion upon a normal
(non-degraded) processor. It now remains to write constraints
for specifying the requirements that the HI-criticality jobs

complete execution even in the event of the processor de-
grading into faulty mode. As was the case with scheduling
tables for synchronous instances, it is not hard to show that
the worst-case scenarios occur when the processor transits to
degraded mode at the very beginning of a contiguous block
of HI-criticality execution in the scheduling table. For each `,
1 ≤ ` ≤ k, we represent the possibility that this transition
occurs at the start of the interval I` in the following manner:

(i) Suppose that the fault occurs at time-instant t`; i.e., the
start of the interval I`. Henceforth, only HI-criticality
jobs will be executed; furthermore, these will be executed
according to preemptive EDF.

(ii) Hence for each tm ∈ {t`+1, t`+2, · · · , tk+1}, constraints
must be introduced to ensure that the cumulative remain-
ing execution requirement of all HI-criticality jobs with
deadline at or prior to tm can complete execution by tm
on a speed-s processor.

(iii) This is ensured by writing a constraint(∑
i:(χi=HI)∧(di≤tm)

(m−1∑
j=`

xi,j
))
≤ s(tm − t`) (3)

To see why this represents the requirement stated in (ii)
above, note that for any job Ji with di ≤ tm,(∑m−1

j=` xi,j
)

represents the remaining execution require-
ment of job Ji at time-instant t`. The outer summation
on the LHS is simply summing this remaining execution
requirement over all the HI-criticality jobs that have
deadlines at or prior to tm.

(iv) A moment’s thought should convince the reader that
rather than considering all tm’s in {t`+1, t`+2, · · · , tk+1}
as stated in (ii) above, it suffices to only consider those
that are deadlines for some HI-criticality job.

(v) The Constraints (3) above only prevent missed deadlines
after t` when the (degraded) processor is continually
busy over the interval between t` and the missed dead-
line; what about deadline misses when the processor is
not continually busy over this interval (and the RHS of
the inequality of Constraints (3) therefore does not reflect
the actual amount of execution received)? We point out
that for such a deadline miss to occur, it must be the case
that there is a subset of HI-criticality jobs – those with
release dates and deadlines between the last idle instant
prior to the deadline miss and the deadline miss itself –
that miss their deadlines on a speed-s processor. But this
would contradict our assumption that the instance passes
the necessary conditions of Lemma 1, i.e., all the HI-
criticality jobs together (and therefore, every subset of
these jobs) execute successfully on a speed-s processor.

Given a solution to this linear program, we construct a
scheduling table that assigns job Ji an amount xi,j of exe-
cution during the interval I`, for each pair (i, `); in I`, HI-
criticality execution is performed before LO-criticality execu-
tion – the jobs may be executed in any order within each
criticality level. During run-time, scheduling decisions are
initially made according to this scheduling table. If a processor

Ji ai ci di χi
J1 0 3 5 LO
J2 0 c2 d2 HI
J3 3 1 5 HI -

-

-

0 1 2 3 4 5 d2

J1

J2

J3

6 ?

6 ?

6 ?

-
0 1 2 3 4 5 6 7 8 9 10

I1 I2 I3

J2 J1 J3 J1 J2

(a) (b) (c)
Fig. 3. Illustrating Example 3. The jobs are listed in (a), and depicted graphically in (b). The scheduling table that is constructed is depicted in (c).

failure is detected, the table is no longer used; instead, all LO-
criticality jobs are discarded and the remaining HI-criticality
jobs are executed acording to EDF.

The entire linear program is listed in Figure 2; we now
illustrate the construction of such a linear program by means
of a simple example.

Example 3: We will consider a MC instance I consisting of
three jobs, with parameters as depicted in Figure 3(a), with c2’s
value left unspecified for now, and d2 assumed to be larger
than 5. The release dates and deadlines of these three jobs
define three intervals: I1 = [0, 3); I2 = [3, 5); I3 = [5, d2), as
illustrated in Figure 3(b).

