
COMP 524: Programming Language Concepts
Björn B. Brandenburg

The University of North Carolina at Chapel Hill

Based in part on slides and notes by S. Olivier, A. Block, N. Fisher, F. Hernandez-Campos, and D. Stotts.

Runtime System

Thursday, April 22, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts15: Runtime System

What is the Runtime System (RTS)?
Language runtime environment.
➡OS view: RTS is part of the user program.
➡But RTS was not programmed by the language user.
➡The RTS is everything not part of the OS and not explicitly

provided by the user (i.e., the program or 3rd party libraries).

2

Operating System

Interpreter / Virtual Machine

Hardware

Standard
Library

Program

Interpreted

Operating System

Hardware

Standard
Library

Program

Compiled

Thursday, April 22, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts15: Runtime System

What is the Runtime System (RTS)?
Language runtime environment.
➡OS view: RTS is part of the user program.
➡But RTS was not programmed by the language user.
➡The RTS is everything not part of the OS and not explicitly

provided by the user (i.e., the program or 3rd party libraries).

3

Operating System

Interpreter / Virtual Machine

Hardware

Standard
Library

Program

Interpreted

Operating System

Hardware

Standard
Library

Program

Compiled

Examples: memory allocator, garbage collector, support for runtime
casts, exception handling infrastructure, just-in-time (JIT) compiler,

support for closure and anonymous functions, lazy evaluation, dynamic
type checking, byte code verifier, OS abstraction layers (if any), class-

loading and plugin support (if any), multi-threading support, remote
procedure calls (e.g., Java RMI), …

Thursday, April 22, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts15: Runtime System

What is the Runtime System (RTS)?
Language runtime environment.
➡OS view: RTS is part of the user program.
➡But RTS was not programmed by the language user.
➡The RTS is everything not part of the OS and not explicitly

provided by the user (i.e., the program or 3rd party libraries).

4

Operating System

Interpreter / Virtual Machine

Hardware

Standard
Library

Program

Interpreted

Operating System

Hardware

Standard
Library

Program

Compiled

RTS:
the infrastructure required to (transparently) realize
higher-level language abstractions at runtime.

Thursday, April 22, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts15: Runtime System

Our Focus

‣Weʼll discuss three RTS components.

‣Garbage collection.

‣Just-in-Time Compilation.

‣Security issues.

5
Thursday, April 22, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts15: Runtime System

Heap Management
Allocation and deallocation of objects on the heap.
➡ Arbitrary object lifetime.
➡ Traditional language design:
‣Code, static, and runtime stack managed by compiler / interpreter.
‣Heap managed by programmer.

6

Code Static Runtime stack Heap

Simplified 32-bit Memory Model

0x0 Increasing Virtual Addresses 0xffffffff

Thursday, April 22, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts15: Runtime System

Garbage
Memory reclamation.
➡An object is “garbage” if it is not going to be used again.
➡Memory holding garbage must be reclaimed in long-

running programs.

Classic imperative approach: explicit heap management.
➡malloc/free, new/delete, etc.
➡Problems: dangling pointers, memory leaks…
➡Experience suggests that programmers, on average, are

not very good at correctly identifying garbage.

7
Thursday, April 22, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts15: Runtime System

Garbage Collection
Automatic heap management.
➡The RTS should manage memory, not the

programmer.
➡First developed for Lisp in 1958
➡Merits hotly contested until ʻ90ies.

Widespread use.
➡Essential in functional languages
‣e.g., Haskell, ML.

➡Key feature of scripting languages
‣e.g., Python, Perl.

➡Increasingly popular modern imperative languages
‣e.g, Java, C#.

8
Thursday, April 22, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts15: Runtime System

Reachable Objects

9

Root Set
The set of objects that are immediately available to a
program without following any pointers/references.

Object graph.
➡Allocated objects form a graph.
‣Vertices: objects.
‣Edges: references/pointers.

➡Any non-garbage object must be reachable from
the root set.

Thursday, April 22, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts15: Runtime System

Garbage Collection: Techniques

Detecting garbage.
➡When is an object no longer being referenced?
➡False positives: program crash.
➡False negatives: memory leak.

Garbage collection techniques.
➡Reference counting.
➡Mark-and-sweep collection.
➡Store-and-copy.
➡Generational collection.

