Lexical Analysis

COMP 524: Programming Language Concepts Björn B. Brandenburg

The University of North Carolina at Chapel Hill

The Big Picture

The Big Picture

Lexical analysis:

grouping consecutive characters that "belong together."
Turn the stream of individual characters into a stream of tokens that have individual meaning.

Source Program

The compiler reads the program from a file.

- Input as a character stream.

Compilation requires analysis of program structure.

- Identify subroutines, classes, methods, etc.
\Rightarrow Thus, first step is to find units of meaning.

Tokens

Source File

Not every character has an individual meaning.

- In Java, a '+' can have two interpretations:
- A single '+' means addition.
- A '+' '+' sequence means increment.
- A sequence of characters that has an atomic meaning is called a token.
- Compiler must identify all input tokens.

Tokens

Tokens

Operator: Assignment

- In Java, a '+' can have two interpretations:
, A single '+' means addition.
- A '+' '+' followed by another means increment.
- A sequence of characters that has an atomic meaning is called a token.
- Compiler must identify all input tokens.

Tokens

Not every character has an individual meaning.

- In Java, a '+' can have two interpretations:
- A single '+' means addition.
- A '+' '+' followed by another means increment.
- A sequence of characters that has an atomic meaning is called a token.
- Compiler must identify all input tokens.

Tokens

Not every character has an individual meaning.

- In Java, a '+' can have two interpretations:
- A single '+' means addition.
- A '+' '+' followed by another means increment.
- A sequence of characters that has an atomic meaning is called a token.
- Compiler must identify all input tokens.

Tokens

Not every character has an individual meaning.

- In Java, a '+' can have two interpretations:
- A single '+' means addition.
- A '+' '+' followed by another means increment.
- A sequence of characters that has an atomic meaning is called a token.
- Compiler must identify all input tokens.

Tokens

Not every character has an individual meaning.

- In Java, a '+' can have two interpretations:
, A single '+' means addition.
- A '+' '+' followed by another means increment.
- A sequence of characters that has an atomic meaning is called a token.
- Compiler must identify all input tokens.

Tokens

Not every character has an individual meaning.

- In Java, a '+' can have two interpretations:
, A single '+' means addition.
- A '+' '+' followed by another means increment.
- A sequence of characters that has an atomic meaning is called a token.
- Compiler must identify all input tokens.

Tokens

Not every character has an individual meaning.

- In Java, a '+' can have two interpretations:
- A single '+' means addition.
- A '+' '+' followed by another means increment.
- A sequence of characters that has an atomic meaning is called a token.
- Compiler must identify all input tokens.

Lexical vs. Syntactical Analysis

Why have a separate lexical analysis phase?

- In theory, token discovery (lexical analysis) could be done as part of the structure discovery (syntactical analysis, parsing).
- However, this is unpractical.
- It is much easier (and much more efficient) to express the syntax rules in terms of tokens.
- Thus, lexical analysis is made a separate step because it greatly simplifies the subsequently performed syntactical analysis.

Example: Java Language Specification

Lexical Structure

The following 37 tokens are the operators, formed from ASCII characters:
Operator: one of

$$
\begin{array}{lllllllllll}
= & > & < & ! & \sim & ? & : & & & & \\
== & <= & >= & != & \& \& & |\mid & ++ & -- & & & \\
+ & - & * & / & \& & \mid & \wedge & \% & \ll & \gg & \ggg \\
+= & -= & *= & /= & \&= & \mid= & \wedge= & \%= & \ll= & \gg= & \ggg=
\end{array}
$$

Syntactical Structure

UnaryExpression:
PreIncrementExpression
PreDecrementExpression
+ UnaryExpression
- UnaryExpression
UnaryExpressionNotPlusMinus
PreIncrementExpression:
++ UnaryExpression

Example: Jav

Lexical Structure

Token Specification:

These strings mean something, but knowledge of the exact meaning is not required to identify them.

The following 37 tokens are the operators, formed from ASCII c^{1} aracters:
Operator: one of

Syntactical Structure

UnaryExpression:
PreIncrementExpression
PreDecrementExpression

+ UnaryExpression
- UnaryExpression

UnaryExpressionNotPlusMinus
PreIncrementExpression:
++ UnaryExpression

Example: Jav

Lexical Structure

Token Specification:

These strings mean something, but knowledge of the exact meaning is not required to identify them.