Since there are three jobs in I (n = 3), Constraints 1 of
the LP will be instantiated to the following three inequalities,
specifying that all three jobs receive adequate execution in
the scheduling table S(I) to execute correctly on a normal
(non-degraded) processor:

x11 + x12 ≥ 3

x21 + x22 + x23 ≥ c2

x32 ≥ 1

There are also three intervals I1, I2, and I3. Constraints 2 of
the LP will therefore yield the following three inequalities,
specifying that the capacity constraints of the intervals are
met:

x11 + x21 + x31 ≤ 3

x12 + x22 + x32 ≤ 2

x13 + x23 + x33 ≤ d2 − 5

It remains to instantiate the Constraints 3, that were intro-
duced to ensure correct behavior in the event of processor
degradation. These must be separately instantiated to model
the possibility of the processor degrading at the start of each of
the three intervals I1, I2 and I3. We consider these separately:

• Fault at the start of I1. In this case, Constraints 3 is
instantiated twice: once each for tm = 5 and tm = d2:

x31 + x32 ≤ (5− 0) s(
x21 + x22 + x23

)
+
(
x31 + x32 + x33

)
≤ (d2 − 0) s

• Fault at the start of I2. In this case, too, Constraints 3
is instantiated once each for tm = 5 and tm = d2:

x32 ≤ (5− 3) s(
x22 + x23

)
+
(
x32 + x33

)
≤ (d2 − 3) s

• Fault at the start of I3. In this case, Constraints 3 is
instantiated just once, for tm = d2:

x33 ≤ (d2 − 5) s

(We note that there are nine variables and eleven constraints
in this particular example.)

Continuing this example, suppose that c2 and d2 were 3 and
10 respectively, and s was equal to 1/2. A possible solution
to the LP would assign the xij variables the following values: x11 x12 x13

x21 x22 x23
x31 x32 x33

 =

 2 1 0
1 0 2
0 1 0


As a consequence, the scheduling table would be as depicted in
Figure 3(c). We can easily see that this scheduling table yields
a correct scheduling strategy: observe that there are three
contiguous blocks of HI-criticality execution: [0, 1), [3, 4), and
[5, 7), and consider the possibility of the processor degrading
at the start of each:
• If the processor failed during [0, 1), then J2 can execute

over [0, 3) and [5, 8), while J3 can execute over [3, 5).
Both HI-criticality jobs would meet thus their deadlines
on the speed-0.5 processor.

• If the processor failed during [3, 4), then J3 would
execute over [3, 5). J2 will have completed one unit of
execution prior to the processor failing, and therefore
need two additional units of execution. This it will obtain
by executing over [5, 9) on the speed-0.5 processor. If
the processor failed during [5, 7), then J2 will have
completed one unit of execution prior to the processor
failing. It needs two more units, which it will obtain by
executing over [5, 9) on the speed-0.5 processor.

We thus see that the solution of the LP does indeed yield a
feasible scheduling strategy.

Bounding the size of this LP. It is not difficult to show that
the LP of Figure 2 is of size polynomial in the number of jobs
n in MC instance I:
• The number of intervals k is at most 2n− 1. Hence the

number of xi,j variables is O(n2).
• There are n constraints of the form (1), and k constraints

of the form (2). The number of constraints of the form (3)
can be bounded from above by (k × nh), since for each
` ∈ {1, . . . , k}, there can be no more than nh tm’s
corresponding to deadlines of HI-criticality jobs. Since
nh ≤ n and k ≤ (2n− 1), it follows that the number of
constraints is O(n) +O(n) +O(n2), which is O(n2).

C. An optimization problem

Lemma 1 gives us a lower bound on the degraded speed s
such that the MC instance ({J1, J2, . . . , Jn}, s) can be sched-
uled in a correct manner: s can be no smaller than the speed
of the slowest processor upon which the HI-criticality jobs in
the collection would be correctly scheduled by EDF. But is
this lower bound tight? The following example illustrates that
it is not:

Example 4: Consider the following three MC jobs:

Ji ai ci di χi
J1 0 2 2 LO
J2 0 1 4 HI
J3 2 1 4 HI

It is evident that
• all three jobs are schedulable on a unit-speed processor

(execute J1 over [0, 2), J2 over [2, 3), and J3 over [3, 4)),
and

• J2 and J3 are schedulable on a speed- 12 processor (exe-
cute J2 over [0, 2), and J3 over [2, 4)).

