
COMP 524: Programming Language Concepts
Björn B. Brandenburg

The University of North Carolina at Chapel Hill

Based in part on slides and notes by S. Olivier, A. Block, N. Fisher, F. Hernandez-Campos, and D. Stotts.

Compilation and Interpretation

Sunday, January 17, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts03: Compilation and Interpretation

Executing High-Level Languages
A processor can only execute machine code.
➡ Some can execute several “dialects” (e.g., ARM).

Thus, high-level languages must be translated
for execution.
➡ Ahead of execution: compilation.
➡ Piece-wise during execution: interpretation.

2
Sunday, January 17, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts03: Compilation and Interpretation

Compilation
Ahead of time translation.
➡ From (high-level) source language to (lower-level) target language.
➡ Deep inspection of source program as a whole.
➡ Compiler is unaware of subsequent input.

3

Source Program

Compiler

Target ProgramInput Output

Sunday, January 17, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts03: Compilation and Interpretation

Compilation
Ahead of time translation.
➡ From (high-level) source language to (lower-level) target language.
➡ Deep inspection of source program as a whole.
➡ Compiler is unaware of subsequent input.

4

Translation occurs only once, but program is
executed many times.

once

many times

Source Program

Compiler

Target ProgramInput Output

Sunday, January 17, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts03: Compilation and Interpretation

Compilation
Ahead of time translation.
➡ From (high-level) source language to (lower-level) target language.
➡ Deep inspection of source program as a whole.
➡ Compiler is unaware of subsequent input.

5

once

many times

Source Program

Compiler

Target ProgramInput Output

Advantages.
➡ No translation cost at

runtime: efficient
execution.

➡ Translation cost
amortized over many
runs.

➡ Can distribute program
without revealing
either source or
compiler (commercial
software distribution).

➡ Extensive (and slow)
optimizations possible.

Disadvantages.
➡ Runtime errors hard(er)

to diagnose.
➡ Slow edit-compile-test

cycle (large systems can
take minutes or hours to
compile).

➡ Source may get lost (de-
compilation/reverse
engineering is difficult
and lossy).

➡ Good compilers are
difficult to built.

➡ Only limited checks
possible at compile time

Sunday, January 17, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts03: Compilation and Interpretation

Target Language
Target language.
➡ Often assembly or machine code.
➡ Can be any language.

6

Source Program

Compiler

Generating C code.
➡ C code generation is a lot easier.
➡ C compilers often perform many

optimizations.
➡ Since C is portable, this makes the

higher-language portable “for free.”

Examples.
➡ cfront (first C++ compiler) produced C code.
➡ ghc (Glasgow Haskell Compiler) can

produce either assembly or C code.

Sunday, January 17, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts03: Compilation and Interpretation

Compilation vs. Assembly

Compiler.
➡ Deep inspection of program

semantics.
➡ May reject syntactically correct

programs for many reasons.
➡ E.g., type checking.
➡ E.g., “return missing”
➡ Transforms code.
➡ Optimization.
➡ Complex code generation.
➡ Never produces invalid

machine code (only generates
code for valid programs).

7

What is the fundamental difference between an assembler and a compiler?

Assembler.
➡ Little/no checks beyond basic

syntax correctness.
➡ Syntactically correct programs

are not rejected.
➡ No transformation (beyond

macro expansion).
➡ Simple translation (table

lookup of instruction
encoding).

➡ Can produce invalid machine
code (if fed bad input).

Sunday, January 17, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts03: Compilation and Interpretation

Interpretation

Translation during execution.
➡ Each run requires on-the-fly translation.
➡ Interpreter operates on two inputs: program and actual input.
➡ Source program is “configuration” for interpreter to transform actual input.
➡ Often line/function/instruction interpreted individually on demand.

8

InterpreterInput Output

Source Program

Sunday, January 17, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts03: Compilation and Interpretation

Interpretation

Translation during execution.
➡ Each run requires on-the-fly translation.
➡ Interpreter operates on two inputs: program and actual input.
➡ Source program is “configuration” for interpreter to transform actual input.
➡ Often line/function/instruction interpreted individually on demand.

9

InterpreterInput Output

Source Program

Advantages.
➡ Excellent debugging

facilities: source code
known when error occurs.

➡ Excellent checking:
both input and source are
known.