The following 37 tokens are the operators, formed from ASCII c^{1} aracters:
Operator: one of

Syntactical Structure

UnaryExpression:

PreIncrementExpression
PreDecrementExpression

+ UnaryExpression
- UnaryExpression

UnaryExpression^IPlusMinus
PreIncrer expression:
++ UnaryExpression

Lexical Analysis

The need to identify tokens raises two questions.

- How can we specify the tokens of a language?
- How can we recognize tokens in a character stream?

Token Specification

Regular Expressions

Language
Design and Specification

Token Recognition

(several steps)

Deterministic Finite Automata (DFA)

Language Implementation

Grammars and Languages

A regular expression is a kind of grammar.

- A grammar describes the structure of strings.
- A string that "matches" a grammar G's structure is said to be in the language $L(G)$ (which is a set).

A grammar is a set of productions:

- Rules to obtain (produce) a string that is in $L(G)$ via repeated substitutions.
- There are many grammar classes (see COMP 455).
- Two are commonly used to describe programming languages: regular grammars for tokens and context-free grammars for syntax.

Grammar 101

$$
\text { digit } \rightarrow 0|1| 2|3| 4|5| 6|7| 8 \mid 9
$$

```
non_zero_digit }->1|2|3|4|5|6|7|8|
```


natural_number \rightarrow non_zero_digit digit*

```
non_neg_number }->\mathrm{ (0 | natural_number)( ( . digit* non_zero_digit) | & )
```


Grammar 101: Productions

Grammar 101: Non-Terminals

Grammar 101: Terminals

The symbols on the right are either terminal or nonterminal symbols. A terminal symbol is just a character.

Grammar 101: Definition

Grammar 101: Choice

Grammar 101: Example

Grammar 101: Optional Repetition

"*" denotes zero or more of a symbol.
digit $\rightarrow 0|1| 2|3| 4|5| 6|7| 8 \mid 9$
non_zero_digit $\rightarrow 1|2| 3|4| 5,6|7| 8 \mid 9$
natural_number \rightarrow non_zero_dig, digit*
non_neg_number $\rightarrow(0 \mid$ natural_number $)(($, digit** non_zero_digit) $\mid \varepsilon)$

Grammar 101: Sequence

non_neg_number $\rightarrow(0 \mid$ natural_number $)\left(\left(\right.\right.$. digit * non_zero_digit $\left.) \mid \varepsilon\right)$

Grammar 101: Example

Thus, this means:

A natural number is a non-zero digit followed by zero or more digits.

$$
\text { non_zero_ digit } \rightarrow 1|2| 3|4| 5|6| 7|8| 9
$$

```
natural_number }->\mathrm{ non_zero_digit digit*
```

non_neg_number $\rightarrow(0 \mid$ natural_number $)\left(\left(\right.\right.$. digit* * non_zero_digit $\left.) \mid \varepsilon\right)$

Grammar 101: Epsilon

$$
\text { digit } \rightarrow 0|1| 2|3| 4|5| 6|7| 8 \mid 9
$$

" ε " is special terminal that means empty. It corresponds to the empty string.
natural_number \rightarrow non_zero_digit digit* ${ }^{*}$
non_neg_number \rightarrow (0 | natural_number) ((. digit** non_zero_digit, (ε)

Grammar 101: Examole

 So, what does this mean?non_zero_digit $\rightarrow 1$ 2|3|4|5|6|7|8|9
natural_number pon_zero_digit digit* non_neg_number \rightarrow (0 \mid natural_number) ((. digit** non_zero_digit) $\mid \varepsilon$)

Grammar 101: Example

A non-negative number is a ' 0 ' or a natural number, followed by either nothing or a '. ', followed by zero or more digits, followed by (exactly one) digit.
natural_number - jon_zero_digit digit*
non_neg_number \rightarrow (0 \mid natural_number) ((. digit** non_zero_digit) $\mid \varepsilon$)

Regular Expression Rules

Base case: a regular expression (RE) is either

- a character (e.g., '0', '1', ...), or
- the empty string (i.e., ' ε ').

