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Abstract—
This paper describes the design and implementation of a protocol

scrubber, a transparent interposition mechanismfor explicitly removing
network attacks at both the transport and application protocol layers.
The transport scrubber supports downstream passivenetwork-basedin-
trusion detectionsystems;whereasthe application scrubbing mechanism
supports transparent fail-closedactivenetwork-basedintrusion detection
systems.The transport scrubber’s role is to convert ambiguous network
flows into well-behaved flows that are unequivocally interpr eted by all
downstream endpoints. As an example, this paper presentsthe imple-
mentation of a TCP/IP scrubber that eliminates insertion and evasion
attacks – attacks that useambiguities to subvert detection – on passive
network-basedintrusion detectionsystems,while preservinghigh perfor-
mance. The application protocol scrubbing mechanismis usedasa sub-
strate for building fail-closed active network-basedintrusion detections
systemsthat can respondto attacks by eliding or modifying application
data flows in real-time. This paper presentsthe high-performanceimple-
mentation of a general purpose transparent application-level scrubbing
toolkit in the FreeBSDkernel.

I . INTRODUCTION�
S societygrows increasinglydependenton the Internet
for commerce,banking, and mission critical applica-

tions, the ability to detectand neutralizenetwork attacksis
becomingvitally important. Securityadministratorsusenet-
work intrusion detectionsystems(NID systems)asa tool for
detectingattacksandmisusein real-time[7]. Network-based
intrusiondetectionsystemsidentify theseattacksusingpassive
monitoringtechniquesto recognizepatternsof misuseasthey
occur. Organizationsrely on NID systemsto identify misuse
within the protocol streamsthat passthroughthe firewall as
well asthosethatoriginatewithin thenetwork’sperimeter. As
such,they have becomethesecondline of defensewithin an
organizationafterfirewalls. However, asattacksareincreasing
in sophisticationit is becomingdifficult to determinewhenan
internalnetworkhasbeencompromised[11]. Therearetwo
seriousproblemswith network-basedintrusiondetectionsys-
tems. Thefirst problemis thatattackerscanuseambiguities
in networkprotocolimplementationsto deceive NID systems,
bypassingtheirwatchfuleyes.Thesecondproblemis thatNID
systemsarepassive mechanismsby design. As passive enti-
ties they canonly notify administratorsor active mechanisms
whenever intrusionsare detected.However, the responseto
this notificationmaynot betimely enoughto withstandsome
typesof attacks– suchasattacksoninfrastructurecontrolpro-
tocols – whereonly immediateintervention can sustainthe
network’s operation.This paperpresentsthe designandim-

plementationof aprotocolscrubberthatspecificallyaddresses
thesetwo problems. The protocol scrubberis a transparent
interpositionmechanismfor explicitly removing networkat-
tacksatboththetransportandapplicationprotocollayers.The
transportscrubberaddressestheproblemof transportattacks
by removing protocolambiguities,enablingdownstreampas-
sivenetwork-basedintrusiondetectionsystemsto operatewith
highassurance.Theapplicationscrubbingmechanismallows
the creationof active, interposedintrusiondetectionsystems
that canbe usedto elideor modify importantnetworkproto-
cols in real-time;effectively enablingan immediateresponse
upondetectionof severemisuse.

The transportscrubber’s role is to convert ambiguousnet-
work flows – flows that may not be interpretedin the same
mannerat differentendpoints– into well-behavedflows that
areinterpretedidenticallyby all downstreamendpoints.As an
example,this paperpresentsthe implementationof a TCP/IP
scrubberthat eliminatesinsertion and evasion attacks– at-
tacksthat useambiguitiesto subvert detection– againstpas-
sive network-basedintrusion detectionsystems. This paper
arguesthat passive NID systemscan only effectively iden-
tify maliciousflows whenusedin conjunctionwith an active
interpositionmechanism. Through interposition, the trans-
port scrubbercan guaranteeprotocol invariantsthat enable
downstreamintrusion detectionsystemsto work with confi-
dence.BecausetheInternetprotocolsarewell described,cor-
rect implementationsexchangepacketswith deterministicre-
sults.However, sophisticatedattackerscanleveragesubtledif-
ferencesin protocolimplementationsto wedgeattackspastthe
NID system’s detectionmechanismby purposefullycreating
ambiguousflows. In theseattacks,thedestinationendpointre-
constructsamaliciousinterpretation;whereasthepassiveNID
system’s protocolstackinterpretstheprotocolasa benignex-
change. Examplesof theseambiguitiesare IP fragmentre-
constructionand the reassemblyof overlappingout-of-order
TCP bytesequences.The role of the transportscrubberis to
pick oneinterpretationof theprotocolsandto convert incom-
ing flows into a single representationthat all endpointswill
universally interpret. The transportscrubber’s conversionof
ambiguousnetworkflows into unequivocal interpretationsis
analogousto thatof networktraffic shaping.Shapersmodify
traffic aroundthe edgesof a networkto generatepredictable
utilization patternswithin the interior. Similarly, the trans-
port scrubberinterceptsprotocolsat the edgesof an interior



