
COMP 524: Programming Language Concepts
Björn B. Brandenburg

The University of North Carolina at Chapel Hill

Based in part on slides and notes by S. Olivier, A. Block, N. Fisher, F. Hernandez-Campos, and D. Stotts.

Object-Orientation

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts14: Object-Orientation

What is OO?

Conceptual model.
➡Objects: opaque entities that have an identity, state, and

behavior.
➡Objects communicate by sending messages to each other.

Metaphors.
➡Orchestra model.
‣Lotʼs of experts that can do one task well.
‣One conductor that coordinates overall problem solution.

➡Service provider model.
‣An object provides (exactly) one service.
‣May rely on sub-contractors.

2
Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts14: Object-Orientation

What is OO?

Conceptual model.
➡Objects: opaque entities that have an identity, state, and

behavior.
➡Objects communicate by sending messages to each other.

Metaphors.
➡Orchestra model.
‣Lotʼs of experts that can do one task well.
‣One conductor that coordinates overall problem solution.

➡Service provider model.
‣An object provides (exactly) one service.

3

OO is a natural fit for problem decomposition:
humans tend to think in terms of “objects” that “do” “things”.

OO recognizes this and supports this way of thinking.

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts14: Object-Orientation

Benefits of OO
Key features.
➡Encapsulation, information hiding.
‣Reduces complexity, conceptual load, likelihood of errors.

➡ Inheritance.
‣ Increases productivity and code reuse.

➡Abstraction, clean interfaces.
‣ Improves code reuse, separation of concerns.
‣Enables large teams to develop in parallel.

➡Sub-type polymorphism.
‣Code reuse.

➡Decoupling.
‣Code reuse.

4
Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts14: Object-Orientation

Benefits of OO
Key features.
➡Encapsulation, information hiding.
‣Reduces complexity, conceptual load, likelihood of errors.

➡ Inheritance.
‣ Increases productivity and code reuse.

➡Abstraction, clean interfaces.
‣ Improves code reuse, separation of concerns.
‣Enables large teams to develop in parallel.

➡Sub-type polymorphism.
‣Code reuse.

➡Decoupling.
‣Code reuse.

5

OO has succeeded in practice because it
makes individual developers and

teams as a whole more productive
(compared to procedural languages).

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts14: Object-Orientation

Two Flavors of OO
Focus on OO Concepts.
➡ Pioneered by Smalltalk.
‣Adopted by Ruby, Python, Javascript, etc.

➡ Very dynamic.
‣Late binding.
‣Dynamic type checking.
‣Objects of the same class can differ in structure.

Focus on Implementation.
➡ Pioneered by Simula 67.
‣Adopted by C++, Java, C#, Eiffel, etc.

➡ Composite types.
➡ Some components are functions.
➡ All objects of one class must have same structure (memory layout).
➡ Optional early-binding.

6
Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts14: Object-Orientation

Two Flavors of OO
Focus on OO Concepts.
➡ Pioneered by Smalltalk.
‣Adopted by Ruby, Python, Javascript, etc.

➡ Very dynamic.
‣Late binding.
‣Dynamic type checking.
‣Objects of the same class can differ in structure.

Focus on Implementation.
➡ Pioneered by Simula 67.
‣Adopted by C++, Java, C#, Eiffel, etc.

➡ Composite types.
➡ Some components are functions.
➡ All objects of one class must have same structure (memory layout).
➡ Optional early-binding.

7

Pure object orientation: everything is an
object (even numbers, functions, etc).

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts14: Object-Orientation

Model and Implementation

8

Upon receipt of a message (= method call),

an object may change state (= update its attributes),

 collaborate with other objects
(= call methods of other objects),

and finally reply (= return value).

Thursday, April 15, 2010

UNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts14: Object-Orientation

Multiple Inheritance

9

class Person {
 void haveFun() {...};
 void work() {...};
}

class Teacher extends Person {
 void study() { ... }; // newly define study()
 void work() { study(); ... }; // override work()
}

class Researcher extends Person {
 void study() { ... }; // newly define study()
 void work() { study(); ... }; // override work()
}

class Professor extends Teacher, Researcher {
 void haveFun() { work() };
}

(new Professor()).haveFun();

Thursday, April 15, 2010

UNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts14: Object-Orientation

Multiple Inheritance

10

class Person {
 void haveFun() {...};
 void work() {...};
}

class Teacher extends Person {
 void study() { ... }; // newly define study()
 void work() { study(); ... }; // override work()
}

class Researcher extends Person {
 void study() { ... }; // newly define study()
 void work() { study(); ... }; // override work()
}

class Professor extends Teacher, Researcher {
 void haveFun() { work() };
}

(new Professor()).haveFun();

Which work() will be called?
Which study() will be called?