10
Thursday, April 22, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts15: Runtime System

Reference Counting
Indirect reachability.
➡Each object has an associated reference counter.
➡Object graph: how many incoming edges?

Maintained invariant.
➡Counter is incremented when a new reference is acquired.
➡Counter is decremented when a reference is removed.
➡ If an object is reachable, then its associated reference

counter is positive.

Widespread use.
➡Easy to implement in C (but error-prone).
➡Used in Linux kernel, Python, many other projects.

11
Thursday, April 22, 2010

UNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts15: Runtime System

Reference Counting Example

12

1 “foo”str1

HeapStack

str2

str1 = “foo”

Thursday, April 22, 2010

UNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts15: Runtime System

Reference Counting Example

13

1 “foo”str1

HeapStack

str2

str1 = “foo”

After object allocation: reference counter is initially one.

Thursday, April 22, 2010

UNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts15: Runtime System

Reference Counting Example

14

2 “foo”str1

HeapStack

str2

str2 = str1

Thursday, April 22, 2010

UNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts15: Runtime System

Reference Counting Example

15

2 “foo”str1

HeapStack

str2

str2 = str1

Adding a new reference increments the counter.

Thursday, April 22, 2010

UNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts15: Runtime System

Reference Counting Example

16

0 “foo”str1

HeapStack

str2

str1 = None
str2 = None

Thursday, April 22, 2010

UNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts15: Runtime System

Reference Counting Example

17

0 “foo”str1

HeapStack

str2

str1 = None
str2 = None

No remaining references: it is now safe to deallocate the object.

Thursday, April 22, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts15: Runtime System

Reference Counting: Problems

18

Efficiency.
➡Increases number of (slow) writes.
➡With multithreading, it may require (even slower)

atomic updates.

Accuracy.
➡Disjoint union types: what if one variant

contains a reference, and another doesnʼt?
‣Reference counting must track variant tags.

➡In a weakly typed language such as C?
‣Cannot reliably tell pointers from integers apart.

➡Cannot detect circular garbage.

Thursday, April 22, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts15: Runtime System

Cycles in the Object Graph

19

2 “larry” 1 “moe”

1 “curly”

stooges

HeapStack

1 “larry” 1 “moe”

1 “curly”HeapStack

stooges

Thursday, April 22, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts15: Runtime System

Cycles in the Object Graph

20

2 “larry” 1 “moe”

1 “curly”

stooges

HeapStack

1 “larry” 1 “moe”

1 “curly”HeapStack

stooges

Memory leak: not reachable, but will not be deallocated.

Thursday, April 22, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts15: Runtime System

Mark and Sweep GC
Direct reachability.
➡ Instead of using a counter to track possible incoming paths,

actually discover all paths at runtime by traversing the
object graph.

➡Anything not visited must be garbage.
➡Every objects carries an “in-use” flag.

Algorithm concept.
➡Mark every object in the heap as unreachable by clearing all

“in-use” flag.
➡Starting from the root set, traverse all references.
➡Mark every visited object as reachable by setting its flag.
➡Reclaim all unused objects (“sweep”).
➡Run when memory is “low”.

21
Thursday, April 22, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts15: Runtime System

Mark and Sweep: Challenges
“Stop the world” GC.
➡What if object graph is changed during traversal?
➡Simple solution: program execution is halted during GC.
‣Can cause noticeable pauses.

22
Thursday, April 22, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts15: Runtime System

Mark and Sweep: Challenges
“Stop the world” GC.
➡What if object graph is changed during traversal?
➡Simple solution: program execution is halted during GC.
‣Can cause noticeable pauses.

23

Concurrent Garbage Collector:
GC and program can run concurrently (i.e.,

any interleaving is acceptable).

Incremental Garbage Collector:
GC does not process whole object graph at
once. Instead, it is invoked more frequently.

Thursday, April 22, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts15: Runtime System

Mark and Sweep: Challenges
Identifying objects.
➡How to identify objects in the heap?
‣Must carry size/type tags, or have uniform size.
‣Alternative: allocate objects of equal size/type from
specific address ranges.
‣Sometimes called “Big Bag of Pages” (BIBOP).

➡How to discern arbitrary values from pointers?
‣Could have a number that “points” to a garbage object.
‣Could have a number that “points” outside of heap
bounds.

