
COMP 524: Programming Language Concepts
Björn B. Brandenburg

The University of North Carolina at Chapel Hill

Review Q&A

Tuesday, April 27, 2010



UNC Chapel Hill

Review Q&A

Brandenburg — Spring 2010

COMP 524: Programming Language Concepts

By bootstrapping. Start by building a minimal working interpreter for a subset of Haskell 
(e.g., no type checking/inference, no polymorphism, no module support, etc.) in assembly. 

Write a compiler for Haskell in the chosen subset of Haskell.

Interpret compiler#1 with the basic interpreter to produce a self-hosting compiler (compiler#1 
can compile compiler#1).

Now iterate by copying the source of compiler#1 to make a compiler#2 with some features 
added. Compile compiler#2 with compiler#1.

Iterate until compiler#n is a fully self-hosting, feature-complete Haskell compiler (might take a 
while...).

Suppose you are stranded on a desert island with a 
computer (with an assembler and a basic OS) and need a 

compiler for a high-level language such as Haskell.
How do you obtain one?

2
Tuesday, April 27, 2010



UNC Chapel Hill

Review Q&A

Brandenburg — Spring 2010

COMP 524: Programming Language Concepts

By cross-compiling. 

1) Start by modifying the existing Haskell compiler that can generate x86 machine 
code to also be able to generate PowerPC machine code.

2) Now, compile the modified compiler with itself to produce a compiler that runs 
on x86 but produces PowerPC machine code.

3) Use the compiler produced in step 2), which runs on x86 but produces PowerPC 
code, and compile itself again. This time, the result is a compiler that runs on 
PowerPC and that produces PowerPC machine code.

We went from a x86->x86 compiler to a PowerPC->PowerPC compiler.

Still on the desert island.
Suppose we have a working, self-hosting Haskell 

compiler on our rescue pod computer (an Intel x86 
machine), but found a PowerPC computer in a satellite 
wreck, and  would like to have a working, self-hosting 

Haskell compiler on the satellite computer.

3
Tuesday, April 27, 2010



UNC Chapel Hill

Review Q&A

Brandenburg — Spring 2010

COMP 524: Programming Language Concepts

Lexical analysis and syntax analysis.

What are the first two phases of a compiler?

4
Tuesday, April 27, 2010



UNC Chapel Hill

Review Q&A

Brandenburg — Spring 2010

COMP 524: Programming Language Concepts

Lexical analysis: turn stream of characters into stream of tokens (group characters by meaning)
Syntax analysis: infer structure of program from token stream.

What’s the purpose of lexical analysis?
What’s the purpose of syntax analysis?

5
Tuesday, April 27, 2010



UNC Chapel Hill

Review Q&A

Brandenburg — Spring 2010

COMP 524: Programming Language Concepts

Because tokens can be described with regular 
grammars, which can be recognized much 
more efficiently than more flexible grammars.

(Regular grammars cannot describe arbitrary 
recursive structures.)

Why have a separate lexical analysis phase?

6
Tuesday, April 27, 2010



UNC Chapel Hill

Review Q&A

Brandenburg — Spring 2010

COMP 524: Programming Language Concepts

With DFAs (deterministic finite automata).

How can we recognize regular grammars?

7
Tuesday, April 27, 2010



UNC Chapel Hill

Review Q&A

Brandenburg — Spring 2010

COMP 524: Programming Language Concepts

RE->NFA->DFA (unoptimized)->DFA (optimized)

How can we construct a DFA from a regular 
expression (regular grammar)?

8
Tuesday, April 27, 2010



UNC Chapel Hill

Review Q&A

Brandenburg — Spring 2010

COMP 524: Programming Language Concepts

Because unoptimized DFAs produced by the 
NFA->DFA conversion can have a large 
number of redundant states.

Why do we need DFA optimization?

9
Tuesday, April 27, 2010



UNC Chapel Hill

Review Q&A

Brandenburg — Spring 2010

COMP 524: Programming Language Concepts

By dividing non-equivalent states into partitions.

1) start with a partition for all non-final states and one partition for all final states 
(for each token type, if there are multiple).
2) Sub-divide partitions while they are not equivalent.
3) The DFA has been optimized when none of the partitions has to be split 
anymore (contains only equivalent states).
4) Create an equivalent DFA by mapping each partition to a state.

How does DFA optimization work?

10
Tuesday, April 27, 2010



UNC Chapel Hill

Review Q&A

Brandenburg — Spring 2010

COMP 524: Programming Language Concepts

11
Tuesday, April 27, 2010



UNC Chapel Hill

Review Q&A

Brandenburg — Spring 2010

COMP 524: Programming Language Concepts

12
Tuesday, April 27, 2010



UNC Chapel Hill

Review Q&A

Brandenburg — Spring 2010

COMP 524: Programming Language Concepts

13
Tuesday, April 27, 2010



UNC Chapel Hill

Review Q&A

Brandenburg — Spring 2010

COMP 524: Programming Language Concepts

Any variable that is neither a formal parameter 
(passed to the function) nor a local declaration.

In a nested subroutine, what is a free variable?

14
Tuesday, April 27, 2010



UNC Chapel Hill

Review Q&A

Brandenburg — Spring 2010

COMP 524: Programming Language Concepts

A nested subroutine in which the free variables are 
bound to entities (objects) residing in the lexical 
scope in which the nested subroutine was defined.

What is a closure?

15
Tuesday, April 27, 2010



UNC Chapel Hill

Review Q&A

Brandenburg — Spring 2010

COMP 524: Programming Language Concepts

16

def outer_function():
 a_list = [1, 2, 3]

 def nested_function(msg):
  print 'hello', msg, 'the list is', a_list
 
 return nested_function

a_list = [99, 100, 101]

f = outer_function()

f("world")

Tuesday, April 27, 2010



UNC Chapel Hill

Review Q&A

Brandenburg — Spring 2010

COMP 524: Programming Language Concepts

17

def outer_function():
 a_list = [1, 2, 3]

 def nested_function(msg):
  print 'hello', msg, 'the list is', a_list
 
 return nested_function

a_list = [99, 100, 101]

f = outer_function()

f("world")
A closure in Python: the free variable a_list 

remains bound to [1,2,3], which was in scope at 
the time of definition, not at the time of call.

Tuesday, April 27, 2010



UNC Chapel Hill

Review Q&A

Brandenburg — Spring 2010

COMP 524: Programming Language Concepts

Simply a function that is not bound to a name.

Anonymous functions are not necessarily nested, and not 
necessarily a function parameter.

What is an anonymous function?

18
Tuesday, April 27, 2010



UNC Chapel Hill

Review Q&A

Brandenburg — Spring 2010

COMP 524: Programming Language Concepts

19

>>> (lambda x: x * x)(2)
4

An anonymous function in Python.
(not nested, not a parameter)

Tuesday, April 27, 2010



UNC Chapel Hill

Review Q&A

Brandenburg — Spring 2010

COMP 524: Programming Language Concepts

Call-by-name is a function call semantics (that could 
be implemented in different ways). It defines how 
parameters are used.

Inlining is a compiler optimization (that may not 
change the calling semantics). It applies to how a 
function is called.

Inlining can apply to any function call semantic.

What’s the difference between call-by-name and 
inlining?

20
Tuesday, April 27, 2010



UNC Chapel Hill

Review Q&A

Brandenburg — Spring 2010

COMP 524: Programming Language Concepts

Two; less than ten percent of the students…

How many students did actually submit review 
questions?

21
Tuesday, April 27, 2010