➡ Easy to implement.
➡ Quick feedback due to

rapid edit-test cycle.
➡ Can be embedded into

other applications (for
scripting purposes).

➡ Can generate and
evaluate new code at
runtime (eval).

Disadvantages.
➡ Translation occurs many

times (redundant work).
➡ Translation cost occur at

runtime: inefficient.
➡ Protecting intellectual

property requires source
code obfuscation (which
can be unreliable).

➡ Reasonably fast
interpreters are hard to
implement.

➡ Errors in seldom-
executed branches may
go unnoticed.

Sunday, January 17, 2010

UNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts03: Compilation and Interpretation

Comparison

10

InterpreterInput Output

Source Program

Source Program

Compiler

Target ProgramInput Output

Compilation
➡ Resulting program executes

much faster than if interpreted.
➡ Requires code generation and

detailed platform knowledge.

Interpretation
➡ Programming language can be

much more flexible.
➡ Can be portable.
➡ Inefficient.

Sunday, January 17, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts03: Compilation and Interpretation

Mixing Compilation and Interpretation
Interpreting high-level languages is
usually slow.
➡ First compile high-level to low-level

byte code.
➡ Interpret much simpler byte code.

11

Source Program

Compiler

Intermediate
Program

Input Output
Virtual

Machine

Implicit compilation.
➡ Tool appears as interpreter to user.
➡ Compilation occurs “behind the scenes.”
➡ Compilation only required once if byte

code is cached (e.g., Python).

Explicit compilation.
➡ Separate compilation step.
➡ User is aware of byte code (e.g., Java).

Sunday, January 17, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts03: Compilation and Interpretation

Mixing Compilation and Interpretation
Interpreting high-level languages is
usually slow.
➡ First compile high-level to low-level

byte code.
➡ Interpret much simpler byte code.

12

Source Program

Compiler

Intermediate
Program

Input Output
Virtual

Machine

Implicit compilation.
➡ Tool appears as interpreter to user.
➡ Compilation occurs “behind the scenes.”
➡ Compilation only required once if byte

code is cached (e.g., Python).

Explicit compilation.
➡ Separate compilation step.
➡ User is aware of byte code (e.g., Java).

Advantages.
➡ Enables “compile once, run everywhere.”
➡ Low-level interpreter (virtual machine)

easier to optimize.
➡ Optimization during compilation possible.
➡ Checks like a compiler.
➡ Implicit: Flexibility like an interpreter.
➡ Explicit: Source code not revealed.

Disadvantages.
➡ If byte code is interpreted not as fast as

machine code. (Will talk about “just-in-time”
compilation when we cover runtime systems.)

➡ Implicit: Program startup slower due to
compilation step.

➡ Explicit: Byte code is easier to decompile.

Sunday, January 17, 2010

UNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts03: Compilation and Interpretation

Separate Compilation + Linking

13

Target ProgramInput Output

Source File 1 Source File 2 Source File N…

The source program is spread out across several files.

Sunday, January 17, 2010

UNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts03: Compilation and Interpretation

Separate Compilation + Linking

14

Target ProgramInput Output

Source File 1

Compiler

Source File 2

Compiler

Source File N

Compiler

…

Object Code Object Code … Object Code

Each file is compiled independently into
“object code” (partial programs).

Sunday, January 17, 2010

UNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts03: Compilation and Interpretation

Separate Compilation + Linking

15

Target ProgramInput Output

Source File 1

Compiler

Source File 2

Compiler

Source File N

Compiler

…

Object Code Object Code … Object Code

Library

Some functionality may be provided as an object code
library (e.g., mathematical functions, system calls).

Sunday, January 17, 2010

UNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts03: Compilation and Interpretation

Separate Compilation + Linking

16

Target ProgramInput Output

Source File 1

Compiler

Source File 2

Compiler

Source File N

Compiler

…

Object Code Object Code …

Linker

Object Code

Library

The linker is used to merge all program
fragments and library routines into the final,

executable target program.

Sunday, January 17, 2010

UNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts03: Compilation and Interpretation

Separate Compilation + Linking

17

Target ProgramInput Output

Source File 1

Compiler

Source File 2

Compiler

Source File N

Compiler

…

Object Code Object Code …

Linker

Object Code

Library

Advantages.
➡ Enables collaboration: teams can work on

different files in parallel.
➡ Enables code reuse.
➡ Enables library/module/unit systems.