24
Thursday, April 22, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts15: Runtime System

Mark and Sweep: Challenges
Identifying objects.
➡How to identify objects in the heap?
‣Must carry size/type tags, or have uniform size.
‣Alternative: allocate objects of equal size/type from
specific address ranges.
‣Sometimes called “Big Bag of Pages” (BIBOP).

➡How to discern arbitrary values from pointers?
‣Could have a number that “points” to a garbage object.
‣Could have a number that “points” outside of heap
bounds.

25

Precise Garbage Collector:
GC can unambiguously determine whether a

given value is a pointer/reference.

Conservative Garbage Collector:
works without discerning pointers/reference

from other values with certainty.

Thursday, April 22, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts15: Runtime System

Mark and Sweep: Challenges
Memory requirements.
➡GC algorithm runs when memory is scarce.
➡Graph traversal requires memory itself!
‣Proportional to the longest path in the object graph.
‣Reserves are wasteful…

Tradeoff.
➡Implementation complexity vs. efficiency.
➡Could use incremental GC to reduce problem.
➡Specialized stack-less techniques exist.

26
Thursday, April 22, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts15: Runtime System

Mark&Sweep vs. Ref. Counting
Reference counting.
➡Occurs continuously: no pauses.
‣But: overheads are incurred continuously, too.

➡Leaks circular structures.
➡Relatively easy to implement.

Mark & Sweep.
➡Difficult to implement efficiently.
‣Esp. avoiding “stop the world”.

➡Pauses, but otherwise fast execution and allocation.
➡With precise GC, no leaking of unreachable objects.

27
Thursday, April 22, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts15: Runtime System

Copying Garbage Collection

Partitioned heap.
➡Two arenas: live objects arena and free space.
➡Allocate from live object area until full.
➡Then mark&sweep to find all live objects.
➡Copy all live objects to free space.
‣Fast consecutive allocation.

➡Switch roles: formerly live arena is now free.

28

simply identifying and freeing garbage doesnʼt solve fragmentation

Thursday, April 22, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts15: Runtime System

Copying Garbage Collection

29

Live Arena

Free Arena

Thursday, April 22, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts15: Runtime System

Copying Garbage Collection

30

Live Arena

Free Arena

Free Arena

Live Arena

Copy GC

Thursday, April 22, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts15: Runtime System

Copying Garbage Collection

31

Live Arena

Free Arena

Free Arena

Live Arena

Copy GC
Garbage doesnʼt need to be explicitly reclaimed.

Thursday, April 22, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts15: Runtime System

Copying Garbage Collection

32

Live Arena

Free Arena

Free Arena

Live Arena

Copy GC

Very fast allocation: no searching for available space.

Thursday, April 22, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts15: Runtime System

Copying Garbage Collection

33

Live Arena

Free Arena

Free Arena

Live Arena

Copy GC
Limitation: half of the heap is unused.

Thursday, April 22, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts15: Runtime System

Generational GC
Generational Hyothesis.
➡ In many programs there is high “infant mortality.”
➡Most objects are short-lived: they become garbage quickly

after allocation.
➡Thus, “older” objects are less likely to become garbage.

Arenas for different “ages”.
➡Multiple allocation arenas.
➡The “generation 0 arena” (the “nursery”) is used for new

allocations.
➡“Survivors” are copied to the next arena.
➡Which is also gcʼed at some point, at which generation 1

objects move to the generation 2 arena, etc.

34
Thursday, April 22, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts15: Runtime System

Generational GC
Generational Hyothesis.
➡ In many programs there is high “infant mortality.”
➡Most objects are short-lived: they become garbage quickly

after allocation.
➡Thus, “older” objects are less likely to become garbage.

Arenas for different “ages”.
➡Multiple allocation arenas.
➡The “generation 0 arena” (the “nursery”) is used for new

allocations.
➡“Survivors” are copied to the next arena.
➡Which is also gcʼed at some point, at which generation 1

objects move to the generation 2 arena, etc.

35

Objects that are unlikely to be garbage are only
examined infrequently: reduced GC runtime.

New objects can be allocated very cheaply
from the nursery (simply increment the “end of

last object” pointer).

Modern high-performance VMs often use this
approach (e.g., Java Virtual Machine).