A compound RE is constructed by

- concatenation: two REs next to each other (e.g., "non_negative_digit digif"),
- alternation: two REs separated by "l" next to each other (e.g., "non_negative_digit I digit"),
- optional repetition: a RE followed by "*" (the Kleene star) to denote zero or more occurrences, and
- parentheses (in order to avoid ambiguity).

Regular Expression Rules

Base case: a regular expression (RE) is either

- a character (e.g., '0', '1', ...), or
- the emptv strina (i.e.. ' ε ').

A co A RE is NEVER defined in terms of itself!

- co Thus, REs cannot define recursive statements. " n
- alternation: two REs separated by "I" next to each other (e.g., "non_negative_digit I digit"),
- optional repetition: a RE followed by "*" (the Kleene star) to denote zero or more occurrences, and
- parentheses (in order to avoid ambiguity).

Example

Let's create a regular expression corresponding to the "City, State ZIP-code" line in mailing addresses.

E.g.: Chapel Hill, NC 27599-3175 Beverly Hills, CA 90210

Example

Let's create a regular expression corresponding to the "City, State ZIP-code" line in mailing addresses.

E.g.: Chapel Hill, NC 27599-3175 Beverly Hills, CA 90210

city_line \rightarrow city ', 'state_abbrev' 'zip_code city \rightarrow letter (letterl'‘ letter)* state_abbrev \rightarrow 'AL’ I 'AK'I ‘AS'I ‘AZ' I ... I 'WY' zip_code \rightarrow digit digit digit digit digit (extral| ε) extra $\quad \rightarrow$ '-' digit digit digit digit digit $\rightarrow 0|1| 2|3| 4|5| 6|7| 8 \mid 9$ letter \rightarrow AIBICI...।öl...

Regular Sets and Finite Automata

If a grammar G is a regular expression, then the language $L(G)$ is called a regular set.

Fundamental equivalence:

For every regular set $L(G)$, there exists a deterministic finite automaton (DFA) that accepts a string S if and only if $S \in L(G)$.
(See COMP 455 for proof.)

DFA 101

Deterministic finite automaton:

- Has a finite number of states.
- Exactly one start state.
- One or more final states.
- Transitions: define how automaton switches between states (given an input symbol).

DFA 101

Deterministic finite automaton:

- Has a finite number of states.
- Exactly one start state.
- One or more final states.
- Transitions: define how autom-1on switches between states (given an input symr 1).

DFA 101

Deterministic finite automaton:

- Has a finite number of states.
- Exactly one start state.
- One or more final states.
- Transitions: define how automa states (given an input symbol).

Intermediate State

(neither start nor final)

DFA 101

Deterministic finite automaton:

- Has a finite number of states
- Exactly one start state.
- One or more final states.
- Transitions: define how aut

Final State

(indicated by double border) states (given an input symbol).

DFA 101

Deterministic finite automaton:

- Has a finite number of states
- Exactly one start ste
- One or more final st
- Transitions: define I states (given an inpl

Transition

Given an input of ' $\mathbf{1}$ ', if DFA is in state \mathbf{A}, then transition to state \mathbf{B} (and consume the input).

Deterministic

- Has a finite r
- Exactly one
- One or more final states.
- Transitions: define how - utomaton switches between states (given an inpu ${ }^{+}$symbol).

DFA 101

Transitions must be unambiguous:

For each state and each input, there exist only one transition. This is what makes the DFA deterministic.

Not a legal DFA!

DFA 101

Determinis

Multiple Transitions

- Has a fini Given an input of either '0' or ' $\mathbf{1}$ ', if DFA
- Exactly or is in state C, then stay in state C
- One or m
(and consume the input).
- Transitionen states (given an input symbol).

DFA String Processing

String processing.

- Initially in start state.
- Sequentially make transitions each character in input string.

A DFA either accepts or rejects a string.
\Rightarrow Reject if a character is encountered for which no transition is defined in the current state.

- Reject if end of input is reached and DFA is not in a final state.
- Accept if end of input is reached and DFA is in final state.

DFA Example

current input character

Initially, DFA is in the start State A.
The first input character is ' 1 '. This causes a transition to State B.

DFA Example

current input character

The next input character is ' 0 '. This causes a self transition in State B.

DFA Example

Input: 10

current input character
The end of the input is reached, but the DFA is not in a final state: the string ' 10 ' is rejected!