Hence MC instance ({J1, J2, J3}, 12) satisfies the necessary
conditions identified at the beginning of Section III-B. How-
ever, there is no (non-clairvoyant) scheduling strategy that can
execute this instance correctly: consider the run-time behavior
in which the processor operates in normal mode over [0, 2).
• If J1 did not execute exclusively over the interval [0, 2),

then it misses its deadline at time-instant 2. The processor
remains in normal mode.

• If J1 did execute exclusively over the interval [0, 2), then
the processor enters degraded mode at time-instant 2.

In either case, the instance was not correctly scheduled despite
satisfying the necessary conditions of Lemma 1.

It turns out that a slight modification to the linear program
of Figure 2 can be used to answer the following optimization
version of the schedulability problem we have considered thus
far:
Given a collection of MC jobs {J1, J2, . . . , Jn}, determine
the smallest value of s such that the MC instance
({J1, J2, . . . , Jn}, s) can be scheduled in a correct manner.

To compute an answer to this question, we add the objective
function

minimize s

to our linear program of Figure 2. That is, our modified linear
program computes those values of the xi,j parameters that
yield a scheduling strategy guaranteeing to meet all deadlines
on a unit-speed processor, and HI-criticality jobs’ deadlines
when the degraded speed is the smallest possible; this smallest
speed is the desired solution to the optimization version of our
MC scheduling problem.

We implemented this modified LP and executed it on
multiple randomly-generated MC instances, using standard
workload-generation techniques that are widely used in real-
time systems. Our observations are depicted in graphical form

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

uHI

s

save
save+
s=uHI

Fig. 4. Experimental evaluation: comparing lower bound on degraded speed
(dotted line) with average computed value (solid line) and average plus
standard deviation (dashed line).

in Figure 4. The x-axis denotes the loading factor3 of the HI-
criticality jobs in the MC instance under consideration; the
y-axis, the degraded speed s of the instance. By Lemma 1
the loading factor of the HI-criticality jobs is a lower bound
on the degraded speed for which a correct scheduling strategy
may exist — this lower bound is depicted as a dotted line in
Figure 4. A multiplicity of instances were considered for each
value of uHI; the solid line depicts the average of the smallest
degraded speeds (for which a correct scheduling strategy
actually exists) as computed by our linear program. The dashed
line depicts the average degraded speed plus one standard
deviation. Although we do not claim that our simulations are
extensive or comprehensive enough to draw conclusions with
absolute certainty, the evidence presented in this graph does
indicate that the actual minimum speed (as computed by our
linear program) for which the typical randomly-generated MC
instance is correctly schedulable is very close to the lower
bound implied by Lemma 1.

IV. NON-PREEMPTIVE SCHEDULING

Recall that the scheduling strategy we adopted in Section III
above is as follows. Given an instance I , we construct a
scheduling table S(I) for use while the processor is in normal
mode. During run-time scheduling decisions are initially made
according to this table. If at any instant it is detected that the
processor has transited to faulty mode, the scheduling strategy
is immediately switched: henceforth, only HI-criticality jobs
are executed, and these are executed according to EDF. Such
a scheduling strategy requires that the job that is executing
at the instant of transition can be preempted, and is hence
not applicable for non-preemptive systems. In this section, we

3See, e.g. [14, p. 81] for the definition of the loading factor of a collection
of jobs; it is known that the loading factor is equal to the speed of the smallest
processor upon which such a collection can be scheduled using preemptive
EDF.

consider the problem of scheduling non-preemptive mixed-
criticality instances.

Non-preemptivity mandates that each job receive its execu-
tion during one contiguous interval of time. Let us suppose
that a LO-criticality job is executing when the processor expe-
riences a degradation in speed. We can specify two different
kinds of non-preemptivity requirements:

1) This LO-criticality job does not need to complete – it may
immediately be dropped.