Thursday, April 22, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts15: Runtime System

GC vs. Manual Deallocation
Efficiency.
➡Correct manual heap management is more efficient

than naive GC.
➡But software development cost considerations strongly

favor GC.
➡GC can be faster than manual management due to

reduced allocation costs (copying GC).

Finalizers and non-memory resources.
➡Languages such as Java use finalizers to free non-

memory resources (such as file handles) when an
object is freed.

➡Problem: may run out of non-memory resources
before GC kicks in.

36
Thursday, April 22, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts15: Runtime System

Just-in-Time Compilation (JIT)

Static compilation.
➡Compile time vs. run time.
➡Compiler produces machine code once;

resulting program is executed many times.

Pure interpretation.
➡ interpreter evaluates syntax tree directly.
➡Slow.

Bytecode interpretation.
➡Source compiled to bytecode.
➡Bytecode interpreted by VM.
➡Still slower than statically compiled

programs.
37

Source Program

Compiler

Intermediate
Program

Input Output
Virtual

Machine

Thursday, April 22, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts15: Runtime System

Just-in-Time Compilation (JIT)
Static compilation.
➡Compile time vs. run time.
➡Compiler produces machine code once;

resulting program is executed many times.

Pure interpretation.
➡interpreter evaluates syntax tree directly.
➡Slow.

Bytecode interpretation.
➡Source compiled to bytecode.
➡Bytecode interpreted by VM.
➡Still slower than statically compiled programs.

38

JIT: compile byte code at run time to
speed up overall program execution.

Thursday, April 22, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts15: Runtime System

Just-in-Time Compilation (JIT)
Static compilation.
➡Compile time vs. run time.
➡Compiler produces machine code once;

resulting program is executed many times.

Pure interpretation.
➡interpreter evaluates syntax tree directly.
➡Slow.

Bytecode interpretation.
➡Source compiled to bytecode.
➡Bytecode interpreted by VM.
➡Still slower than statically compiled programs.

39

Sometimes referred to as ahead-of-time compilation (AOT).

Thursday, April 22, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts15: Runtime System

Idea and Limitations
“Write once, run anywhere.”
➡Combine efficiency of compilation with flexibility of

interpretation.
➡ “Late binding of machine code.”
➡Java: web applets, mobile phones, embedded systems…

Overheads.
➡Startup delay.
‣After a program starts, parts must be compiled before output
is produced, which can result in a noticeable delay.
‣Hide by running interpreter and JIT compiler in parallel.
‣Avoid compiling whole program at once.

40
Thursday, April 22, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts15: Runtime System

JIT Overhead
Piecewise compilation.
➡ Program is compiled on demand in small chunks.
➡ Subroutine at a time, maybe even only parts of a subroutine.

Tradeoff.
➡ Compilation takes considerable time…
➡ …but compiled code is faster.
➡ Thus: compiled code must be executed many times to make tradeoff

beneficial.

Threshold.
➡ Practical JIT systems trigger compilation only for code fragments that

are executed more often then some threshold (e.g., 100 times).
➡ Intuition: focus on the common paths.
‣avoid initialization code and rare error paths
‣optimize main work loops

41
Thursday, April 22, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts15: Runtime System

JIT Overhead
Piecewise compilation.
➡ Program is compiled on demand in small chunks.
➡ Subroutine at a time, maybe even only parts of a subroutine.

Tradeoff.
➡ Compilation takes considerable time…
➡ …but compiled code is faster.
➡ Thus: compiled code must be executed many times to make tradeoff

beneficial.

Threshold.
➡ Practical JIT systems trigger compilation only for code fragments that

are executed more often then some threshold (e.g., 100 times).
➡ Intuition: focus on the common paths.
‣avoid initialization code and rare error paths
‣optimize main work loops

42

The exact threshold depends on the efficiency of
the byte code interpreter and the JIT compilation
speed and must be determined experimentally.

Thursday, April 22, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts15: Runtime System

Optimization vs. JIT Compilation

Simplicity wins.
➡Only simple transformations.
➡No “big picture” optimization.
➡Fast, non-optimal algorithms instead of

slower, provably better algorithms.

43

Fast Machine Code Many Advanced
Optimizations

Increased Total
Runtime

Slower JIT C.