DFA-Equivalent Regular Expression

What's the RE such that the RE's language is exactly the set of strings that is accepted by this DFA?

$$
0^{*} 10^{*} 1(1 \mid 0)^{*}
$$

DFA-Equivalent Regular Expression

What's the RE such that the RE's language is exactly the set of strings that is accepted by this DFA?
$0 * 10^{*}+1(110)^{*}$

Recognizing Tokens with a DFA

Table-driven implementation.

- DFA's can be represented as a 2-dimensional table.

Current State	$\mathrm{On}^{\prime} 0^{\prime}$	$\mathrm{On}^{\prime} 1^{\prime}$	Note
A	transition to A	transition to B	start
B	transition to B	transition to C	-
C	transition to C	transition to C	final

Recognizing Tokens with or DEA

```
currentState = start state;
while end of input not yet reached: {
    c = get next input character;
    if transitionTable[currentState][c] f null:
        currentState = transitionTable[currentState][c]
    else:
        reject input
}
if currentState is final:
    accept input
else:
    reject input
```

Current State	$\mathrm{On}^{\prime} 0^{\prime}$	$\mathrm{On}^{\prime} 11^{\prime}$	Note
A	transition to A	transition to B	start
B	transition to B	transition to C	-
C	transition to C	transition to C	final

Recognizing Tokens with a DFA

```
currentState = start state;
while end of input not yet reached: {
    c = get next input character;
    if transitionTable[currentState][c] f null:
        currentState = transitionTable[currentState][c]
    else:
        reject input
}
if currentState is final:
    accept input
else:
    reject input
```

This accepts exactly one token in the input. A real lexer must detect multiple successive tokens.

This can be achieved by resetting to the start state. But what happens if the suffix of one token is the prefix of another? (See Chapter 2 for a solution.)

Lexical Analysis

The need to identify tokens raises two questions.

- How can we specify the tokens of a language?
- With regular expressions.
- How can we recognize tokens in a character stream?
- With DFAs.

Token Specification

Regular Expressions

Token Recognition

No single-step algorithm:
We first need to construct a Non-Deterministic Finite Automaton...

Non-Deterministic Finite Automaton (NFA)

Like a DFA, but less restrictive:

- Transitions do not have to be unique: each state may have multiple ambiguous transitions for the same input symbol. (Hence, it can be non-deterministic.)
- Epsilon transitions do not consume any input.
(They correspond to the empty string.)
- Note that every DFA is also a NFA.

Acceptance rule:

- Accepts an input string if there exists a series of transitions such that the NFA is in a final state when the end of input is reached.
- Inherent parallelism: all possible paths are explored simultaneously.

A legal NFA fragment.

NFA Example

Input: a a

NFA Example

Input: a a

NFA Example

current input character

NFA Example

current input character

Epsilon transition:

Can transition from State 3 to State 2 without consuming any input.

NFA Example

current input character

Regular transition:

Can transition from State 2 to State 3, which consumes the second ' a '.

NFA Example

Input: a a

Epsilon transition from State 3 to 4:
 End of input reached, but the NFA can still carry out epsilon transitions.

current input character

NFA Example

Input: a a
current input character

Input Accepted:

There exists a sequence of transitions such that the NFA is in a final state at the end of input.

Equivalent DFA Construction

Constructing a DFA corresponding to a RE.

- In theory, this requires two steps.
-From a RE to an equivalent NFA.
- From the NFA to an equivalent DFA.

To be practical, we require a third optimization step.

- Large DFA to minimal DFA.

Step 1: RE \rightarrow NFA

Every RE can be converted to a NFA by repeatedly applying four simple rules.

- Base case: a single character.
- Concatenation: joining two REs in sequence.
- Alternation: joining two REs in parallel.
- Kleene Closure: repeating a RE.
(recall the definition of a RE)

The Four NFA Construction Rules

Rule 1-Base case: 'a'

The Four NFA Construction Rules

Rule 1-Base case: ‘a’

Simple two-state NFA (even DFA, too).

The Four NFA Construction Rules

Rule 2-Concatenation: AB

The Fo Not just two states, but any NFA Rules with a single final state.

Rule 2-Concater fion: AB

The Four NFA Construction Rules

Rule 3--Alternation: "A|B"

The Four NFA Construction Rules

Notice the epsilon transitions.

