
COMP 524: Programming Language Concepts
Björn B. Brandenburg

The University of North Carolina at Chapel Hill

Based in part on slides and notes by S. Olivier, A. Block, N. Fisher, F. Hernandez-Campos, and D. Stotts.

Prolog Notes

Tuesday, February 16, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts06: Prolog Notes

Overview

Prolog.
!Designed by Alain Colmerauer

(Marseille, France).
!First appeared in 1972.
!Popularized in the 80ʻies.
‣Artificial intelligence.
‣Computational linguistics.

Key Features.
!A declarative language.
!A small language: few primitives.
!Uses (a subset of) propositional logic

as primary model.

2
Tuesday, February 16, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts06: Prolog Notes

Overview

Prolog.
!Designed by Alain Colmerauer

(Marseille, France).
!First appeared in 1972.
!Popularized in the 80ʻies.
‣Artificial intelligence.
‣Computational linguistics.

Key Features.
!A declarative language.
!A small language: few primitives.
!Uses (a subset of) propositional logic

as primary model.

3

“Nevertheless, my aim at that time was not to create a new
programming language but to describe to the computer in natural

language (French) a small world of concepts and then ask the
computer questions about that world and obtain answers. We
wrote an embryo of such a system and in that process the tool

Prolog was developed. It was used for the analysis and the
generation of French text, as well as for the deductive part

needed to compute the answers to the questions.”

Tuesday, February 16, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts06: Prolog Notes

Application Scenarios

Standalone.
!Prolog is a general-purpose language.
!Can do I/O, networking, GUI.
!Web-application backend.

Embedded.
!Prolog as a library.
!“Intelligent core” of program.
‣Business logic.
‣Rules processor.
‣Authentication / authorization rules.

!E.g., tuProlog is a Java class library.

4

SWI Prolog

The ECLiPSe Constraint Programming System

Logic Programming Associates Ltd

tuProlog

and many more…

Tuesday, February 16, 2010

http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.lpa.co.uk/ind_pro.htm
http://www.swi-prolog.org/
http://www.swi-prolog.org/
http://www.swi-prolog.org/
http://www.swi-prolog.org/
http://www.swi-prolog.org/
http://www.swi-prolog.org/
http://www.swi-prolog.org/
http://www.swi-prolog.org/
http://www.swi-prolog.org/
http://www.swi-prolog.org/
http://www.swi-prolog.org/
http://www.swi-prolog.org/
http://www.swi-prolog.org/
http://www.swi-prolog.org/
http://www.swi-prolog.org/
http://www.swi-prolog.org/
http://www.swi-prolog.org/
http://www.swi-prolog.org/
http://www.swi-prolog.org/
http://www.swi-prolog.org/
http://www.swi-prolog.org/
http://www.swi-prolog.org/
http://www.swi-prolog.org/
http://www.swi-prolog.org/
http://www.swi-prolog.org/
http://www.swi-prolog.org/
http://eclipse-clp.org/
http://eclipse-clp.org/
http://eclipse-clp.org/
http://eclipse-clp.org/
http://eclipse-clp.org/
http://eclipse-clp.org/
http://eclipse-clp.org/
http://eclipse-clp.org/
http://eclipse-clp.org/
http://eclipse-clp.org/
http://eclipse-clp.org/
http://eclipse-clp.org/
http://eclipse-clp.org/
http://eclipse-clp.org/
http://eclipse-clp.org/
http://eclipse-clp.org/
http://eclipse-clp.org/
http://eclipse-clp.org/
http://eclipse-clp.org/
http://eclipse-clp.org/
http://eclipse-clp.org/
http://alice.unibo.it/xwiki/bin/view/Tuprolog/
http://alice.unibo.it/xwiki/bin/view/Tuprolog/

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts06: Prolog Notes

Prolog in 3 Steps
(1) Provide inference rules.
!If condition, then also conclusion.
!E.g., If “it rains”, then “anything outside becomes wet.”
!E.g., If “it barks”, then “it is a dog.”
!E.g., If “it is a dog” and “it is wet”, then “it smells.”

(2) Provide facts.
!The “knowledge base.”
! E.g., “It rains.”, “Fido barks.”, “Fido is outside.”

(3) Query the Prolog system.
!Provide a goal statement.
!E.g., “Does Fido smell?”

5
Tuesday, February 16, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts06: Prolog Notes

Prolog in 3 Steps
(1) Provide inference rules.
!If condition, then also conclusion.
!E.g., If “it rains”, then “anything outside becomes wet.”
!E.g., If “it barks”, then “it is a dog.”
!E.g., If “it is a dog” and “it is wet”, then “it smells.”