network,� andmodifiesthemin sucha way that their security
attributesarepredictable.

In addition to transportscrubbing,we introducean appli-
cation scrubbingmechanismthat is usedas a substratefor
building fail-closedactive network-basedintrusiondetections
systemsthat canrespondto attacksby eliding or modifying
applicationdataflows in real-time. An applicationscrubber
is usedto protecthighly sensitive flows – suchasinfrastruc-
ture control protocols– that cannotwait for the attentionof
an administratoror the interventionof a remotecountermea-
sure. In contrast,whenanNID systemidentifiesan attack,it
notifiesanadministratoror someotheragentsothatappropri-
ateactioncanbe takento neutralizethe threat. This process
introduceslatency betweenthe detectionof an attackandits
response.While this is acceptablefor sometypesof attacks,
thereareothernetworkservicesthat cannotbe compromised
while maintainingtheintegrity of thenetwork– examplesin-
cludeattackson the network’s routing infrastructure. As an
interposedactive mechanism,theapplicationscrubberis fail-
closed. Specifically, if thescrubberis incapacitatedit will not
let theattackthroughto its destination.Thiscontrastswith the
fail-openbehavior of passive NID systems.Oncean attacker
hasneutralizeda NID system,the network remainsopento
unobservedattack.This paperpresentsthehigh-performance
implementationof a generalpurposetransparentapplication-
level scrubbingtoolkit basedon the FreeBSDkernel. The
modificationsto the kernel include additions to the socket
API thatallow a user-level applicationscrubberto bind a lo-
cal socketto a setof remotenetworkaddresses.This simple
primitive allows theeasycreationof transparentlyinterposed
applicationscrubbers.

Themaincontributionsof thiswork are:
� Identificationof transportscrubbing:Thepaperintroduces
theuseof anactive, interposedtransportscrubberfor thecon-
versionof ambiguousnetworkflows into well-behaved, un-
equivocally interpretedflows. We argue that the use of a
transportscrubberis essentialfor correct operationof pas-
sivenetwork-basedintrusiondetectionsystems.Thepaperde-
scribestheuseof transportscrubberstoeliminateinsertionand
evasionattacksonNID systems[11]. Theconceptof transport
scrubbingcan easily be merged with existing firewall tech-
nologiesto provide the significantsecuritybenefitsoutlined
in thispaper.� Designandimplementationof TCP/IPscrubber:Thenovel
designandefficient implementationof thehalf-duplexTCP/IP
scrubberis presented. The current implementationof the
TCP/IP scrubberexists as a modified FreeBSDkernel [4].
This implementationis shown to scalewith commercialstate-
ful inspectionfirewalls and raw Unix-basedIP forwarding
routers.� Creationof a transparentapplication-level protocolscrub-
bing mechanism: The protocol scrubbersupportsflexible
transparentapplicationprotocol scrubbersthat can elide or
modify applicationlevel flows in real-timein responseto at-

tacks.By creatinga lightweighttransparentapplicationscrub-
bing mechanism,we allow for theactive scrubbingof critical
infrastructurelevel protocols.Thesupportcomesthroughthe
customsocket-basedAPI extensionsto theFreeBSDkernel.

The remainderof this paperis organizedas follows. Sec-
tion II placesour work within the broadercontext of related
work. SectionIII describesthe design,implementationand
performancecharacteristicsof our TCP/IPtransportscrubber.
SectionIV presentsour mechanismfor providing transpar-
entapplication-specificprotocolscrubbing.Finally, SectionV
presentsour conclusionsandplansfor futurework.