Disadvantages.
➡ Requires intricate build systems for larger

projects (e.g., Makefiles, ant, industry employs
specialized build engineers).

➡ Non-trivial bugs can be created if
assumptions diverge across compilations
(e.g., compiler version, constant definitions).

Sunday, January 17, 2010

UNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts03: Compilation and Interpretation

Separate Compilation + Linking

18

Target ProgramInput Output

Source File 1

Compiler

Source File 2

Compiler

Source File N

Compiler

…

Object Code Object Code …

Linker

Object Code

Library

Sunday, January 17, 2010

UNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts03: Compilation and Interpretation

Separate Compilation + Interpretation

19

Input Output

Source File 1

Compiler

Source File 2

Compiler

Source File N

Compiler

…

Byte Code Byte Code …

Virtual Machine

Byte Code

Library

Approach can also be combined with virtual machines (e.g., see Java).

Sunday, January 17, 2010

UNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts03: Compilation and Interpretation

Time of Error

20

Target ProgramInput Output

Source File 2

Compiler

Object Code

LinkerLibrary

compile-time

run-time error

link-time error

Terminology:
When is an error reported?

Also applies to optimization,
e.g., LLVM supports

“link-time optimization.”

Sunday, January 17, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts03: Compilation and Interpretation

Preprocessing
Source-to-source transformations.
➡ Modify source code before it is

passed to the actual compiler or
interpreter.

➡ Macro expansion.
➡ Code generation.
➡ Remove comments.
➡ Conditional compilation (#ifdef).

21

Source Program

Preprocessor

Modified source program

Compiler and/or Interpreter

(rest as before)

Examples.
➡ Text-based: e.g., sed, perl

(not recommended!)
➡ External tool: e.g., m4.
➡ Integrated: e.g., C preprocessor.

Sunday, January 17, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts03: Compilation and Interpretation

C: Preprocessing Example

Conditional invariant checking.
➡ Programmer can specify invariants: e.g., INVARIANT(foo >= 0).
➡ If ENABLE_INVARIANT_CHECKING is defined at compile time (using the

-D switch in gcc), the preprocessor will replace all invariants with if-
statements that verify that the assumption holds.

➡ Otherwise, the preprocessor will remove all invariants from the code
before passing the code to the compiler.

22

#ifdef ENABLE_INVARIANT_CHECKING
 #define INVARIANT(x) \
 if (!x) {fprintf(stderr, “%s failed!\n”, #x); exit(1);}
#else
 #define INVARIANT(x) /* nothing to do */
#endif

Advantages.
➡ Assumptions made explicit.
➡ Simplifies debugging: turn on all checking with one change.
➡ No performance penalty in final release: checking can be turned off.

Sunday, January 17, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts03: Compilation and Interpretation

C: Preprocessing Example

Conditional invariant checking.
➡ Programmer can specify invariants: e.g., INVARIANT(foo >= 0).
➡ If ENABLE_INVARIANT_CHECKING is defined at compile time (using the

-D switch in gcc), the preprocessor will replace all invariants with if-
statements that verify that the assumption holds.

➡ Otherwise, the preprocessor will remove all invariants from the code
before passing the code to the compiler.

23

#ifdef ENABLE_INVARIANT_CHECKING
 #define INVARIANT(x) \
 if (!x) {fprintf(stderr, “%s failed!\n”, #x); exit(1);}
#else
 #define INVARIANT(x) /* nothing to do */
#endif

Advantages.
➡ Assumptions made explicit.
➡ Simplifies debugging: turn on all checking with one change.
➡ No performance penalty in final release: checking can be turned off.

But keep in mind:
“Finally, it is absurd to make elaborate security checks on

debugging runs, when no trust is put in the results, and then
remove them in production runs, when an erroneous result
could be expensive or disastrous. What would we think of a
sailing enthusiast who wears his lifejacket when training on

dry land, but takes it off as soon as he goes to sea?”
— C. A. R. Hoare, Hints on Programming Language Design, 1973

Sunday, January 17, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts03: Compilation and Interpretation

Compilation vs. Preprocessing

24

The first C++ compiler was called
“cfront” and compiled C++ to C. C++ Program

Target ProgramInput Output

cfront

C Program

C Compiler

Since C is (mostly) a subset of C++,
should we consider it to be a
preprocessor?