Rule 3 --Aternation: ${ }^{\text {A|B }}$

The Four NFA Construction Rules

Rule 4-Kleene Closure: "A*"

The Four NFA Construction Rules

 Notice the epsilon transitions.Rule 4-Kleene Closure: "A*"

The Four NFA Construction Rules

Rule 4-Kleene Closure: "A*"

repetition
one occurrence

Overview

Four rules:

- Create two-state NFAs for individual symbols, e.g., 'a'.
- Append consecutive NFAs, e.g., AB.
- Alternate choices in parallel, e.g., AIB.
- Repeat Kleene Star, e.g., \mathbf{A}^{*}.

NFA Construction Example Regular expression: (a|b)(c|d)e*

Apply Rule 1 :

Apply Rule 3 :

NFA Construction Example Regular expression: (a|b)(c|d)e*

Apply Rule 2:

NFA Construction Example Regular expression: (a|b)(c|d)e*

Apply Rule 1 :

Apply Rule 4:

NFA Construction Example Regular expression: (a|b)(c|d)e*

Step 2: NFA \rightarrow DFA

Simulating NFA requires exploration of all paths.

- Either in parallel (memory consumption!).
- Or with backtracking (large trees!).
- Both are impractical.

Instead, we derive a DFA that encodes all possible paths.

- Instead of doing a specific parallel search each time that we simulate the NFA, we do it only once in general.

Key idea: for each input character, find sets of NFA states that can be reached.

- These are the states that a parallel search would explore.
- Create a DFA state + transitions for each such set.
- Final states: a DFA state is a final state if its corresponding set of NFA states contains at least one final NFA state.

NFA-to-DFA-CONVERSION:

```
todo: stack of sets of NFA states.
push {NFA start state and all epsilon-reachable states} onto todo
while (todo is not empty):
    curNFA: set of NFA states
    curDFA: a DFA state
    curNFA = todo.pop
    mark curNFA as done
    curDFA = find or create DFA state corresponding to curNFA
    reachableNFA: set of NFA states
    reachableDFA: a DFA state
```

 for each symbol \(x\) for which at least one state in curNFA has a transition:
 reachableNFA \(=\) find each state that is reachable from a state in curNFA
 via one \(x\) transition and any number of epsilon transitions
 if (reachableNFA is not empty and not done):
 push reachableNFA onto todo
 reachableDFA \(=\) find or create DFA state corresponding to reachableNFA
 add transition on \(x\) from curDFA to reachableDFA
 end for
 end while

DFA Conversion Example

Regular expression: (a|b)(c|d)e*

DFA Conversion Example

Regular expression: (a|b)(c|d)e*

First Step: before any input is consumed
Find all states that are reachable from the start state via epsilon transitions.

DFA Conversion Example

Regular expression: (a|b)(c|d)e*

First Step: before any input is consumed
Create corresponding DFA start state.

DFA Conversion Example

Regular expression: (a|b)(c|d)e*

Next: find all input characters for which transitions in start set exist.
' a ' and ' b ' in this case.

DFA Conversion Example

Regular expression: (a|b)(c|d)e*

For each such input character, determine the set of reachable states (including epsilon transitions).

On an 'b', NFA can reach states 5,6,7, and 9.

DFA Conversion Example

Regular expression: (a|b)(c|d)e*

DFA Conversion Example

Regular expression: (a|b)(c|d)e*

On an 'a', NFA can reach states 3,6,7, and 9.

DFA Conversion Example

Regular expression: (a|b)(c|d)e*

DFA Conversion Example

Regular expression: (a|b)(c|d)e*

Repeat process for each newlydiscovered set of states.

DFA Conversion Example

 Regular expression: (a|b)(c|d)e*

> Reachable states: on a 'c': $8,11,12,14$

DFA Conversion Example

Regular expression: (a|b)(c|d)e*

Create state and transitions for the set of reachable states.

DFA Conversion Example

 Regular expression: (a|b)(c|d)e*

Reachable states:
on a 'd': 10,11,12,14

DFA Conversion Example

 Regular expression: (a|b)(c|d)e*

Reachable states: on a 'd': 10,11,12,14

Create state and transitions for the set of reachable states.

DFA Conversion Example

Regular expression: (a|b)(c|d)e*

Note: both new DFA states are final states because their corresponding sets include NFA state 14, which is a final state.