I I . RELATED WORK

Firewall technologies[2] are closely related to protocol
scrubbers. They are both active interpositionmechanisms
– packetsmust physically travel through them in order to
continuetowardstheir destinations– andboth operateat the
ingresspointsof a network.Modernfirewallsprimarily actas
gate-keepersto a protectednetwork, utilizing filtering tech-
niquesthat rangefrom simple header-basedexaminationto
sophisticatedauthenticationschemes.However, due to per-
formancereasons,oncea firewall hasidentifiedanauthorized
flow, packetsareroutedthrougha fast-pathandarenotscruti-
nizedfurtherfor attacks.In contrastto firewalls, theprotocol
scrubber’s primary function is to homogenizenetworkflows,
identifyingandremoving theirattacksin real-time.Thescrub-
ber is utilized to remove attackspresentwithin the protocols
oncea firewall hasauthorizedaflow’saccess.As such,scrub-
bing technologycaneasilybeaddedto existing firewall tech-
nologiesto to significantlyenhancenetworksecurity.

Older firewalls, suchasthe TIS Firewall Toolkit [18], that
utilize application-level proxiesaresimilar to protocolscrub-
bers.Thesetypesof firewallsprovide themostsecurity;how-
ever their performancecharacteristicsare not acceptablefor
deploymentin high-speedenvironments.Their utility hasde-
creasedasthe Internethasevolved. In contrast,the protocol
scrubberhasbeendesignedto achieve maximumthroughput
aswell asa high level of security.

Firewall technologieschangedwith theadventof so-called
statefulinspectionof networkingflows,exemplifiedby Check-
point’sFirewall-1 [19]. Thesetypesof firewallsexaminepor-
tions of the packetheaderand data payloadsto determine
whetheror notentryshouldbegranted.After theinitial check,
a flow is storedin a table so that fast routing of the subse-
quentnetworkpacketscanoccur. Theselaterpacketsarenot
checkedfor maliciouscontent.Theprotocolscrubberdiffers
in thatit continuesto removemaliciouscontentfor thelifetime
of theflow.

NetworkAssociateshasrecentlyintroduceda new version
of their Gauntletfirewall [5]. Theapproachtakenin this fire-
wall is a combinationof application-level proxy andfast-path
flow caching. At the beginning of a flow’s lifetime, the flow
is interceptedby anapplication-level proxy. Oncethis proxy
authenticatesthe flow, it is cachedin a lookup tablefor fast-



pathrouting.� Again, theprotocolscrubberdiffersby allowing
detectionof maliciouscontent,not only at thebeginning,but
throughouttheflow’s lifetime.

IntrusionDetectionSystems(ID systems)[7], [12] arealso
closely relatedto protocol scrubbers. Thereare two broad
categoriesof intrusiondetectionsystems:network-basedand
host-based.Network-basedIntrusionDetectionSystems(NID
systems)are implementedas passive network monitors that
reconstructnetworking flows and monitor protocol events
througheavesdroppingtechniques[20], [13], [10], [15]. As
passive observers, NID systemshave a vantagepoint prob-
lem [9] when reconstructingthe semanticsof passingnet-
work flows. This is the vulnerability that can be exploited
by sophisticatednetworkattacksthatunderstandthis inherent
schismbetweenthe protocol’s destinationandan intermedi-
ary [11]. As active participantsin a flow’s behavior, the pro-
tocol scrubberremoves theseattacks,and can function as a
fail-closedreal-timeNID systemthatcansever or modify ma-
liciousflows.

Host-basedID systemsare locatedon the end-hostsin a
network and monitor the resourcesand security procedures
followed by co-residentusersandapplications. While host-
basedID systemtechniquesarevery useful,they suffer from
two limitations: they only resideon the systemsthat the ad-
ministratorknows about;andthey cannotobserve eventsthat
do not manifestthemselveshigh enoughin the system.Pro-
tocol scrubbersandnetwork-basedintrusiondetectionarenot
mutuallyexclusive with host-basedID systems,but ratheract
astheir complement.

Protocolscrubbersdealwith virtual privatenetworks(VPN)
and headerand payloadencryption[1] in the samemanner
as network intrusion detectionsystems. Thereare two ap-
proachesto filtering encryptedflows: the first assumesthat
if the flow is endto endencryptedit is sanctioned;an alter-
native approachis to filter out any flows with unsanctioned
securityassociations.As an active mechanism,the protocol
scrubbercouldremove unsanctionedflowsin real-time.When
placedon theinsideof a VPN, theprotocolscrubbercouldbe
usedto furthercleanprotocols.Thiswouldapplyto scrubbing
e-commercetransactionsandsensitivedatabaseaccesses.