No!

Sunday, January 17, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts03: Compilation and Interpretation

Compilation vs. Preprocessing

25

Why is a pre-processor not the same as a source-to-
source compiler?
➡ Preprocessor: no inspection of semantical correctness.
➡ A correct compiler does not generate incorrect code.
➡ Given bad input, most preprocessors will produce code that

later fails compilation.
➡ A preprocessor performs mostly only simple substitutions,

without (deeper) understanding of the underlying
programming language.

The C++ compiler cfront performs type
checking and only generates C programs for
C++ programs that pass all semantic tests.

Sunday, January 17, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts03: Compilation and Interpretation

“Compiled” vs. “Interpreted” Languages

Any language can be interpreted.
➡ Even machine language (e.g., Qemu, virtualization).
➡ For example, the Tiny C Compiler (tcc) can be used as an interpreter.

26

Trivial compilation is always possible.
➡ Include source program as string constant when compiling interpreter.
➡ Similarly: package byte code and virtual machine together.

However, languages differ in amount of checking that can be done
ahead of runtime.
➡ A language is compilable if “most” checks can be done at compile time.
➡ This requires careful language design and some restrictions.
➡ Most languages were designed with either compilation or interpretation

in mind.
➡ Some languages support both (e.g., Lisp, Haskell).

Not a well-defined concept!

Sunday, January 17, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts03: Compilation and Interpretation

Bootstrapping and Cross-Compilation

Many compilers are written in the language that they implement.
➡ Called a “self-hosting” compiler.
➡ Virtually all C compilers are written in C.
➡ The Glasgow Haskell Compiler (ghc) is written in Haskell.
➡ Lisp dialects are commonly implemented in Lisp.
➡ This creates a “chicken and egg” problem.

Given a new hardware platform, how do you obtain a compiler?
➡ From scratch: bootstrapping.
➡ If you already have another working platform: cross-compilation.

27

Building the first compiler for a new platform.

Sunday, January 17, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts03: Compilation and Interpretation

Bootstrapping

First step.
➡ Write a slow, “quick-n-dirty” interpreter for a subset of the

language (as simple as possible) using machine code,
assembly, or some low-level language.

➡ Using the chosen subset, write compiler prototype (version 0)
for the chosen subset.

➡ Use interpreter to run the version-0 compiler for the purpose of
compiling itself: we now have a (very limited) compiler that is
self-hosting.

Iterative improvements: given a version-N compiler…
➡ Implement a version-(N+1) compiler using only language

features supported by the version-N compiler.
➡ Use version-N compiler to compile version-(N+1) compiler.
➡ Repeat, until full language support is complete.

28

Starting from the spec.

Sunday, January 17, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts03: Compilation and Interpretation

Cross-Compilation

On host machine, given a (host ➜ host) compiler.
➡ Write portable source code for a (any ➜ target) compiler.
➡ Use (host ➜ host) compiler to compile the (any ➜ target)

compiler, which yields a (host ➜ target) cross compiler.
➡ Use the (host ➜ target) cross compiler to compile the (any ➜

target) a second time.
➡ This builds a (target ➜ target) self-hosting compiler.
➡ Copy (target ➜ target) compiler to target machine.
➡ We now have a self-hosting compiler on the target machine.

29

Starting from a host machine.

Notation: (“runs on”➜“generates machine code for”)

Sunday, January 17, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts03: Compilation and Interpretation

x86 ➜ x86 V9 ➜ V9

Example: Cross-Compilation

30

Going from Intel x86 to Sunʼs SPARC V9.

Sunday, January 17, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts03: Compilation and Interpretation

x86 ➜ x86 V9 ➜ V9

Example: Cross-Compilation

31

Source

cv9: any ➜ V9

Going from Intel x86 to Sunʼs SPARC V9.

Step 1: Write a portable compiler for V9 in
C: (any ➜ V9). Name this compiler cv9.