DFA Conversion Example

 Regular expression: (a|b)(c|d)e*

Repeat process for State [3, 6, 7, 9].

DFA Conversion Example

 Regular expression: (a|b)(c|d)e*

Reachable states:
on a 'd': 10,11,12,14

Reachable states:
on a 'c': 8,11,12,14

DFA Conversion Example

 Regular expression: (a|b)(c|d)e*

There already exist DFA states corresponding to those sets! Just add transitions to these states.

DFA Conversion Example

Regular expression: (a|b)(c|d)e*

Repeat process for State [10, 11, 12, 14].

Reachable states: on an 'e': 12, 13, 14

DFA Conversion Example

Regular expression: (a|b)(c|d)e*

Create state and transitions for the set of reachable states.

DFA Conversion Example

Regular expression: (a|b)(c|d)e*

Repeat process for State [8, 11, 12, 14].

Reachable states: on an 'e': 12, 13, 14
done

DFA Conversion Example

Regular expression: (a|b)(c|d)e*

State already exists. Just create transition.

DFA Conversion Example

Regular expression: (a|b)(c|d)e*

Repeat process for State [12, 13, 14].

Reachable states: on an 'e’: 12, 13, 14 (itself!)

DFA Conversion Example

Regular expression: (a|b)(c|d)e*

There is no "escape" from the set of states [12, 13, 14] on an 'e'. Thus, create a self-loop.

DFA Conversion Example

Regular expression: (a|b)(c|d)e*

The result: an equivalent DFA!

NFA \rightarrow DFA Conversion

- Any NFA can be converted into an equivalent DFA using this method.
- However, the number of states can increase exponentially.
- With careful syntax design, this problem can be avoided in practice.
- Limitation: resulting DFA is not necessarily optimal.

NFA \rightarrow DFA Conversion

- Any NFA can be converted into an eauivalent DFA usir

These two states are equivalent: for each - Hov input element, they both lead to the same state.

Thus, having two states is unnecessary.

- Witl avoidea mpractice.
- Limitation: resulting DFA is $n+$ necessarily optimal.

Step 3: DFA Minimization

Goal: obtain minimal DFA.

- For each RE, the minimal DFA is unique (ignoring simple renaming).
- DFA minimization: merge states that are equivalent.

Key idea: it's easier to split.

- Start with two partitions: final and non-final states.
- Repeatedly split partitions until all partitions contain only equivalent states.
- Two states S1, S2 are equivalent if all their transitions "agree," i.e., if there exists an input symbol x such that the DFA transitions (on input x) to a state in partition P1 if in S1 and to state in partition P2 if in S2 and P1 $\neq P 2$, then S1 and S2 are not equivalent.

Step 3: DFA Minimization

Goal: obtain minimal DFA.

- For each RE, the minimal DFA is unique (ignoring simple renaming).
- DFA minimization: merge states that are equivalent.

Key idea: it's easier to split.

- Start with two partitions: final and non-final states.
- Repeatedly split partitions until all partitions contain only equivalent states.
- Two states S1, S2 are equivalent if all their transitions "agree," i.e., if there exists an input symbol x such that the DFA transitions (on input x) to a state in partition P1 if in S1 and to state in partition P2 if in S2 and P1 $\neq P 2$, then S1 and S2 are not equivalent.

Goal: obtair

Cィー- 3. ПᄃA AA:-mimization

- For each

A and B are equivalent.

 simple renaming).- DFA minimization: merge states that are equivalent.

Key idea: it's easier to split.

- Start with two partitions: final and non-final state
- Repeatedly split partitions until all partitions contain only equivalent states.
- Two states S1, S2 are equivalent if all their transitions "agree," i.e., if there exists an input cymbal v cuch that the DFA trancitinnc Inn innut

\mathbf{C} is not equivalent to either \mathbf{A} or \mathbf{B}.

Because it has a transition into Part.3.

DFA Minimization Example

DFA Minimization Example

Partition final and non-final states.

DFA Minimization Example

Final

Examine final states.

All final states are equivalent!

DFA Minimization Example

[$1,2,4$] is not equivalent to any other state: it is the only state with a transition to the non-final partition.

DFA Minimization Example

[$5,6,7,9$] and $[3,6,7,9]$ are equivalent. Thus, we are done.