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts14: Object-Orientation

Mix-in Inheritance

11

Restricted alternative to multiple inheritance.
➡Linear “true” inheritance: only single base class.
➡Can mix-in traits with a class.
‣e.g., Java interfaces.

Interfaces + delegation.
➡Pure interfaces: lotʼs of repeated code.
‣Javaʼs interfaces do not include default
implementation.

➡Better alternative: provide a default class; delegate to
member object.

Thursday, April 15, 2010

UNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts14: Object-Orientation

Delegation Example

12

interface Bar {
 void bar();
}

class DefaultBar implements Bar {
 void bar() { ... };
}

class MyClass implements Bar {
 private DefaultBar barImpl = new DefaultBar();

 void bar() { barImpl.bar(); }
}

Thursday, April 15, 2010

UNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts14: Object-Orientation

Delegation Example

13

interface Bar {
 void bar();
}

class DefaultBar implements Bar {
 void bar() { ... };
}

class MyClass implements Bar {
 private DefaultBar barImpl = new DefaultBar();

 void bar() { barImpl.bar(); }
}

Default implementation to avoid repetition.

Thursday, April 15, 2010

UNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts14: Object-Orientation

Delegation Example

14

interface Bar {
 void bar();
}

class DefaultBar implements Bar {
 void bar() { ... };
}

class MyClass implements Bar {
 private DefaultBar barImpl = new DefaultBar();

 void bar() { barImpl.bar(); }
}

Delegate calls to default implementation.

Thursday, April 15, 2010

UNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts14: Object-Orientation

Delegation Example

15

interface Bar {
 void bar();
}

class DefaultBar implements Bar {
 void bar() { ... };
}

class MyClass implements Bar {
 private DefaultBar barImpl = new DefaultBar();

 void bar() { barImpl.bar(); }
}

C# provides explicit delegate syntax

Thursday, April 15, 2010

UNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts14: Object-Orientation

Delegation Example

16

interface Bar {
 void bar();
}

class DefaultBar implements Bar {
 void bar() { ... };
}

class MyClass implements Bar {
 private DefaultBar barImpl = new DefaultBar();

 void bar() { barImpl.bar(); }
}

Scalaʼs traits allow default implementations as
part of the interface definition:

trait Similarity {
 def isSimilar(x: Any): Boolean
 def isNotSimilar(x: Any): Boolean = !isSimilar(x)
}

From: http://www.scala-lang.org/node/126

Thursday, April 15, 2010

http://www.scala-lang.org/node/126
http://www.scala-lang.org/node/126

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts14: Object-Orientation

Early vs. Late Binding

17

Early Binding.
➡Static name resolution.
➡Compiler determines at compile time which code

will be called.
➡As efficient as a regular procedure call.

Late Binding.
➡Name is resolved at runtime.
➡Requires dynamic method dispatch.
➡Incurs (small) overhead.

Thursday, April 15, 2010

UNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts14: Object-Orientation

Binding Time Example

18

class A {
 void aFun() {...};
}

class B extend A {
 void aFun() {...};
}

A obj = new B();
obj.aFun();

Thursday, April 15, 2010

UNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts14: Object-Orientation

Binding Time Example

19

class A {
 void aFun() {...};
}

class B extend A {
 void aFun() {...};
}

A obj = new B();
obj.aFun();

Super-class reference type.

Thursday, April 15, 2010

UNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts14: Object-Orientation

Binding Time Example

20

class A {
 void aFun() {...};
}

class B extend A {
 void aFun() {...};
}

A obj = new B();
obj.aFun();

Late binding:
B.aFun() is

called.

Thursday, April 15, 2010

UNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts14: Object-Orientation

Binding Time Example

21

class A {
 void aFun() {...};
}

class B extend A {
 void aFun() {...};
}

A obj = new B();
obj.aFun();

Early binding:
A.aFun() is

called.

Thursday, April 15, 2010

UNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts14: Object-Orientation

Binding Time Example

22

class A {
 void aFun() {...};
}

class B extend A {
 void aFun() {...};
}

A obj = new B();
obj.aFun();

Late binding: type of the object determines the method.
Early binding: type of the reference determines the method.

Thursday, April 15, 2010

UNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts14: Object-Orientation

Fragile Base Classes

23

apparently correct changes to a base
class that break subclasses

Version 1 Version 2

class Child extends Base {
 void f() {; g(); };
}

class Base {
 void f() { ... };
 void g() { ... };
}

Client

class Base {
 void f() { ... };
 void g() { ...; f(); ... };
}

Thursday, April 15, 2010

UNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts14: Object-Orientation

Fragile Base Classes

24

apparently correct changes to a base
class that break subclasses

Version 1 Version 2

class Child extends Base {
 void f() {; g(); };
}

class Base {
 void f() { ... };
 void g() { ... };
}

Client

class Base {
 void f() { ... };
 void g() { ...; f(); ... };
}

After upgrade:
infinite recursion.