Sunday, January 17, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts03: Compilation and Interpretation

x86 ➜ x86 V9 ➜ V9

Example: Cross-Compilation

32

gcc: x86 ➜ x86

Source

Host Compiler

cv9: any ➜ V9

Going from Intel x86 to Sunʼs SPARC V9.Step 2: Given Gnu C Compiler (gcc) on our Intel
machine, a (x86 ➜ x86) compiler, …

Sunday, January 17, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts03: Compilation and Interpretation

x86 ➜ x86 V9 ➜ V9

Example: Cross-Compilation

33

gcc: x86 ➜ x86

Source

Host Compiler

cv9: any ➜ V9

Going from Intel x86 to Sunʼs SPARC V9.… use gcc to compile cv9.

Sunday, January 17, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts03: Compilation and Interpretation

x86 ➜ x86 V9 ➜ V9

Example: Cross-Compilation

34

gcc: x86 ➜ x86

Source

Host Compiler

Cross Compiler

cv9: any ➜ V9

 cv9: x86 ➜ V9

Going from Intel x86 to Sunʼs SPARC V9.

This yields a (x86 ➜ V9)
cross compiler.

Sunday, January 17, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts03: Compilation and Interpretation

x86 ➜ x86 V9 ➜ V9

Example: Cross-Compilation

35

gcc: x86 ➜ x86

Source

Host Compiler

Cross Compiler

cv9: any ➜ V9

 cv9: x86 ➜ V9Input

Going from Intel x86 to Sunʼs SPARC V9.

Step 3: Use the (x86 ➜ V9) cross compiler to
compile the (any ➜ V9) source code again…

Sunday, January 17, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts03: Compilation and Interpretation

Example: Cross-Compilation

36

gcc: x86 ➜ x86

Source

Host Compiler

Cross Compiler

 cv9: V9 ➜ V9

cv9: any ➜ V9

 cv9: x86 ➜ V9Input
Target Compiler

Going from Intel x86 to Sunʼs SPARC V9.

… this time, we obtain a (V9 ➜ V9)
self-hosting compiler!

x86 ➜ x86 V9 ➜ V9

Sunday, January 17, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts03: Compilation and Interpretation

Example: Cross-Compilation

37

gcc: x86 ➜ x86

Source

Host Compiler

Cross Compiler

 cv9: V9 ➜ V9

cv9: any ➜ V9

 cv9: x86 ➜ V9Input
Target Compiler

Going from Intel x86 to Sunʼs SPARC V9.
x86 ➜ x86 V9 ➜ V9

Writing a new (any ➜ target) compiler/backend for every target
can be prohibitively expensive. This can be circumvented by using a

virtual machine + bootstrapping.

In this case, only one (any ➜ virtual machine) backend is required,
but a (much simpler) virtual machine must be translated by hand.

See Pascal P-Code example on page 21 in the textbook.

Sunday, January 17, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts03: Compilation and Interpretation

Compilation Phases

Scanner (lexical analysis)

Parser (syntax analysis)

Semantic analysis &
intermediate code gen.

Machine-independent
optimization (optional)

Target code generation.

Machine-specific
optimization (optional)

Symbol Table

Character Stream

Token Stream

Parse Tree

Abstract syntax tree

Modified intermediate form

Target (machine) language

Modified target language

38
Sunday, January 17, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts03: Compilation and Interpretation

Compilation Phases

Scanner (lexical analysis)

Parser (syntax analysis)

Semantic analysis &
intermediate code gen.

Machine-independent
optimization (optional)

Target code generation.

Machine-specific
optimization (optional)

Symbol Table

Character Stream

Token Stream

Parse Tree

Abstract syntax tree

Modified intermediate form

Target (machine) language

Modified target language

39

Front end

Back end
Sunday, January 17, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts03: Compilation and Interpretation

Example Program GCD

program gcd(input, output);
var i, j: integer;
begin
read(i,j); // get i & j from read
while i<>j do
if i>j then i := i-j
else j := j-1;

writeln(i)
end.

40

Pascal

Sunday, January 17, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts03: Compilation and Interpretation

Lexical Analysis

‣ Recognizes consecutive characters that form a
unit and groups them into tokens.

‣ The purpose of the scanner is to simplify the
parser by reducing the size of the input.

Scanner (lexical analysis)

program gcd (input , output) ;

41

program gcd(input, output);

Sunday, January 17, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts03: Compilation and Interpretation

Lexical Analysis

‣ Recognizes consecutive characters that form a
unit and groups them into tokens.

‣ The purpose of the scanner is to simplify the
parser by reducing the size of the input.

