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What is the Runtime System (RTS)?
Language runtime environment.
➡OS view: RTS is part of the user program.
➡But RTS was not programmed by the language user.
➡The RTS is everything not part of the OS and not explicitly 

provided by the user (i.e., the program or 3rd party libraries).
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Examples: memory allocator, garbage collector, support for runtime 
casts, exception handling infrastructure, just-in-time (JIT) compiler, 

support for closure and anonymous functions, lazy evaluation, dynamic 
type checking, byte code verifier, OS abstraction layers (if any), class-

loading and plugin support (if any), multi-threading support, remote 
procedure calls (e.g., Java RMI), …
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RTS:
the infrastructure required to (transparently) realize
higher-level language abstractions at runtime.
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Our Focus

‣Weʼll discuss three RTS components.

‣Garbage collection.

‣Just-in-Time Compilation.

‣Security issues.

5
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Heap Management
Allocation and deallocation of objects on the heap.
➡ Arbitrary object lifetime.
➡ Traditional language design:
‣Code, static, and runtime stack managed by compiler / interpreter.
‣Heap managed by programmer.
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Code Static Runtime stack Heap

Simplified 32-bit Memory Model

0x0      Increasing Virtual Addresses                                              0xffffffff
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Garbage
Memory reclamation.
➡An object is “garbage” if it is not going to be used again.
➡Memory holding garbage must be reclaimed in long-

running programs.

Classic imperative approach: explicit heap management.
➡malloc/free, new/delete, etc.
➡Problems: dangling pointers, memory leaks…
➡Experience suggests that programmers, on average, are 

not very good at correctly identifying garbage.
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Garbage Collection
Automatic heap management.
➡The RTS should manage memory, not the 

programmer.
➡First developed for Lisp in 1958
➡Merits hotly contested until ʻ90ies.

Widespread use.
➡Essential in functional languages
‣e.g., Haskell, ML.

➡Key feature of scripting languages
‣e.g., Python, Perl.

➡Increasingly popular modern imperative languages
‣e.g, Java, C#.
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Reachable Objects
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Root Set
The set of objects that are immediately available to a 
program without following any pointers/references.

Object graph.
➡Allocated objects form a graph.
‣Vertices: objects.
‣Edges: references/pointers.

➡Any non-garbage object must be reachable from 
the root set.
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Garbage Collection: Techniques 

Detecting garbage.
➡When is an object no longer being referenced?
➡False positives: program crash.
➡False negatives: memory leak.

Garbage collection techniques.
➡Reference counting.
➡Mark-and-sweep collection.
➡Store-and-copy.
➡Generational collection.
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Reference Counting
Indirect reachability.
➡Each object has an associated reference counter.
➡Object graph: how many incoming edges?

Maintained invariant.
➡Counter is incremented when a new reference is acquired.
➡Counter is decremented when a reference is removed.
➡ If an object is reachable, then its associated reference 

counter is positive.

Widespread use.
➡Easy to implement in C (but error-prone).
➡Used in Linux kernel, Python, many other projects.
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Reference Counting Example
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1 “foo”str1

HeapStack

str2

str1 = “foo”
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Reference Counting Example
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1 “foo”str1

HeapStack

str2

str1 = “foo”

After object allocation: reference counter is initially one.
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Reference Counting Example
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2 “foo”str1

HeapStack

str2

str2 = str1
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Reference Counting Example
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2 “foo”str1

HeapStack

str2

str2 = str1

Adding a new reference increments the counter.
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Reference Counting Example
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0 “foo”str1

HeapStack

str2

str1 = None
str2 = None
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Reference Counting Example
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0 “foo”str1

HeapStack

str2

str1 = None
str2 = None

No remaining references: it is now safe to deallocate the object.
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Reference Counting: Problems

18

Efficiency.
➡Increases number of (slow) writes.
➡With multithreading, it may require (even slower) 

atomic updates.

Accuracy.
➡Disjoint union types: what if one variant 

contains a reference, and another doesnʼt?
‣Reference counting must track variant tags.

➡In a weakly typed language such as C?
‣Cannot reliably tell pointers from integers apart.

➡Cannot detect circular garbage.
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Cycles in the Object Graph
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2 “larry” 1 “moe”

1 “curly”

stooges

HeapStack

1 “larry” 1 “moe”

1 “curly”HeapStack

stooges
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Cycles in the Object Graph
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2 “larry” 1 “moe”

1 “curly”

stooges

HeapStack

1 “larry” 1 “moe”

1 “curly”HeapStack

stooges

Memory leak: not reachable, but will not be deallocated.
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Mark and Sweep GC
Direct reachability.
➡ Instead of using a counter to track possible incoming paths, 

actually discover all paths at runtime by traversing the 
object graph.