The TCP splicing work of Maltz [6] andSpatscheck[16]
allows application-level proxiesto pushtheassociationof the
trustedanduntrustedsocketsdown into the kernelfor higher
networkperformance.This associationwithin the kernelal-
lows the pair of socketsto routepacketsbetweeneachother
without user-level intervention. In practice,this splicing of
socketstakesplaceafter the connectionhas beenauthenti-
cated.After thesplicing,theflow is notcheckedfor malicious
content.

Network addresstranslation(NAT) is a general-purpose
mechanismthat can be usedto support transparentproxy-
ing [3]. This is accomplishedusinga static translationrule
thatmapsconnectionsboundfor externalhostsonwell-known
portsto local portson theloopbackinterface.Theapplication

scrubber’s approachto transparency addressestwo problems
with NAT-basedtransparentproxies.First, applicationscrub-
bersareprovided total bidirectionaltransparency; whereasa
typical NAT-basedproxy canonly provide transparency to a
singlesideof a connection.Moreover, theapplicationscrub-
bingmechanismhandlestransparentUDPproxyingby explic-
itly tagging incoming packetswith the appropriatedestina-
tion mappings.NAT-basedUDP proxieshave troublelooking
up the reversemappings,wheremultiple destinationscanbe
boundto a singlemapping,resultingin ambiguity.

I I I . TCP/IP SCRUBBER

Network-basedintrusiondetectionsystemsarebasedonthe
ideathatpacketsobservedonanetworkcanbeusedto predict
the behavior of the intendedendhost. While this ideaholds
for well-behaved networkflows, it fails to accountfor easily
createdambiguitiesthat can renderthe NID systemuseless.
Attackerscanusethe disparitybetweenthe reconstructionat
theend-hostwith thatof thepassive NID systemto attackthe
endhostwithout detection.TheTCP/IPscrubberis anactive
mechanismthatexplicitly removesambiguitiesfrom external
networkflows,enablingdownstreamNID systemsto correctly
predicttheend-hostresponseto theseflows. By enforcingpro-
tocol invariantsonthedownstreamflows,theTCP/IPscrubber
eliminatesTCP/IP insertionandevasionattacksagainstNID
systemsthat can renderthem useless. By utilizing a novel
protocol-basedapproachin conjunctionwith an in-kernelim-
plementation,theTCP/IPscrubberprovideshighperformance
as well as enforcementof flow invariants. The TCP scrub-
beronly reconstructstheincominghalf of theconnection.By
keepinga significantlysmalleramountof state,the scrubber
is ableto scaleto tensof thousandsof concurrentconnections
with throughputperformancethat is comparableto commer-
cial stateful inspectionfirewalls and raw Unix-basedIP for-
warding routers. This sectiondescribesthe overall design
and implementationof the TCP/IP scrubberand provides a
comprehensive performanceprofile usingbothmacroandmi-
crobenchmarks.

A. TCP/IPAmbiguitiesandID Evasion

Sophisticatedattackscan utilize protocol ambiguitiesbe-
tweena network intrusiondetectionsystemandan end-host
to slip pastthe watchingNID systemcompletelyundetected.
Network ID systemsrely on their ability to correctlypredict
theeffect of observedpacketson anend-hostsystemin order
to beuseful. In [11], PtacekandNewshamdescribea classof
attacksthat leave NID systemswide opento subversion. We
borrow their descriptionof the two main categoriesof these
attacks: insertion attacks, where the NID systemacceptsa
packetthat the end host rejects;and evasionattacks, where
theNID systemrejectsapacketthattheendhostaccepts.