(2) Provide facts.
!The “knowledge base.”
! E.g., “It rains.”, “Fido barks.”, “Fido is outside.”

(3) Query the Prolog system.
!Provide a goal statement.
!E.g., “Does Fido smell?”

6

True for any “it.”
“It” is a variable.

Tuesday, February 16, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts06: Prolog Notes

Prolog in 3 Steps
(1) Provide inference rules.
!If condition, then also conclusion.
!E.g., If “it rains”, then “anything outside becomes wet.”
!E.g., If “it barks”, then “it is a dog.”
!E.g., If “it is a dog” and “it is wet”, then “it smells.”

(2) Provide facts.
!The “knowledge base.”
! E.g., “It rains.”, “Fido barks.”, “Fido is outside.”

(3) Query the Prolog system.
!Provide a goal statement.
!E.g., “Does Fido smell?”

7

“Fido” is a specific entity.
“Fido” is an atom.

Tuesday, February 16, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts06: Prolog Notes

Prolog Term

8

Variables
X, Y, Z

Thing, Dog

Atoms
x, y, fido

'Atom', 'an atom'

must begin with capital letter must begin with lower-case
letter or be quoted

Structures
date(march ,2, 2010)

state('NC', 'Raleigh')
state(Abbrev, Capital)

an atom followed by a comma-
separated list of terms
enclosed in parenthesis

Numeric Literal
1, 2, 3, 4, 5

0.123
200

one of the following

integers or floating points

Tuesday, February 16, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts06: Prolog Notes

(1) Inference Rules
Describe known implications / relations.
!Axioms.
!Rules to infer new facts from known facts.
!Prolog will “search and combine” these rules to find an

answer to the provided query.

9

If “it barks”, then “it is a dog.”

Such rules are expressed as Horn Clauses.

Tuesday, February 16, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts06: Prolog Notes

Horn Clause

10

“conclusion is true if conditions 1–n are all true”

conclusion ← condition1 ∧ condition2 … ∧ conditionn

“to prove conclusion,
first prove conditions 1–n are all true”

Tuesday, February 16, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts06: Prolog Notes

Horn Clause Example

11

dog(X) :- barks(X).Prolog Syntax:

dog(X) ← barks(X)

If “it barks”, then “it is a dog.”

If “X barks”, then “X is a dog.”Use a proper variable for “it”.

Formalized as Horm Clause.

Tuesday, February 16, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts06: Prolog Notes

Prolog Clause / Predicate

12

Clause
conclusion(arg_1, arg_2,…,arg_n) :-

condition_1(some arguments),
…

condition_m(some arguments).

The number of arguments n is called
the arity of the predicate.

each argument must be a term

Tuesday, February 16, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts06: Prolog Notes

(2) Facts
The knowledge base.
!Inference rules allow to create new facts from known

facts.
!Need some facts to start with.
!Sometimes referred to as the “world” or the “universe.”

13

“Fido barks.”, “Fido is outside.”

Facts are clauses without conditions.

barks(fido).
outside(fido).

Tuesday, February 16, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts06: Prolog Notes

(3) Queries
Reasoning about the “world.”
!Provide a goal clause.
!Prolog attempts to satisfy the goal.

14

?- smell(X).
X = fido.

“Find something that smells.”

?- dog(fido).
true.

“Is fido a dog?”

Tuesday, February 16, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts06: Prolog Notes

Alternative Definitions
Multiple definitions for a clause.
!Some predicates can be inferred from multiple

preconditions.
!E.g., not every dogs barks; there are other ways to

classify an animal as a dog.

15

If “X barks or wags the tail”, then “X is a dog.”
dog(X) :- barks(X).
dog(X) :- wags_tail(X).

Note: all clauses for a given predicate should occur in consecutive lines.
Tuesday, February 16, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts06: Prolog Notes

Example

‣A snow day is a good day for anyone.
‣Payday is a good day.
‣Friday is a good day unless one works on
Saturday.
‣A snow day occurs when the roads are icy.
‣A snow day occurs when there is heavy snowfall.
‣Payday occurs if one has a job and itʼs the last
business day of the month.

16
Tuesday, February 16, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts06: Prolog Notes

Example Facts

‣Roads were icy on Monday.
‣Thursday was the last business day of the month.
‣Bill has a job.
‣Bill works on Saturday.
‣Steve does not have a job.
‣It snowed heavily on Wednesday.