Higher JIT
Threshold

Goal:
Lower Total Runtime

Thursday, April 22, 2010

UNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts15: Runtime System

Optimizations

44

Source Program

AOT Compiler

Byte Code

Input OutputVM + JIT

Thursday, April 22, 2010

UNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts15: Runtime System

Optimizations

45

Source Program

AOT Compiler

Byte Code

Input OutputVM + JIT

The “heavy lifting”:
intra-procedural analysis, common sub-expression

analysis, dead code eliminations, flow analysis,
polymorphism, etc.

Thursday, April 22, 2010

UNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts15: Runtime System

Optimizations

46

Source Program

AOT Compiler

Byte Code

Input OutputVM + JIT

Simple transformations:
basic byte code blocks to equivalent machine code.

Thursday, April 22, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts15: Runtime System

JIT Advantages
Trace collection.
➡Record execution statistics during interpretation.
➡Can (re-)optimize at run time.

JIT can outperform AOT.
➡Additional information available at run time.
‣Specific types (instead of interfaces), accurate
branch prediction.

➡Can be used to generate specialized code.
‣E.g., suppress error checking that is not needed
for a particular data set.

➡Additional inlining possibilities.

47
Thursday, April 22, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts15: Runtime System

JIT Advantages
Trace collection.
➡Record execution statistics during interpretation.
➡Can (re-)optimize at run time.

JIT can outperform AOT.
➡Additional information available at run time.
‣Specific types (instead of interfaces), accurate
branch prediction.

➡Can be used to generate specialized code.
‣E.g., suppress error checking that is not needed
for a particular data set.

➡Additional inlining possibilities.

48

Tradeoff: long-running vs. short-running processes
Example: Java VM has a server mode that does spends

more time on aggressive optimizations.

Thursday, April 22, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts15: Runtime System

JIT and Prototype-Based Languages
Challenges.
➡Java: JIT on class methods.
➡What if there are no classes?

Tracing JIT.
➡Derive “implicit” classes based on source code location

where object was created (i.e., where the prototype was
assigned).

➡Most prototypes are not changed during run time.
➡Must re-JIT an object if either
‣ the objectʼs prototype is changed, or
‣a new prototype is assigned.

49
Thursday, April 22, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts15: Runtime System

Binary Translation / Binary Rewriting

Compiling machine code to machine code.
➡Either AOT or JIT.
➡Basically a compiler without source code.

Uses.
➡Debugging, logging (add invariant checking, etc.).
➡Performance analysis.
➡Adding security hooks.
‣Or exploits…

➡Legacy system emulation.
‣E.g.: Appleʼs Rosetta.

50
Thursday, April 22, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts15: Runtime System

Security Issues
Untrusted code.
➡Third party code that might be malicious.
➡Often downloaded automatically via Internet.
‣Embedded Javascript, Java applets, Flash, etc.
‣Browser plugins.

Byte code validation.
➡Proving arbitrary properties of arbitrary source code is

impossible.
‣Halting problem…

➡ Idea: allow only “known good” byte code.
‣Be conservative.

Alternative.
➡Code signing: attestation by trusted third party “this is ok.”

51
Thursday, April 22, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts15: Runtime System

Security Issues
Untrusted code.
➡Third party code that might be malicious.
➡Often downloaded automatically via Internet.
‣Embedded Javascript, Java applets, Flash, etc.
‣Browser plugins.

Byte code validation.
➡Proving arbitrary properties of arbitrary source code is

impossible.
‣Halting problem…

➡ Idea: allow only “known good” byte code.
‣Be conservative.

Alternative.
➡Code signing: attestation by trusted third party “this is ok.”

52

Java Track Record:
Many bugs and thus security vulnerabilities over the years.

Thursday, April 22, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts15: Runtime System

Security Issues
Untrusted code.
➡Third party code that might be malicious.
➡Often downloaded automatically via Internet.
‣Embedded Javascript, Java applets, Flash, etc.
‣Browser plugins.

Byte code validation.
➡Proving arbitrary properties of arbitrary source code is

impossible.
‣Halting problem…

➡ Idea: allow only “known good” byte code.
‣Be conservative.

Alternative.
➡Code signing: attestation by trusted third party “this is ok.”

53

Example:
Microsoft-certified Windows device drivers.

Thursday, April 22, 2010