Scanner (lexical analysis)

program gcd (input , output) ;

42

program gcd(input, output);

Token: atomic semantical unit;
the smallest unit of input with individual meaning.

Sunday, January 17, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts03: Compilation and Interpretation

Syntax Analysis

program gcd (input , output) ;

Parser (syntax analysis)

program

id(GCD) (id(INPUT) more_ids) ; block

, id(OUTPUT) more_ids

empty

Rest of code

43

...Token
stream:

‣ Parsing discovers the structure in the token stream based on
a a context-free grammar and yields a syntax tree.

Sunday, January 17, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts03: Compilation and Interpretation

Syntax Analysis

program gcd (input , output) ;

Parser (syntax analysis)

program

id(GCD) (id(INPUT) more_ids) ; block

, id(OUTPUT) more_ids

empty

Rest of code

44

The syntax analysis rejects all
malformed statements.

...Token
stream:

‣ Parsing discovers the structure in the token stream based on
a a context-free grammar and yields a syntax tree.

Sunday, January 17, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts03: Compilation and Interpretation

Syntax Analysis

program gcd (input , output) ;

Parser (syntax analysis)

program

id(GCD) (id(INPUT) more_ids) ; block

, id(OUTPUT) more_ids

empty

Rest of code

45

The parse tree is sometimes
called a concrete syntax tree

because it contains all tokens...

...Token
stream:

‣ Parsing discovers the structure in the token stream based on
a a context-free grammar and yields a syntax tree.

Sunday, January 17, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts03: Compilation and Interpretation

Syntax Analysis

program gcd (input , output) ;

Parser (syntax analysis)

program

id(GCD) (id(INPUT) more_ids) ; block

, id(OUTPUT) more_ids

empty

Rest of code

46

...Token
stream:

‣ Parsing discovers the structure in the token stream based on
a a context-free grammar and yields a syntax tree.

...however, much of this information is
extraneous for the “meaning” of the code

(e.g., the only purpose of “;”
is to end a statement).

Sunday, January 17, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts03: Compilation and Interpretation

Semantic Analysis

‣ Semantic analysis discovers the meaning of a program by creating
an abstract syntax tree that removes “extraneous” tokens.

‣ To do this, the analyzer builds & maintains a symbol table to map
identifiers to information known about it. (i.e., scope, type, internal
structure, etc...)

‣ By using the symbol table, the semantic analyzer can catch
problems not caught by the parser. For example, it can enforce
that
‣ identifiers are declared before use, and that
‣ subroutine calls provide correct number and type of arguments.

Semantic analysis &
intermediate code gen.

47
Sunday, January 17, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts03: Compilation and Interpretation

Semantic Analysis

program

id(GCD) (id(INPUT) more_ids) ; block

program

(5) read

(3) (6) read

(3) (7)

Rest of
code

Index Symbol Type

1 INTEGER type

2 TEXTFILE type

3 INPUT 2

4 OUTPUT 2

5 GCD program

6 I 1

7 J 1

Semantic analysis &
intermediate code gen.

from concrete to abstract syntax tree

Sunday, January 17, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts03: Compilation and Interpretation

Semantic Analysis

Not all semantic rules can be checked at compile time.
➡ Those that can are called static semantics of the

language.
➡ Those that cannot are called dynamic semantics of the

language. For example,
‣ Arithmetic operations do not overflow.
‣ Array subscripts expressions lie within the bounds of

the array.

49

Semantic analysis &
intermediate code gen.

Sunday, January 17, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts03: Compilation and Interpretation

Intermediate Code Generation

Intermediate form (IF) generation is done after semantic
analysis (if the program passes all checks)
➡ IFs are often chosen for machine independence, ease

of optimization, or compactness (these are somewhat
contradictory)

➡ They often resemble machine code for some
imaginary idealized machine; e.g. a stack machine, or
a machine with arbitrarily many registers

➡ Many compilers actually move the code through more
than one IF.

50

Semantic analysis &
intermediate code gen.

Sunday, January 17, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts03: Compilation and Interpretation

Target code generation

‣ Code generation takes the abstract syntax tree and
the symbol table to produce machine code.

‣ Simple code follows directly from the abstract
syntax tree and symbol table.