➡Anything not visited must be garbage.
➡Every objects carries an “in-use” flag.

Algorithm concept.
➡Mark every object in the heap as unreachable by clearing all 

“in-use” flag.
➡Starting from the root set, traverse all references.
➡Mark every visited object as reachable by setting its flag.
➡Reclaim all unused objects (“sweep”).
➡Run when memory is “low”.
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Mark and Sweep: Challenges
“Stop the world” GC.
➡What if object graph is changed during traversal?
➡Simple solution: program execution is halted during GC.
‣Can cause noticeable pauses.

22
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Concurrent Garbage Collector:
GC and program can run concurrently (i.e., 

any interleaving is acceptable).

Incremental Garbage Collector:
GC does not process whole object graph at 
once. Instead, it is invoked more frequently.
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Mark and Sweep: Challenges
Identifying objects.
➡How to identify objects in the heap?
‣Must carry size/type tags, or have uniform size.
‣Alternative: allocate objects of equal size/type from 
specific address ranges.
‣Sometimes called “Big Bag of Pages” (BIBOP).

➡How to discern arbitrary values from pointers?
‣Could have a number that “points” to a garbage object.
‣Could have a number that “points” outside of heap 
bounds.

24
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Precise Garbage Collector:
GC can unambiguously determine whether a 

given value is a pointer/reference.

Conservative Garbage Collector:
works without discerning pointers/reference 

from other values with certainty.
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Mark and Sweep: Challenges
Memory requirements.
➡GC algorithm runs when memory is scarce. 
➡Graph traversal requires memory itself!
‣Proportional to the longest path in the object graph.
‣Reserves are wasteful…

Tradeoff.
➡Implementation complexity vs. efficiency.
➡Could use incremental GC to reduce problem.
➡Specialized stack-less techniques exist.

26
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Mark&Sweep vs. Ref. Counting
Reference counting.
➡Occurs continuously: no pauses.
‣But: overheads are incurred continuously, too.

➡Leaks circular structures.
➡Relatively easy to implement.

Mark & Sweep.
➡Difficult to implement efficiently.
‣Esp. avoiding “stop the world”.

➡Pauses, but otherwise fast execution and allocation.
➡With precise GC, no leaking of unreachable objects.
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Copying Garbage Collection

Partitioned heap.
➡Two arenas: live objects arena and free space.
➡Allocate from live object area until full.
➡Then mark&sweep to find all live objects.
➡Copy all live objects to free space.
‣Fast consecutive allocation.

➡Switch roles: formerly live arena is now free.

28

simply identifying and freeing garbage doesnʼt solve fragmentation
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Copying Garbage Collection
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Live Arena

Free Arena
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Copying Garbage Collection
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Copying Garbage Collection
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Live Arena

Free Arena

Free Arena

Live Arena

Copy GC
Garbage doesnʼt need to be explicitly reclaimed.
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Copying Garbage Collection
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Live Arena

Free Arena

Free Arena

Live Arena

Copy GC

Very fast allocation: no searching for available space.
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Copying Garbage Collection
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Live Arena

Free Arena

Free Arena

Live Arena

Copy GC
Limitation: half of the heap is unused.
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Generational GC
Generational Hyothesis.
➡ In many programs there is high “infant mortality.”
➡Most objects are short-lived: they become garbage quickly 

after allocation.
➡Thus, “older” objects are less likely to become garbage.

Arenas for different “ages”.
➡Multiple allocation arenas.
➡The “generation 0 arena” (the “nursery”) is used for new 

allocations.
➡“Survivors” are copied to the next arena.
➡Which is also gcʼed at some point, at which generation 1 

objects move to the generation 2 arena, etc.

34
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Objects that are unlikely to be garbage are only 
examined infrequently: reduced GC runtime.

New objects can be allocated very cheaply 
from the nursery (simply increment the “end of 

last object” pointer).

Modern high-performance VMs often use this 
approach (e.g., Java Virtual Machine).
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GC vs. Manual Deallocation
Efficiency.
➡Correct manual heap management is more efficient 

than naive GC.
➡But software development cost considerations strongly  

favor GC.
➡GC can be faster than manual management due to 

reduced allocation costs (copying GC).

Finalizers and non-memory resources.
➡Languages such as Java use finalizers to free non-

memory resources (such as file handles) when an 
object is freed.