Figure1 providesa simpleexampleof how differencesin
the reconstructionof a TCP streamcan result in two differ-
entinterpretations,onebenignandtheothermalicious.In this
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Fig. 1. Exampleof ambiguity of transportlayer protocol implementation
differencesbetweenaninterposedagent(NID system)andanendhost.

simple examplean attackeris trying to log into an endhost
asroot, while fooling theNID systeminto thinking thatit is
connectingasa regularuser. Theattackertakesadvantageof
thefact thattheendhostandtheNID systemreconstructover-
lappingTCP sequencesdifferently. In Figure1a the attacker
sendsa datasequenceto theendhostwith aholeat thebegin-
ning (representedby thequestionmark). SinceTCPis a reli-
ablebyte-streamservicethatdeliversits datato theapplication
layer in order, both the end-hostandNID systemmust wait
until thathole is filled beforeproceeding[17]. However, un-
beknownstto theNID system– but not thewily attacker– the
endhostdealswith overlappingsequencesof bytesdifferently
thantheNID system.In Figure1b whentheattackerresends
the datawith the hole filled, but with a different username
of the samelength, the differencein implementationchoice
betweenthe two systemsallows the attackto dupethe NID
system. Sincea correctTCP implementationwould always

sendthesamedatauponretransmission,it is not mandatedin
thespecificationasto which setof bytestheendpointshould
keep.In this example,theendhostchoseto keepthenew se-
quenceof bytesthat camein the secondpacket;whereasthe
NID systemkept thefirst sequenceof bytes.Neitheris more
correctthanthe other; just the fact that thereis ambiguityin
the implementationof thenetworkingstacksallows sophisti-
catedattacksto succeed.

In addition to the handlingof overlappingTCP segments,
thereare many other ambiguitiesin the actual implementa-
tion of the TCP/IP stack[11]. To begin with, the handling
of IP fragmentsandtheir reconstructionvariesby implemen-
tation. Similar variationsareseenwith the reconstructionof
TCPstreams.Endhostsdealdifferentlywith respectto IP op-
tions andmalformedheaders.They vary in their responseto
relatively new TCPheaderoptionssuchasPAWS[17]. More-
over, therearevantagepoint problemsthat passive NID sys-
temsencountersuchasTTL-basedrouting attacksandTCP
creationandtear-down issues.The large numberof ambigu-
ities with their exponentialpermutationsof possibleend-host
reconstructionsmakeit impracticalfor NID systemsto model
all possibleinterpretationsat the end-host. They must pick
somesubset,generallya single interpretation,to evaluatein
real-time. For this reasonit is impracticalto adequatelyad-
dresstheproblemwithin thecontext of apassive NID system.

To addressthisproblem,wehavecreatedtheTCP/IPscrub-
ber. Specifically, thescrubberprovidestheinvariantsthatNID
systemsneedfor confidentflow reconstructionandend-host
behavior prediction. Figures1c and1d demonstratehow an
active protocolscrubberinterposedbetweenthe attackerand
thedownstreamsystemseliminatestheambiguity. Thescrub-
ber enforcesa single interpretationof the attacker’s TCP/IP
streamto eliminatedownstreamambiguity. By picking a sin-
gle way to resolve the TCP reconstruction– in this casethe
scrubbersimply throws away the dataafter a hole– both the
downstreamNID systemand endhost both seethe attacker
loggingin asroot.

B. TCP/IPScrubberDesignandImplementation

TheTCP/IPscrubberconvertsexternalnetworkflows – se-
quencesof networkpacketsthat may be ambiguouslyinter-
pretedby differentend-hostnetworkingstacks– into homog-
enizedflows thathave unequivocalinterpretations,therebyre-
moving TCP/IPinsertionandevasionattacks.While TCP/IP
implementationsvary significantly in many respects,correct
implementationsinterpret well-behavedflows in the same
manner. Theprotocolscrubber’s job is to codify whatconsists
of well-behavedprotocolbehavior andto convertexternalnet-
work flows to this standard.To describeall aspectsof a well-
behavedTCP/IPprotocolstackis impracticalin apaperof this
length;howeverwewill illustratethisapproachby detailingits
applicationto theTCPbytestreamreassemblyprocess.TCP
reassemblyis themostdifficult aspectof theTCP/IPstackand
is crucialto thecorrectoperationof NID systems.