Thursday, April 15, 2010

UNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts14: Object-Orientation

Fragile Base Classes

25

apparently correct changes to a base
class that break subclasses

Version 1 Version 2

class Child extends Base {
 void f() {; g(); };
}

class Base {
 void f() { ... };
 void g() { ... };
}

Client

class Base {
 void f() { ... };
 void g() { ...; f(); ... };
}

After upgrade:
infinite recursion.

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts14: Object-Orientation

Fragile Base Classes

26

Large problem in practice.
➡Many systems ship with large class libraries.
‣E.g., Java, C#/.NET, Objective-C.

➡Developers can subclass system classes.
➡Every upgrade can break previously-working code!

Avoidance.
➡Requires careful class design.
➡Later implementation changes should make very

little assumptions.

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts14: Object-Orientation

Fragile Base Classes

27

Large problem in practice.
➡Many systems ship with large class libraries.
‣E.g., Java, C#/.NET, Objective-C.

➡Developers can subclass system classes.
➡Every upgrade can break previously-working code!

Avoidance.
➡Requires careful class design.
➡Later implementation changes should make very

little assumptions.
Related problem: binary compatibility vs. separate
compilation. Recompilation necessary if base class

changes.
Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts14: Object-Orientation

Class Modification at Runtime

28

aka “monkey patching”

Pure OO: Everything is an object.
➡Even classes.
➡Objects can change state.
➡In many dynamic languages this can be used to modify

classes at runtime.
‣E.g., Python, Ruby,…

Inheritance vs. modification.
➡Inheritance leaves the superclass unchanged.
➡Direct modification affects all modules using the class.
➡Imagine amending the built-in string class…

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts14: Object-Orientation

Example: Runtime Patches

29

class Base(object):
 def a_method(self):
 print "a_method was called"

obj = Base()
obj.a_method()

def a_function(self, msg):
 print "a_function was called", msg

Modify class at runtime!
Base.any_name = a_function

Added method works on previously-created instances..
obj.any_name("as a method of Base!")

def dangerous(self):
 print "Replacing methods can cause tricky bugs!"

Replace existing method at runtime!
Base.a_method = dangerous

obj.a_method()

Output:

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts14: Object-Orientation

Example: Runtime Patches

30

class Base(object):
 def a_method(self):
 print "a_method was called"

obj = Base()
obj.a_method()

def a_function(self, msg):
 print "a_function was called", msg

Modify class at runtime!
Base.any_name = a_function

Added method works on previously-created instances..
obj.any_name("as a method of Base!")

def dangerous(self):
 print "Replacing methods can cause tricky bugs!"

Replace existing method at runtime!
Base.a_method = dangerous

obj.a_method()

Output:

Class definition
with one method.

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts14: Object-Orientation

Example: Runtime Patches

31

class Base(object):
 def a_method(self):
 print "a_method was called"

obj = Base()
obj.a_method()

def a_function(self, msg):
 print "a_function was called", msg

Modify class at runtime!
Base.any_name = a_function

Added method works on previously-created instances..
obj.any_name("as a method of Base!")

def dangerous(self):
 print "Replacing methods can cause tricky bugs!"

Replace existing method at runtime!
Base.a_method = dangerous

obj.a_method()

Output:
a_method was called

Create instance;
method is called.

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts14: Object-Orientation

Example: Runtime Patches

32

class Base(object):
 def a_method(self):
 print "a_method was called"

obj = Base()
obj.a_method()

def a_function(self, msg):
 print "a_function was called", msg

Modify class at runtime!
Base.any_name = a_function

Added method works on previously-created instances..
obj.any_name("as a method of Base!")

def dangerous(self):
 print "Replacing methods can cause tricky bugs!"

Replace existing method at runtime!
Base.a_method = dangerous

obj.a_method()

Output:
a_method was called

Define top-level
function…

…and add it to the
class at runtime.

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts14: Object-Orientation

Example: Runtime Patches

33

class Base(object):
 def a_method(self):
 print "a_method was called"

obj = Base()
obj.a_method()

def a_function(self, msg):
 print "a_function was called", msg

Modify class at runtime!
Base.any_name = a_function

Added method works on previously-created instances..
obj.any_name("as a method of Base!")

def dangerous(self):
 print "Replacing methods can cause tricky bugs!"

Replace existing method at runtime!
Base.a_method = dangerous

obj.a_method()

Output:
a_method was called
a_function was called as a method of Base!

New “method” is immediately available in all
instances, as if declared in the class itself.