2) This LO-criticality job cannot be preempted and discarded
– it must complete execution despite that fact that the
processor has degraded and this job’s completion is not
required for correctness.

Although the first requirement – that the LO-criticality job
may be dropped – may at first glance seem to be the more
reasonable one, implementation considerations may favor the
second requirement. For instance, it is possible that the LO-
criticality job had been accessing some shared resource within
a critical section, and preempting and discarding it would leave
the shared resource in an unsafe state. We will consider both
these forms of mixed-critical non-preemptivity.

It has long been known [11] that the problem of scheduling
a given collection of independent jobs on a single non-
preemptive processor (that does not have a faulty mode) is
already NP-hard in the strong sense [11]. Since our mixed-
criticality problem, under either interpretation of the non-
preemptivity requirements, is easily seen to be a generaliza-
tion, it is also NP-hard. In fact, although determining whether
a synchronous instance of jobs can be scheduled on a non-
faulty processor is easily solved in polynomial time by EDF,
we show below that even this restricted problem is NP-hard
for MC scheduling.

Theorem 3: It is NP-hard to determine whether there is
a correct scheduling strategy for scheduling non-preemptive
synchronous mixed-criticality instances.
Proof Sketch: We prove this first for the second interpretation
of non-preemptivity requirements (LO-criticality jobs that have
begun execution must be executed to completion), and indicate
how to modify the proof for the first interpretation.

This proof consists of a reduction of the partitioning prob-
lem [7], which is known to be NP-complete, to the problem
of determining whether a given non-preemptive synchronous
mixed-criticality instance I can be scheduled correctly. The
partitioning problem is defined as follows. Given a set S of
n positive integers y1, y2, . . . , yn summing to 2B, determine
whether there is a subset of S with elements summing to
exactly B.

Given an instance S of the partitioning problem,
we construct an instance of the synchronous mixed-
criticality scheduling problem I comprised of (n + 1) jobs
J1, J2, . . . , Jn+1. The parameters of the jobs are

Ji =

{
(0, yi, 5B, HI), 1 ≤ i ≤ n
(0, B, 2B, LO), i = n+ 1

The normal processor speed is one; the degraded processor
speed s is assigned a value equal to half: s← 1/2.

We will show that there is a partitioning for instance S if
and only if there is a correct scheduling strategy for I .

There is a partitioning for S. Let S′ ⊆ S denote the
subset summing to exactly B. We construct our scheduling
table as follows. Jobs corresponding to the elements in S′

are scheduled over the interval [0, B), after which Jn+1 is
scheduled over [B, 2B), followed by the scheduling of the
jobs corresponding to the elements in (S \S′) over [2B, 3B).
• If the processor enters faulty mode prior to time-instant
B, then only the HI-criticality jobs need to complete
execution; it may be verified that they will do so by their
common deadline.

• If the processor enters faulty mode over [B, 2B), then
Jn+1 may execute for no more than the interval [B, 3B).
That still leaves adequate capacity for the jobs corre-
sponding to elements in (S \ S′) to complete execution
by their deadline at 5B, on the speed-0.5 processor.

• Otherwise, Jn+1 completes by time-instant 2B. That
leaves adequate capacity for the jobs corresponding to
elements in (S \ S′) to complete execution by their
deadline at 5B, regardless of whether the processor enters
faulty mode or not.

There is no partitioning for S. In this case, consider the
time-instant to at which the LO-criticality job Jn+1 begins
execution. We consider three possibilities:
• If to > B, the processor remains in normal mode but
Jn+1 misses its deadline at time-instant 2B.

• If to = B, then the processor must have been idled for
some time during [0, B). If the processor were to now
enter faulty mode at this time-instant to, job Jn+1 will
execute over [B, 3B), after which the strictly more than B
units of remaining HI-criticality execution would execute
— this cannot complete by the deadline of 5B on the
speed-1/2 processor.

• Now suppose that that to < B, and the processor enters
faulty mode at this time-instant to. It must be the case
that ≤ to units of execution of the HI-criticality jobs has
occurred prior to time-instant to. Job Jn+1 will execute
over [to, to + 2B), after which the at least (2B − to)
remaining units of HI-criticality work must complete. But
on the speed-1/2 processor this would not happen prior
to the time-instant

≥ to + 2B + 2(2B − to)
= 6B − to
> 5B

which means that some HI-criticality job misses its dead-
line.

