
Name: PID:

Quiz 3

COMP 524 Quiz 3	 04/01/2010

Consider the following pseudo code. Suppose side-effects are allowed, and that
operands of ‘+’ are evaluated left-to-right.

GLOBAL int y = 1;

PROCEDURE inc(int x)
BEGIN
 WRITE('incrementing ' + x);
 x += y;
 return x;
END

PROCEDURE print_if_positive(int x, int y)
BEGIN
 IF (x > 0) THEN
 BEGIN
 WRITE('x=' + x + ', y=' + y);
 END
END

MAIN PROGRAM
BEGIN
 int y = 10;
 int a = -10;
 int b = 1;

 print_if_positive(inc(a), inc(y));
 print_if_positive(inc(b), inc(y));

END

Please answer the questions on the reverse side. You can use this side for scratch
space; anything on this side will not be graded.

Provide the output produced by the program on the reverse side assuming:

A) call-by-value, lexical scoping, and eager left-to-right evaluation.	 [2 points]

B) call-by-value, dynamic scoping, and eager left-to-right evaluation.	 [2 points]

C) call-by-reference, lexical scoping, and eager left-to-right evaluation.	 [2 points]

D) dynamic scoping and normal-order evaluation (i.e., call-by-name).	 [2 points]

E) lexical scoping and lazy evaluation.	 [2 points]

COMP 524 Quiz 3	 04/01/2010

incrementing -10! (value of a copied into inc)
incrementing 10! (value of y-MAIN copied into inc)
incrementing 1! (value of b copied int inc)
incrementing 10! (value of y-MAIN copied into inc)
x=2, y=11! ! (inc(a) returned 2, so the result is printed)
! ! ! (incremented by y-GLOBAL, so just one)

incrementing -10! (value of a copied into inc)
incrementing 10! (value of y-MAIN copied into inc; y-MAIN is not changed (c.-b.-value)
incrementing 1! (value of b copied into inc)
incrementing 10! (value of y-MAIN copied into inc)
x=11, y=20! ! (incremented by y-MAIN, so +10)

incrementing -10! (a referenced from inc -> new value is -9)
incrementing 10! (y-MAIN referenced from inc -> new value is 11)
incrementing 1! (b referenced from inc -> new value is 2)
incrementing 11! (y-MAIN referenced from inc -> new value is 12)
x=2, y=12! !

incrementing -10! (inc(a) is evaluated for ʻx > 0ʼ condition -> false: inc(y) is not evalʼd)
incrementing 1! (inc(b) is evaluated for ʻx > 0ʼ condition -> true, new value is 11
incrementing 11! (inc(b) is evaluated for + operator -> new value is 21
incrementing 10! (inc(y) is evaluated for + operator -> new value is 20)
x=21, y=20

This assumes that dynamic name resolution avoids infinite recursion by skipping over the ʻyʼ
parameter to ʻprint_if_positiveʼ. Stating that an infinite results also gave full credit.

incrementing -10! (inc(a) is evaluated for ʻx > 0ʼ condition -> false: inc(y) is not evalʼd)
incrementing 1! (inc(b) is evaluated for ʻx >0ʼ condition -> true)
incrementing 10! (inc(y) is evaluated for + operator, y-GLOBAL used for increment)
x=2, y=11

inc(b) is not evaluated twice because the result is “cached” and reused.

Please stop by during office hours if you would like to see an in-depth explanation.