B.1 TCP
�

ScrubberDesign

TheTCPscrubber’sapproachtoconvertingambiguousTCP
streamsinto unequivocal,well-behavedflows lies in themid-
dle of a wide spectrumof solutions. This spectrumcontains
statelessfilters at one end and full transport-level proxies–
with aconsiderableamountof state– at theother. Statelessfil-
terscanhandlesimpleambiguitiessuchasnon-standardusage
of TCP/IPheaderfieldswith little overhead;however, they are
incapableof convertingastatefulprotocol,suchasTCP, into a
non-ambiguousstream.Full transport-layerproxieslie at the
otherendof thespectrum,andcanconvertall ambiguitiesinto
a singlewell-behaved flow. However, the costof construct-
ing andmaintainingtwo full TCP statemachines– schedul-
ing timer events,round-triptimeestimation,window sizecal-
culations,etc. – for eachnetworkflow is prohibitive from a
performanceandscalabilitystandpoint.The TCP scrubber’s
approachto converting ambiguousTCP streamsinto well-
behaved flows attemptsto balancethe performanceof state-
lesssolutionswith thesecurityof a full transport-layerproxy.
Specifically, the TCP scrubbermaintainsa small amountof
statefor eachconnection;but leavesthebulk of theTCPpro-
cessingand statemaintenanceto the end hosts. Moreover,
theTCPscrubberonly maintainsdatastatefor thehalf of the
TCP connectionoriginatingat the externalsource. Even for
flowsoriginatingwithin aprotectednetworkthereis generally
a clearnotionof which endpointsaremoresensitiveandneed
protection;if a situationarisesthatneedsbidirectionalscrub-
bing, it canbeconfiguredin thescrubber. With this compro-
misebetweenastatelessandstatefuldesign,theTCPscrubber
removes ambiguitiesin TCP streamreassemblywith perfor-
mancecomparableto statelessapproaches.

To illustratethedesignof theTCP scrubberwe compareit
to a full transportlayerproxy. TIS Firewall Toolkit’ splug-
gw proxy is one exampleof a transportproxy [18]. It is a
user-level applicationthat listensto a serviceport waiting for
connections.Whena new connectionfrom a client is estab-
lished,a secondconnectionis createdfrom the proxy to the
server. The transportproxy’s only role is to blindly readand
copydatafrom oneconnectionto theother. In thismanner, the
transportproxyhasfully obscuredany ambiguitiesanattacker
may have insertedinto their datastreamby forcing a single
interpretationof thebytestream.Thisunequivocalinterpreta-
tion of thebytestreamis sentdownstreamto theserverandac-
companying networkID systemsfor reconstruction.However,
thisapproachhasseriouscostsassociatedwith providing TCP
processingfor bothsetsof connectionsin termsof throughput
andscalability.

Unlike a transportlayerproxy, theTCPscrubberleavesthe
bulk of theTCPprocessingto theendpoints.For example,it
doesnotgenerateretransmissions,performroundtrip timees-
timation, or any timer-basedprocessing;everythingis driven
by eventsgeneratedby theendhosts.TheTCPscrubberper-
formstwo maintasks:it maintainsthecurrentstateof thecon-
nection;andkeepsacopyof thebytestreamthathasbeensent

by theexternalhost,but not acknowledgedby theinternalre-
ceiver. In this way it canmakesurethat thebytestreamseen
downstreamis alwaysconsistent;it throws away any pack-
etsthatcouldleadto inconsistencies.While thisstrategy may
seemsomewhatDraconianin termsof performance,dataflows
from well-behavedclientswill neverhavetheirflowstampered
with. Theperturbationto flows thatarescrubbedis easilyab-
sorbedby theendhostaspacketloss.
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Fig. 2. TCPscrubber’sstatetransitiondiagramfor asingleconnection.

Figure2 graphicallyrepresentsthe reducedTCPstatepro-
cessingthat occursat the TCP scrubber. This simple com-
bined bidirectionalstatemachineallows for high scalability
by leaving thecomplex protocolprocessingto theend-points.
The scrubberhas only three generalstates: connectiones-
tablishment( �	�
�	� and �	������ states),establishedopera-
tion ( ��������� ), and connectiontermination( ��������� and����������� ); whereastheendpointTCP’s keeptrackof much
morecomplex state:fastretransmit,slow start,etc.While this
paperdealsmainly with the TCP byte streamreconstruction
aspectof the TCPscrubber, it is alsoworthwhile to notethat
enforcementof the TCP statemachineat the scrubberelimi-
natesa setof TCPstackfingerprintingattacksby disallowing
randomprotocoleventsthroughthescrubber. For example,an
actualconnectionmustbe establishedbetweena client anda
valid servicebeforefurther TCP packetswill passthe scrub-
ber. Evenafterthis,thetypeof packetsthatareexchangedare
carefullyfilteredby thescrubber.