17
Tuesday, February 16, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts06: Prolog Notes

Another Example

‣A parent is either a father or mother.
‣A grandparent is the parent of a parent.
‣Two persons are sibling if they share the same
father and mother (simplified model…).
‣Two persons are cousins if one each of their
respective parents are siblings.
‣An ancestor is…?

18
Tuesday, February 16, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts06: Prolog Notes

How Prolog Works
Prolog tries to find an answer.
!Depth-first tree search + backtracking.

22

Original goal

Success

AND

cold(seattle)

fails; backtrack

X = rochester

Candidate clauses

Candidate clauses

Subgoals

rainy(seattle).

rainy(rochester).

cold(rochester).

snowy(X) :- rainy(X), cold(X).

_C = _X

X = seattle

OR

snowy(C)

snowy(X)

rainy(X) cold(X)

rainy(seattle) rainy(rochester) cold(rochester)

[Textbook Figure 11.1]

Tuesday, February 16, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts06: Prolog Notes

Resolution Principle
Axiom to create proofs.
!Robinson, 1965.
!Formalized notion of how implications can be

combined to obtain new implications.
!Letʼs Prolog combine clauses.

23

C ← A ∧ B
D ← C
D ← A ∧ B

“If A and B imply C, and C implies D,
then A and B also imply D.”

Tuesday, February 16, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts06: Prolog Notes

Resolution Principle
Axiom to create proofs.
!Robinson, 1965.
!Formalized notion of how implications can be

combined to obtain new implications.
!Letʼs Prolog combine clauses.

24

C ← A ∧ B
D ← C
D ← A ∧ B

“If A and B imply C, and C implies D,
then A and B also imply D.”

barks(fido)
dog(X) ← barks(X)
dog(fido).

Tuesday, February 16, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts06: Prolog Notes

Unification
Resolution requires “matching” clauses to be found.
!Basic question: does one term “match” another term?
!Defined by unification: terms “match” if they can be unified.

Unification rules.
!Two atoms only unify if they are identical.
‣E.g., fido unifies fido but not ‘Fido’.

!A numeric literal only unifies with itself.
‣E.g., 2 does not unify with 1 + 1. (Weʼll return to this…)

!A structure unifies with another structure if both have the same
name, the same number of elements, and each element unifies
with its counterpart.
‣E.g., date(march, 2, 2010) does not unify date(march, 2,
2009), and also not with day(march, 2, 2010).

25
Tuesday, February 16, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts06: Prolog Notes

Unifying Variables
There are two kinds of variables.
! Variables cannot be updated in Prolog!
! Unbound: value unknown.
! Bound: value known.

Unification of a variable X and some term T.
! If X is unbound, then X unifies with T by becoming bound to T.
! If X is already bound to some term S, then X unifies with T only if S unifies

with T.

Examples.
! X unbound, T is fido: unifies, X becomes bound to fido.
! X bound to ‘NC’, T is ‘NC’: unifies.
! X bound to ‘UNC’, T is ‘Duke’: never unifies.
! X unbound, T is variable Y: unifies, X becomes bound to Y.
! X bound to ‘UNC’, T is variable Y: unifies only if ‘UNC’ unifies with Y.

26
Tuesday, February 16, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts06: Prolog Notes

Backtracking and Goal Search

27

To satisfy the goal pred(T1,…,TN):
for each clause pred(Arg1,…,ArgN) :- cond1,…,condM. :

make snapshot of T1,…,TN
try:
 unify T1 with Arg1 // can throw UnificationFailed

…
unify TN with ArgN
satisfy goal cond1 // can throw “no”
…
satisfy goal condM
yield “yes” for current T1,…,Tn // found answer!

finally:
 restore T1,…,TN from snapshot

throw “no”

Prolog “depth-first tree search” (simplified):

Tuesday, February 16, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts06: Prolog Notes

Backtracking and Goal Search

28

To satisfy the goal pred(T1,…,TN):
for each clause pred(Arg1,…,ArgN) :- cond1,…,condM. :

make snapshot of T1,…,TN
try:
 unify T1 with Arg1 // can throw UnificationFailed

…
unify TN with ArgN
satisfy goal cond1 // can throw “no”
…
satisfy goal condM
yield “yes” for current T1,…,Tn // found answer!

finally:
 restore T1,…,TN from snapshot

throw “no”

Prolog “depth-first tree search”:
Search fails if no answers remain.