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts14: Object-Orientation

Example: Runtime Patches

34

class Base(object):
 def a_method(self):
 print "a_method was called"

obj = Base()
obj.a_method()

def a_function(self, msg):
 print "a_function was called", msg

Modify class at runtime!
Base.any_name = a_function

Added method works on previously-created instances..
obj.any_name("as a method of Base!")

def dangerous(self):
 print "Replacing methods can cause tricky bugs!"

Replace existing method at runtime!
Base.a_method = dangerous

obj.a_method()

Output:
a_method was called
a_function was called as a method of Base!
Replacing methods can cause tricky bugs!

Can also replace (or remove)
previously-declared methods.

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts14: Object-Orientation

Example: Runtime Patches

35

class Base(object):
 def a_method(self):
 print "a_method was called"

obj = Base()
obj.a_method()

def a_function(self, msg):
 print "a_function was called", msg

Modify class at runtime!
Base.any_name = a_function

Added method works on previously-created instances..
obj.any_name("as a method of Base!")

def dangerous(self):
 print "Replacing methods can cause tricky bugs!"

Replace existing method at runtime!
Base.a_method = dangerous

obj.a_method()

Output:
a_method was called
a_function was called as a method of Base!
Replacing methods can cause tricky bugs!

In Python, some built-in classes that are implemented in C cannot
be modified. In Ruby, virtually every class can be modified.

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts14: Object-Orientation

Runtime Patches: Discussion

36

Uses.
➡Add functionality, e.g., logging, caching, invariant checking,…
➡Fix bugs in third-party module.
➡Add convenience methods.
‣E.g., add a “make a file with this name” method to the string class
(this is actually done in the Ruby-based brew package manager).

Dangers.
➡Two patches for the same class.
‣Unpredictable application: “last one wins.”
‣ Incompatible changes.

➡Corresponding source hard to find (maintenance problem).
‣Eg., if you notice a bug in a class in module A, the
corresponding code could reside in modules B, C, D, …

➡Fragile updates: changes to the class being patched can render
runtime patches in any number of modules incorrect.

Thursday, April 15, 2010

http://mxcl.github.com/homebrew/
http://mxcl.github.com/homebrew/

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts14: Object-Orientation

Objects without Classes

Some languages avoid classes completely.
➡Pioneered by the language Self.
➡Gaining in popularity (JavaScript is prototype-based.)

Concept.
➡Everything is an object.
➡Objects have a prototype (reference to another object):
‣Messages (i.e., method calls, member references) not
handled by an object are redirected to the prototype.

➡Objects are created by cloning an existing object, which
becomes the prototype.

➡Exact details vary between languages.

37

prototype-based languages

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts14: Object-Orientation

Prototype Example

38

function Bar() {
 this.credits = "created by Bar"
}

function Foo() {
 this.credits = "created by Foo"
}

Bar.prototype.get_proto_name = function () { return "I'm a Bar." }
Foo.prototype.get_proto_name = function () { return "I'm a Foo." }

obj1 = new Bar()
obj2 = new Foo()

document.write("

--Before--
")
document.write("obj1 was " + obj1.credits + ": " + obj1.get_proto_name())
document.write("
")
document.write("obj2 was " + obj2.credits + ": " + obj2.get_proto_name())

obj1.__proto__ = Foo.prototype;
obj2.__proto__ = Bar.prototype;

document.write("

--After--
")
document.write("obj1 was " + obj1.credits + ": " + obj1.get_proto_name())
document.write("
")
document.write("obj2 was " + obj2.credits + ": " + obj2.get_proto_name())

(JavaScript)

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts14: Object-Orientation

(JavaScript)
Prototype Example

39

function Bar() {
 this.credits = "created by Bar"
}

function Foo() {
 this.credits = "created by Foo"
}

Bar.prototype.get_proto_name = function () { return "I'm a Bar." }
Foo.prototype.get_proto_name = function () { return "I'm a Foo." }

obj1 = new Bar()
obj2 = new Foo()

document.write("

--Before--
")
document.write("obj1 was " + obj1.credits + ": " + obj1.get_proto_name())
document.write("
")
document.write("obj2 was " + obj2.credits + ": " + obj2.get_proto_name())

obj1.__proto__ = Foo.prototype;
obj2.__proto__ = Bar.prototype;

document.write("

--After--
")
document.write("obj1 was " + obj1.credits + ": " + obj1.get_proto_name())
document.write("
")
document.write("obj2 was " + obj2.credits + ": " + obj2.get_proto_name())

Output:
--Before--
obj1 was created by Bar: I'm a Bar.
obj2 was created by Foo: I'm a Foo.

--After--
obj1 was created by Bar: I'm a Foo.
obj2 was created by Foo: I'm a Bar.

Can change prototype at runtime.
Equivalent to changing the “class.”

Thursday, April 15, 2010