‣ Follows basic pattern:
‣ Load operands into registers (from memory).
‣ Compute basic function (e.g., add, div, sub).
‣ Store results (to memory).

‣ Other patterns: conditional jumps, subroutine calls.

Target code generation.

51
Sunday, January 17, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts03: Compilation and Interpretation

Optimization
The process so far will produce correct code,
but it may not be fast.
➡ Optimization will transform the code to improve

performance without changing its semantics.
➡ In theory… in practice, compiler bugs often

lurk in the optimizer.
➡ It is easy to overlook corner cases when

coming up with optimizations.
➡ Proper program transformations require

rigorous proof of the claimed equivalences.

Machine-independent
optimization (optional)

Machine-specific
optimization (optional)

52

First aid in case of compiler trouble:
Remove all intermediate files (make clean),
turn off all optimizations (-O0), and try again.

Sunday, January 17, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts03: Compilation and Interpretation

Machine-Independent Optimization
Examples.
➡ Loop unrolling.
‣ Enables hardware parallelism.
‣ Reduces number of times that abort condition is evaluated.

➡ Inlining of (short) subroutines.
‣ E.g., getter/setter methods.
‣ Reduces subroutine call overhead.

➡ Store-load pair elimination.
‣ Reduces unnecessary memory accesses.

➡ Jump-coalescing.
‣ Avoid jump to a jump to a jump…

➡ Escape analysis.
‣ Determine which variables are only updated locally.

53
Sunday, January 17, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts03: Compilation and Interpretation

Machine-Independent Optimization
Examples.
➡ Loop unrolling.
‣ Enables hardware parallelism.
‣ Reduces number of times that abort condition is evaluated.

➡ Inlining of (short) subroutines.
‣ E.g., getter/setter methods.
‣ Reduces subroutine call overhead.

➡ Store-load pair elimination.
‣ Reduces unnecessary memory accesses.

➡ Jump-coalescing.
‣ Avoid jump to a jump to a jump…

➡ Escape analysis.
‣ Determine which variables are only updated locally.

54

Common theme:
these overheads are bad on any machine.

Sunday, January 17, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts03: Compilation and Interpretation

Machine-Specific Optimizations
Examples.
➡ Instruction scheduling
‣ Overlay memory latency with computation.

➡ Branch-prediction-friendly code layout.
‣ Move failure cases out of “hot path.”

➡ Instruction selection.
‣ Either for speed or size.
‣ xorl %eax, %eax vs. movl $0, %eax.

➡ Clever register allocation.
‣ Avoid spill code (minimize store/loads).
‣ This sub-problem by itself is NP-complete.
‣ Uses graph coloring algorithms.

55
Sunday, January 17, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts03: Compilation and Interpretation

Machine-Specific Optimizations
Examples.
➡ Instruction scheduling
‣ Overlay memory latency with computation.

➡ Branch-prediction-friendly code layout.
‣ Move failure cases out of “hot path.”

➡ Instruction selection.
‣ Either for speed or size.
‣ xorl %eax, %eax vs. movl $0, %eax.

➡ Clever register allocation.
‣ Avoid spill code (minimize store/loads).
‣ This sub-problem by itself is NP-complete.
‣ Uses graph coloring algorithms.

56

These are all quite complicated to do well…

…and can be completely avoided
by compiling to C instead of assembly.

(Unless you are writing a C compiler, that is.)

Sunday, January 17, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts03: Compilation and Interpretation

Summary: Compilation Phases

Scanner (lexical analysis)

Parser (syntax analysis)

Semantic analysis &
intermediate code gen.

Machine-independent
optimization (optional)

Target code generation.

Machine-specific
optimization (optional)

Symbol Table

Character Stream

Token Stream

Parse Tree

Abstract syntax tree

Modified intermediate form

Target (machine) language

Modified target language

57

Production compilers tend to be
a whole lot more messy…

Sunday, January 17, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts03: Compilation and Interpretation

Summary: Compilation and Interpretation
Two fundamental approaches.
➡ Compilation.
‣ Resulting program can be efficient.

➡ Interpretation.
‣ Can be very flexible.

Implementation approaches.
➡ Preprocessing.
‣ Macro expansion and code filtering.

➡ Separate compilation.
‣ Divide and conquer…

➡ Virtual machines
‣ Simple interpreters are faster.

58
Sunday, January 17, 2010