➡Problem: may run out of non-memory resources 
before GC kicks in.

36
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Just-in-Time Compilation (JIT)

Static compilation.
➡Compile time vs. run time.
➡Compiler produces machine code once; 

resulting program is executed many times.

Pure interpretation.
➡ interpreter evaluates syntax tree directly.
➡Slow.

Bytecode interpretation.
➡Source compiled to bytecode.
➡Bytecode interpreted by VM.
➡Still slower than statically compiled 

programs.
37
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JIT: compile byte code at run time to 
speed up overall program execution.
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Sometimes referred to as ahead-of-time compilation (AOT).
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Idea and Limitations
“Write once, run anywhere.”
➡Combine efficiency of compilation with flexibility of 

interpretation.
➡ “Late binding of machine code.”
➡Java: web applets, mobile phones, embedded systems…

Overheads.
➡Startup delay.
‣After a program starts, parts must be compiled before output 
is produced, which can result in a noticeable delay.
‣Hide by running interpreter and JIT compiler in parallel.
‣Avoid compiling whole program at once.

40
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JIT Overhead
Piecewise compilation.
➡ Program is compiled on demand in small chunks.
➡ Subroutine at a time, maybe even only parts of a subroutine.

Tradeoff.
➡ Compilation takes considerable time…
➡ …but compiled code is faster.
➡ Thus: compiled code must be executed many times to make tradeoff 

beneficial.

Threshold.
➡ Practical JIT systems trigger compilation only for code fragments that 

are executed more often then some threshold (e.g., 100 times).
➡ Intuition: focus on the common paths.
‣avoid initialization code and rare error paths
‣optimize main work loops

41
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The exact threshold depends on the efficiency of 
the byte code interpreter and the JIT compilation 
speed and must be determined experimentally.
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Optimization vs. JIT Compilation

Simplicity wins.
➡Only simple transformations.
➡No “big picture” optimization.
➡Fast, non-optimal algorithms instead of 

slower, provably better algorithms.

43

Fast Machine Code Many Advanced 
Optimizations

Increased Total 
Runtime

Slower JIT C.

Higher JIT 
Threshold

Goal:
Lower Total Runtime
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Optimizations
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Source Program

AOT Compiler

Byte Code

Input OutputVM + JIT
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Optimizations
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Source Program

AOT Compiler

Byte Code

Input OutputVM + JIT

The “heavy lifting”:
intra-procedural analysis, common sub-expression 

analysis, dead code eliminations, flow analysis, 
polymorphism, etc.
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Optimizations
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Source Program

AOT Compiler

Byte Code

Input OutputVM + JIT

Simple transformations:
basic byte code blocks to equivalent machine code.
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JIT Advantages
Trace collection.
➡Record execution statistics during interpretation.
➡Can (re-)optimize at run time. 

JIT can outperform AOT.
➡Additional information available at run time.
‣Specific types (instead of interfaces), accurate 
branch prediction.

➡Can be used to generate specialized code.
‣E.g., suppress error checking that is not needed 
for a particular data set.

➡Additional inlining possibilities.

47
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Tradeoff: long-running vs. short-running processes
Example: Java VM has a server mode that does spends 

more time on aggressive optimizations.
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JIT and Prototype-Based Languages
Challenges.
➡Java: JIT on class methods.
➡What if there are no classes?

Tracing JIT.
➡Derive “implicit” classes based on source code location 

where object was created (i.e., where the prototype was 
assigned).

➡Most prototypes are not changed during run time.
➡Must re-JIT an object if either
‣ the objectʼs prototype is changed, or
‣a new prototype is assigned.

49
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Binary Translation / Binary Rewriting

Compiling machine code to machine code.
➡Either AOT or JIT.
➡Basically a compiler without source code.

Uses.
➡Debugging, logging (add invariant checking, etc.).
➡Performance analysis.
➡Adding security hooks.
‣Or exploits…

➡Legacy system emulation.
‣E.g.: Appleʼs Rosetta.
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Security Issues
Untrusted code.
➡Third party code that might be malicious.
➡Often downloaded automatically via Internet.
‣Embedded Javascript, Java applets, Flash, etc.
‣Browser plugins.

Byte code validation.
➡Proving arbitrary properties of arbitrary source code is 

impossible.
‣Halting problem…

➡ Idea: allow only “known good” byte code.
‣Be conservative.

Alternative.
➡Code signing: attestation by trusted third party “this is ok.”

51
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Java Track Record:
Many bugs and thus security vulnerabilities over the years.
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Example:
Microsoft-certified Windows device drivers.
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