We have thus shown that there is a correct scheduling strategy
for the non-preemptive synchronous mixed-criticality instance
I if and only if S can be partitioned into two equal subsets.

The proof above assumed the second interpretation of non-
preemptivity requirements, in which LO-criticality jobs that be-
gin execution need to complete even if the processor degrades.

For the first interpretation of non-preemptivity requirements
(LO-criticality jobs that begin execution do not need to com-
plete if the processor degrades while they are executing), we
would modify the proof by assigning the jobs J1, J2, . . . , Jn
a deadline of 4B (rather than 5B as above). It may be verified
that this modified MC instance can be scheduled correctly if
and only if the S can be partitioned into two equal subsets.

The intractability result of Theorem 3 above implies that
in contrast to the preemptive case, we are unlikely to be
able to obtain efficient (polynomial-time) optimal scheduling
strategies for non-preemptive MC scheduling of even syn-
chronous instances. We are currently working on devising, and
evaluating, polynomial-time approximation algorithms for the
non-preemptive scheduling of synchronous mixed-criticality
systems.

V. RECURRENT TASKS

In Sections III and IV above, we have considered mixed-
criticality (MC) systems that can be modeled as finite col-
lections of jobs. However, many real-time systems are better
modeled as collections of recurrent processes that are specified
using, e.g., the sporadic tasks model [13], [15]. In this section,
we briefly consider this more difficult problem of scheduling
mixed-criticality systems modeled as collections of sporadic
tasks. As with traditional (i.e., non MC) real-time systems, we
will model a MC real-time system τ as being comprised of a
finite specified collection of MC recurrent tasks, each of which
will generate a potentially infinite sequence of MC jobs. We
restrict our attention here to implicit-deadline MC sporadic
tasks. Each task is characterized by a 3-tuple of parameters:
τi = (Ci, Ti, χi), with the following interpretation. Task τi
generates a potentially infinite sequence of jobs, with succes-
sive jobs being released at least Ti time units apart. Each such
job has a criticality χi, a WCET Ci, and a deadline that is
Ti time units after its release. The quantity Ui = Ci/Ti is
referred to as the utilization of τi. An implicit-deadline MC
sporadic task system is specified by specifying a finite number
τ = {τ1, τ2, . . . , τn} of such sporadic tasks, and the degraded
processor speed s < 1 (as with MC instances of independent
jobs, it is assumed that the normal processor speed is one). As
with traditional (non-MC) systems, such a MC sporadic task
system can potentially generate infinitely many different MC
instances (collections of jobs), each instance being obtained by
taking the union of one sequence of jobs generated by each
sporadic task.

If unbounded preemption is permitted, then the scheduling
problem for implicit-deadline MC sporadic task systems on
uniprocessors is easily and efficiently solved in an optimal
manner. We first derive (Theorem 4) a necessary condition for
the existence of a correct scheduling strategy. We then present
a scheduling strategy, Algorithm preemptive-MC, and prove
(Theorem 5) that it is optimal.

Theorem 4: A necessary condition for MC sporadic task
system (τ, s) to be schedulable by a non-clarivoyant correct
scheduling strategy is that

1) the sum of the utilizations of all the tasks in τ is no larger
than 1, and

2) the sum of the utilizations of the HI-criticality tasks in τ
is no larger than s.

Proof: It is evident that the first condition is necessary in
order that all jobs of all tasks in τ complete execution by
their deadlines upon a normal processor, and that the second
condition is necessary in order that all jobs of all the HI-
criticality tasks in τ complete execution by their deadlines
upon a degraded (speed-s) processor.

In order to derive a correct scheduling strategy, we first
observe that using preemption we can mimic a processor-
sharing scheduling strategy, in which several jobs are simul-
taneously assigned fractional amounts of execution with the
constraint that the sum of the fractional allocations not exceed
the capacity of the processor. (This is done by partitioning the
time-line into intervals of length ∆ where ∆ is an arbitrarily
small positive number, and using preemption within each such
interval to ensure that each job that is assigned a fraction f
of the processor capacity gets executed for a duration f ×∆
within this interval.)

