
COMP 524: Programming Language Concepts
Björn B. Brandenburg

The University of North Carolina at Chapel Hill

Recap

Thursday, April 22, 2010



UNC Chapel Hill

Recap & Trivia

Brandenburg — Spring 2010

COMP 524: Programming Language Concepts

With early binding, the method being invoked is 
determined at compile time based on the type 
of the reference.

With late binding, the method being invoked is 
determined at run time based on the type of 
the value (i.e., the object).

Explain early and late binding in the context of object-
oriented languages.

2
Thursday, April 22, 2010



UNC Chapel Hill

Recap & Trivia

Brandenburg — Spring 2010

COMP 524: Programming Language Concepts

1) Avoids the fragile base class problem.
2) Facilitates the use of “fat” interfaces, i.e., 
interfaces that require many methods to be 
implemented.

Name two advantages of delegation.

3
Thursday, April 22, 2010



UNC Chapel Hill

Recap & Trivia

Brandenburg — Spring 2010

COMP 524: Programming Language Concepts

Modification of classes at runtime (adding / 
removing / replacing methods and attributes).

What’s “monkey patching?”

4
Thursday, April 22, 2010



UNC Chapel Hill

Recap & Trivia

Brandenburg — Spring 2010

COMP 524: Programming Language Concepts

Only those not implemented in C.

Can classes be modified at runtime in Python?

5
Thursday, April 22, 2010



UNC Chapel Hill

Recap & Trivia

Brandenburg — Spring 2010

COMP 524: Programming Language Concepts

No, prototype-based languages do not require 
classes.

The class concept is fundamental to all object-oriented 
languages. True or false? (Why?)

6
Thursday, April 22, 2010



UNC Chapel Hill

Recap & Trivia

Brandenburg — Spring 2010

COMP 524: Programming Language Concepts

Yes.
Each class becomes an object, instances of a 
class simply use the class object as their 
prototype.

Single inheritance can be resolved similarly: 
the derived class simply uses the super class 
as its prototype.

(Multiple inheritance is more complicated.)

Are prototype-based languages as general as class-
based languages?

(How would you model classes and inheritance?)

7
Thursday, April 22, 2010