Tuesday, February 16, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts06: Prolog Notes

Backtracking and Goal Search

29

To satisfy the goal pred(T1,…,TN):
for each clause pred(Arg1,…,ArgN) :- cond1,…,condM. :

make snapshot of T1,…,TN
try:
 unify T1 with Arg1 // can throw UnificationFailed

…
unify TN with ArgN
satisfy goal cond1 // can throw “no”
…
satisfy goal condM
yield “yes” for current T1,…,Tn // found answer!

finally:
 restore T1,…,TN from snapshot

throw “no”

Prolog “depth-first tree search”:
Clauses are tested in source file order.

Tuesday, February 16, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts06: Prolog Notes

Backtracking and Goal Search

30

To satisfy the goal pred(T1,…,TN):
for each clause pred(Arg1,…,ArgN) :- cond1,…,condM. :

make snapshot of T1,…,TN
try:
 unify T1 with Arg1 // can throw UnificationFailed

…
unify TN with ArgN
satisfy goal cond1 // can throw “no”
…
satisfy goal condM
yield “yes” for current T1,…,Tn // found answer!

finally:
 restore T1,…,TN from snapshot

throw “no”

Prolog “depth-first tree search”:

First unify all arguments (“do they match the query terms?”).

Tuesday, February 16, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts06: Prolog Notes

Backtracking and Goal Search

31

To satisfy the goal pred(T1,…,TN):
for each clause pred(Arg1,…,ArgN) :- cond1,…,condM. :

make snapshot of T1,…,TN
try:
 unify T1 with Arg1 // can throw UnificationFailed

…
unify TN with ArgN
satisfy goal cond1 // can throw “no”
…
satisfy goal condM
yield “yes” for current T1,…,Tn // found answer!

finally:
 restore T1,…,TN from snapshot

throw “no”

Prolog “depth-first tree search”:

If the arguments match, then try to satisfy all conditions.

Tuesday, February 16, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts06: Prolog Notes

Backtracking and Goal Search

32

To satisfy the goal pred(T1,…,TN):
for each clause pred(Arg1,…,ArgN) :- cond1,…,condM. :

make snapshot of T1,…,TN
try:
 unify T1 with Arg1 // can throw UnificationFailed

…
unify TN with ArgN
satisfy goal cond1 // can throw “no”
…
satisfy goal condM
yield “yes” for current T1,…,Tn // found answer!

finally:
 restore T1,…,TN from snapshot

throw “no”

Prolog “depth-first tree search”:

If all conditions can be satisfied, then report answer.
If there are more clauses, then search can continue.

Prolog inherently supports finding all answers!

Tuesday, February 16, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts06: Prolog Notes

Backtracking and Goal Search

33

To satisfy the goal pred(T1,…,TN):
for each clause pred(Arg1,…,ArgN) :- cond1,…,condM. :

make snapshot of T1,…,TN
try:
 unify T1 with Arg1 // can throw UnificationFailed

…
unify TN with ArgN
satisfy goal cond1 // can throw “no”
…
satisfy goal condM
yield “yes” for current T1,…,Tn // found answer!

finally:
 restore T1,…,TN from snapshot

throw “no”

Prolog “depth-first tree search”:
If unification fails, or if a sub goal fails, or if next answer

should be found, then variable bindings have to be restored!

Tuesday, February 16, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts06: Prolog Notes

Cut Operator

“Cut” branches from the search tree.
!Avoid finding “too many” answers.
‣E.g., answers could be symmetrical / redundant.

34

controlling backtracking

one_of(X, A, _, _) :- X = A.
one_of(X, _, B, _) :- X = B.
one_of(X, _, _, C) :- X = C.

?- one_of(unc, duke, unc, state).
true .

?- one_of(unc, duke, unc, unc).
true ;
true.

Tuesday, February 16, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts06: Prolog Notes

Cut Operator

“Cut” branches from the search tree.
!Avoid finding “too many” answers.
‣E.g., answers could be symmetrical / redundant.

35

controlling backtracking

one_of(X, A, _, _) :- X = A.
one_of(X, _, B, _) :- X = B.
one_of(X, _, _, C) :- X = C.

?- one_of(unc, duke, unc, state).
true .

?- one_of(unc, duke, unc, unc).
true ;
true.

Syntax: _ is an anonymous variable.
(i.e., an unused argument)

Tuesday, February 16, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts06: Prolog Notes

Cut Operator

“Cut” branches from the search tree.
!Avoid finding “too many” answers.
‣E.g., answers could be symmetrical / redundant.