Consider now the following processor-sharing scheduling
strategy:
Algorithm preemptive-MC.

1) Initially (i.e., on the normal –non-faulty– processor),
assign a share Ui of the processor to each task τi during
each instant that is active4.

2) If the processor transits to degraded mode at any instant
during run-time, immediately discard all LO-criticality
tasks and execute the HI-criticality tasks according to
EDF.

Theorem 5: Algorithm preemptive-MC is an optimal cor-
rect scheduling strategy for the preemptive uniprocessor
scheduling of MC sporadic task systems.
Proof: Let τ denote a MC implicit-deadline sporadic task
system satisfying the necessary conditions for schedulability
that have been identified in Theorem 4.

It is evident that Algorithm preemptive-MC meets all dead-
lines if the processor operates at its normal speed, since the
processor-sharing schedule ensures that each job of each task
τi receives exactly Ci units of execution between its release
date and its deadline.

Suppose that the processor degrades at some time-instant
to. If we were to immediately discard all LO-criticality tasks,
the second necessary schedulability condition of Theorem 4
ensures that there is sufficient computing capacity on the
degraded processor to continue a processor-sharing sched-
ule in which each HI-criticality task τi with an active job
receives a share Ui of the processor. The correctness of
Algorithm preemptive-MC now follows from the existence of
this processor-sharing schedule, and the optimality property of
preemptive uniprocessor EDF.

4A task is defined to be active at a time-instant t if it has released a job
prior to t and this job has not yet completed execution by time t

If preemption is forbidden, then scheduling of MC sporadic
task systems becomes a lot more challenging. As with the
collections of independent jobs (Theorem 3), this problem,
too, can be shown to be highly intractable. We are currently
working on designing efficient approximation algorithms for
scheduling such systems.

VI. CONCLUSIONS

In this paper we have presented the findings of our ini-
tial research into scheduling mixed-criticality systems upon
platforms that may suffer degradations in performance during
run-time. Upon such platforms, the scheduling objective is to
ensure that all jobs complete in a timely manner under normal
circumstances, while simultaneously ensuring that more crit-
ical jobs complete in a timely manner even under degraded
conditions.

The research reported in this paper can be extended in sev-
eral directions. Much as the initial paper on mixed-criticality
scheduling [19] gave rise to a large body of research that
explored additional aspects and facets of the problems first
described in [19], we are optimistic that other researchers will
become enthusiastic about extensions to the research described
in this paper, and will work to help solve them. We have al-
ready pointed out several interesting open problems throughout
the paper; we close by briefly describing a couple of additional
extensions that we consider particularly interesting.

More criticality levels. Although we have restricted our
attention in this paper to just two criticality levels, it would
be useful to extend the model to allow for the specification of
more than two criticality levels. Such an extension gives rise
to some interesting questions concerning, e.g., tradeoffs: does
the processor speed at which a processor is deemed to have
degraded one criticality level impact on the processor speed
at which it will degrade further criticality levels? If so, what
are the factors that the system designer should keep in mind
in deciding what the criteria are for deeming a degradation in
processor performance?

Systems that do not self-monitor. We have assumed here that
a platform “knows” its execution speed at each instant during
run-time; specifically, that the scheduling algorithm knows
when the processor speed falls below a certain threshold.
It would be particularly interesting and important to derive
algorithms for scheduling mixed-criticality systems upon plat-
forms that do not have such self-awareness; such scheduling
algorithms would need to guarantee that all jobs meet their
deadlines upon a normal processor and that all HI-criticality
jobs meet their deadlines on a degraded processor, without
knowing during run-time whether the processor is normal or
degraded.

REFERENCES

[1] S. Baruah. Certification-cognizant scheduling of tasks with pessimistic
frequency specification. In Proceedings of the IEEE Symposium on
Industrial Embedded Systems (SIES). IEEE Press, June 2012.