DFA Minimization Example

Create one state for each partition. We have obtained a minimal DFA for (a|b)(c|d)e*.

Recognizing Multiple Tokens

- Construction up to this point can only recognize a single token type.
- Results in Accept or Reject, but does not yield which token was seen.
- Real lexical analysis must discern between multiple token types.
- Solution: annotate final states with token type.

Multi Token Construction

To build DFA for N tokens:

- Create a NFA for each token type RE as before.
- Join all token NFAs as shown below:

Multi Token Construction

To bl

- Cre

This is similar to NFA construction rule 3. Key difference: we keep all final states.

Multi Token Construction

To bl

- Cr e

This is similar to NFA construction rule 3. Key difference: we keep all final states.

Token Precedence

Consider the following regular grammar.

- Create DFA to recognize identifiers and keywords.

identifier keyword digit letter

\rightarrow letter (letter I digit I _)*
\rightarrow if I else I while
$\rightarrow 0 \mid 1$ | $2|3| 4|5| 6|7| 8 \mid 9$
$\rightarrow \mathrm{alb|c|} \ldots \mathrm{l}$

Can you spot a problem?

Token Precedence

Consider the following regular grammar.

- Create DFA to recognize identifiers and keywords.

identifier
keyword
digit
letter

\rightarrow letter (letter I digit I _)*
\rightarrow if I else I while
\rightarrow 0|1|2|3|4|5|6|7|8|9
\rightarrow alblcl...lz

All keywords are also identifiers!

The grammar is ambiguous.
Example: for string 'while', there are two accepting states in the final NFA with different labels.

Token Precedence

Consider the following regular grammar.

- Create DFA to recognize identifiers and keywords.

$$
\begin{array}{ll}
\frac{\text { identifier }}{\text { keyword }} & \\
\hline \text { ligtter (letter I digit I _ })^{\star} \\
\text { ligit } & \\
\text { letter I while } & \rightarrow 0|1| 2|3| 4|5| 6|7| 8 \mid 9 \\
& \rightarrow \text { alb|c|...|z }
\end{array}
$$

Solution

- Assign precedence values to tokens (and labels).
- In case of ambiguity, prefer final state with highest precedence value.

Token Precedence

Consider the following regular grammar.

- Create DFA to recognize identifiers and keywords.

Note: during DFA optimization, two final states are not equivalent if they are labeled with different token types.

Solution

- Assign precedence values to tokens (and labels).
- In case of ambiguity, prefer final state with highest precedence value.

Extended Regular Expressions

some commonly used abbreviations
$+$ n
?
[]
[^]

\author{

+ Kleene Plus
 name \rightarrow letter+ is the same as name \rightarrow letter letter*
}

Extended Regular Expressions

some commonly used abbreviations
$+$
n
?
[]
[^]

n times
 name \rightarrow letter ${ }^{3}$
 is the same as
 name \rightarrow letter letter letter

Extended Regular Expressions

some commonly used abbreviations
$+$
n
?
[]
[^]
? optionally
ZIP \rightarrow digit $^{5}\left(-\right.$ digit $\left.^{4}\right)$?
is the same as
ZIP $\rightarrow \operatorname{digit}^{5}\left(\varepsilon \mid-\right.$ digit $\left.^{4}\right)$

Extended Regular Expressions

some commonly used abbreviations
$+$
n
?
[]
[^]

> [] one off
> digit $\rightarrow[123456789]$
> is the same as
> digit $\rightarrow 0|1| 2|3| 4|5| 6|7| 8 \mid 9$

Extended Regular Expressions

some commonly used abbreviations
$+$
n
?
[]
[^]

[^] not one off

notADigit \rightarrow [^123456789]
is the same as
notADigit \rightarrow A I B C ...

Extended Regular Expressions

Limitations of REs

Suppose we wanted to remove extraneous, balanced '(' ')' pairs around identifiers.

- Example: report (sum), ((sum)) and (((sum))) simply as Identifier.
- But not: ((sum)

One might try:

$$
\text { identifier } \rightarrow\left({ }^{\mathrm{n}} \text { letter+ }\right)^{\mathrm{m}} \quad \text { such that } \mathrm{n}=\mathrm{m}
$$

This cannot be expressed with regular expressions! Requires a recursive grammar: let the parser do it.