36

controlling backtracking

one_of(X, A, _, _) :- X = A.
one_of(X, _, B, _) :- X = B.
one_of(X, _, _, C) :- X = C.

?- one_of(unc, duke, unc, state).
true .

?- one_of(unc, duke, unc, unc).
true ;
true.

Superfluous answer because
X unified with both B and C.

Tuesday, February 16, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts06: Prolog Notes

Cut Operator

The cut (!) predicate.
!Written as exclamation point.
!Always succeeds.
!Side effect: discard all previously-found backtracking points.
‣ i.e., commit to the current binding of variables; donʼt restore.

37

controlling backtracking

one_of_cut(X, A, _, _) :- X = A, !.
one_of_cut(X, _, B, _) :- X = B, !.
one_of_cut(X, _, _, C) :- X = C.

?- one_of(unc, duke, unc, unc).
true.

Tuesday, February 16, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts06: Prolog Notes

Cut Operator

The cut (!) predicate.
!Written as exclamation point.
!Always succeeds.
!Side effect: discard all previously-found backtracking points.
‣ i.e., commit to the current binding of variables; donʼt restore.

38

controlling backtracking

one_of_cut(X, A, _, _) :- X = A, !.
one_of_cut(X, _, B, _) :- X = B, !.
one_of_cut(X, _, _, C) :- X = C.

?- one_of(unc, duke, unc, unc).
true.

Meaning:
if X matches A, then stop looking for other answers.

Tuesday, February 16, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts06: Prolog Notes

Cut Operator

The cut (!) predicate.
!Written as exclamation point.
!Always succeeds.
!Side effect: discard all previously-found backtracking points.
‣ i.e., commit to the current binding of variables; donʼt restore.

39

controlling backtracking

one_of_cut(X, A, _, _) :- X = A, !.
one_of_cut(X, _, B, _) :- X = B, !.
one_of_cut(X, _, _, C) :- X = C.

?- one_of(unc, duke, unc, unc).
true.

Also useful for optimization.
!Prune branches that cannot possibly contain answers.
‣“If we got this far, then donʼt even bother looking at other clauses.”

Tuesday, February 16, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts06: Prolog Notes

Negation
Prolog negation differs from logical negation.
!Otherwise not implementable.
!Math: (not X) is true if and only if X is false.
!Prolog: (not X) is true if goal X cannot be satisfied.
‣i.e., (not X) is true if Prolog cannot find an answer for X.

40

SWI Syntax: \+ X means not X.

Can be defined in terms of cut.

not(X) :- call(X), !, fail.
not(X).

Tuesday, February 16, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts06: Prolog Notes

not(X) :- call(X), !, fail.
not(X).

Negation
Prolog negation differs from logical negation.
!Otherwise not implementable.
!Math: (not X) is true if and only if X is false.
!Prolog: (not X) is true if goal X cannot be satisfied.
‣i.e., (not X) is true if Prolog cannot find an answer for X.

41

SWI Syntax: \+ X means not X.

Can be defined in terms of cut.

Meaning:
If you can satisfy the goal X,

then donʼt try the other clause, and fail.

Tuesday, February 16, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts06: Prolog Notes

not(X) :- call(X), !, fail.
not(X).

Negation
Prolog negation differs from logical negation.
!Otherwise not implementable.
!Math: (not X) is true if and only if X is false.
!Prolog: (not X) is true if goal X cannot be satisfied.
‣i.e., (not X) is true if Prolog cannot find an answer for X.

42

SWI Syntax: \+ X means not X.

Can be defined in terms of cut.

Always succeeds, but only reached if call(X) fails.

Tuesday, February 16, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts06: Prolog Notes

Closed World Assumption

Prolog assumes that the world is fully specified.
!All facts, all rules known.
!Thus, the definition of negation: anything that

cannot be proven correct must be false.
!This is the “closed world assumption.”

43

ugly(worm).
pretty(X) :- \+ ugly(X).

?- pretty(ugly_dog).
true.

Tuesday, February 16, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts06: Prolog Notes

Arithmetic in Prolog

Arithmetic requires the is operator.
!Does not support backtracking (E.g., X and Y must be bound).
!There are too many numbers to try backtracking…
!Prolog is not a computer algebra system (e.g., try Mathematica).

44

add(X, Y, Z) :- Z = X + Y.

?- add(1, 2, Answer).
Answer = 1+2.

add_is(X, Y, Z) :- Z is X + Y.

?- add_is(1, 2, Answer).
Answer = 3.

Tuesday, February 16, 2010