[2] S. Baruah, A. Burns, and R. Davis. Response-time analysis for mixed
criticality systems. In Proceedings of the IEEE Real-Time Systems
Symposium (RTSS), Vienna, Austria, 2011. IEEE Computer Society
Press.

[3] S. Baruah and S. Vestal. Schedulability analysis of sporadic tasks with
multiple criticality specifications. In Proceedings of the EuroMicro
Conference on Real-Time Systems, Prague, Czech Republic, July 2008.
IEEE Computer Society Press.

[4] G. B. Dantzig. Linear Programming and Extensions. Princeton
University Press, 1963.

[5] F. Dorin, P. Richard, M. Richard, and J. Goossens. Schedulability
and sensitivity analysis of multiple criticality tasks with fixed-priorities.
Real-Time Systems, 46(3):305–331, 2010.

[6] P. Ekberg and W. Yi. Bounding and shaping the demand of mixed-
criticality sporadic tasks. In Proceedings of the 2012 24th Euromicro
Conference on Real-Time Systems, ECRTS ’12, Pisa (Italy), 2012. IEEE
Computer Society Press.

[7] M. Garey and D. Johnson. Computers and Intractability : A Guide to the
Theory of NP-Completeness. W. H. Freeman and company, NY, 1979.

[8] N. Guan, P. Ekberg, M. Stigge, and W. Yi. Effective and efficient
scheduling for certifiable mixed criticality sporadic task systems. In
Proceedings of the IEEE Real-Time Systems Symposium (RTSS), Vienna,
Austria, 2011. IEEE Computer Society Press.

[9] N. Karmakar. A new polynomial-time algorithm for linear programming.
Combinatorica, 4:373–395, 1984.

[10] L. Khachiyan. A polynomial algorithm in linear programming. Dokklady
Akademiia Nauk SSSR, 244:1093–1096, 1979.

[11] J. Lenstra, A.H.G. Rinnooy Kan, and P. Brucker. Complexity of machine
scheduling problems. Annals of Discrete Mathematics, 1:343–362, 1977.

[12] H. Li and S. Baruah. Global mixed-criticality scheduling on multi-
processors. In Proceedings of the 2012 24th Euromicro Conference
on Real-Time Systems, ECRTS ’12, Pisa (Italy), 2012. IEEE Computer
Society Press.

[13] C. Liu and J. Layland. Scheduling algorithms for multiprogramming in
a hard real-time environment. Journal of the ACM, 20(1):46–61, 1973.

[14] J. W. S. Liu. Real-Time Systems. Prentice-Hall, Inc., Upper Saddle
River, New Jersey 07458, 2000.

[15] A. Mok. Fundamental Design Problems of Distributed Systems for The
Hard-Real-Time Environment. PhD thesis, Laboratory for Computer
Science, Massachusetts Institute of Technology, 1983. Available as
Technical Report No. MIT/LCS/TR-297.

[16] R. Pathan. Schedulability analysis of mixed-criticality systems on
multiprocessors. In Proceedings of the 2012 24th Euromicro Conference
on Real-Time Systems, ECRTS ’12, Pisa (Italy), 2012. IEEE Computer
Society Press.

[17] P. J. Prisaznuk. Integrated modular avionics. In Proceedings of the IEEE
1992 National Aerospace and Electronics Conference (NAECON 1992),
volume 1, pages 39–45, May 1992.

[18] F. Santy, L. George, P. Thierry, and J. Goossens. Relaxing mixed-
criticality scheduling strictness for task sets scheduled with FP. In
Proceedings of the 2012 24th Euromicro Conference on Real-Time
Systems, ECRTS ’12, Pisa (Italy), 2012. IEEE Computer Society Press.

[19] S. Vestal. Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance. In Proceedings of the
Real-Time Systems Symposium, pages 239–243, Tucson, AZ, December
2007. IEEE Computer Society Press.

[20] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. Memory access
control in multiprocessor for real-time systems with mixed criticality.
In Proceedings of the 2012 24th Euromicro Conference on Real-Time
Systems, ECRTS ’12, Pisa (Italy), 2012. IEEE Computer Society Press.