Anotherdifferencebetweenthe TCPscrubberanda trans-
port level proxy is the handlingof connectionestablishment.
Figure3a comparesthe connectionestablishmentTCP mes-
sagesthat are exchangedwith an interposedtransportproxy
and TCP scrubber. Notice that the approachtaken by the
scrubberobviatessomeof the denialof service(andgeneral
performance)problemsthataccompany full transportproxies
thatmustbuffer incomingdata.Uponconnectionfrom anex-
ternalhost,thetransportproxyestablishesa connectionto the
appropriateinternalhost. However, the internalhostmaynot
be ableto servicethis connection– for example,the serving
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Fig. 3. Examplesof TCPmessagesexchangedbetweenendpointsandinter-
posedmechanism.

hostmaybedown or theserviceis not running.In theinterim,
a full incomingsocketbuffer canbefilled by theexternalhost
at the transportproxy. This canleadto seriousresourceallo-
cationproblems.In contrast,theTCPscrubberdoesnot keep
any datastateuntil theinternalservicehosthasacknowledged
andreciprocatedtheTCPconnection.

The TCP scrubberscalessignificantly better than a full
transportproxy becausetheamountof statethatmustbekept
by thescrubberis muchlessthanthatkeptatatransportproxy.
TCPis a reliablebytestreamservice;thereforea sendermust
keepa copy of any datait hassentbuffereduntil it receives
a messagefrom the receiver acknowledging its receipt. Fig-
ure 3b illustratesa data transferoperationfrom an external
client to an internalserviceusingTCP. The circled portions
at the centertime-line representtheamountof time thatdata
from either the client or server is buffered at the transport
proxyor scrubber. Noticethatboththescrubberandthetrans-
port proxymustbuffer theincomingexternalrequestuntil it’ s
receiptis acknowledgedby the internalserver. However, the
server’s reply is not modifiedor bufferedby the TCP scrub-

ber;whereasthetransportproxy mustbuffer theoutboundre-
ply until it is acknowledged.This is a somewhatsubtlepoint:
theoutboundreplywill generallybeheldfor muchlongerthan
theincomingrequestby aninterposedmechanism.This is due
to thefact thatthedistance– measuredasroundtrip time and
packetlosses– from the scrubberto the server will be short
relative to the long distanceto an externalclient. It is fair to
assumethatthescrubberandservicesit protectsarecollocated
on a fastenterprisenetwork; thescrubberandexternalclient
areseparatedby awideareanetworkwith widely varyingloss
andlatency characteristics.The TCP scrubber’s approachto
homogenizationof TCPflowsimprovesscalabilityin thenum-
berof simultaneousconnectionsit canservice.

B.2 TCPScrubberImplementation

In additionto a novel protocolprocessingdesign,theTCP
scrubber’s in-kernelimplementationprovidesfor evengreater
performanceadvantagesover a user-spacetransportproxy.
Figure4 showsthesoftwareroutinesthatcomprisethecurrent
implementationof theTCPscrubberwithin theFreeBSD2.2.7
kernel[4]. TheFreeBSDkernel’snetworkingstackis derived
from theBSD 4.4 code[21].Thearrows in Figure4 show the
pathpacketstakethroughthesystem.Below thebottomline
arethelink-level interfacesto thenetworkingcode– theEth-
ernetsubsystemis usedasthelink level transportmechanism
in thefigure. Incomingpacketsarehandedto theIP process-
ing codethrougha soft interruptthat invokesipintr. The
codebetweenthe two dottedlines show the codepathof an
IP forwardedpacket.Theroutinesabovethedottedlinescom-
prisetheTCPscrubber(ts *). For thosepacketsthatbelong
to scrubbedflows, thepacketis givento ts input andthen
ts tcpin. If thesourceof thepacketis external,thepacket
is given to ts basUpkt, this scrubsthe packetandmodi-
fies the datapayloadif necessary– retransmittedsequences
arecopiedfrom the scrubber’s buffer. If the packetis inter-
nal, ts forward is invoked. This routinechecksthe TCP
headeranddiscardsany externaldatathatis acknowledgedby
theinternalend-host.Thepacketis thengiventots output
which modifiesthe next-hop link level addressand directly
givesthepacketto thecorrectoutputdevicedriver’s link level
interface(e.g.ether output).

C. TCP/IPScrubberPerformance

This sectionpresentsthe resultsfrom a seriesof experi-
mentsthatprofile theTCP/IPscrubber’s performancecharac-
teristics. They show that, in general,the currentimplemen-
tation of the TCP/IPscrubbercanmatchthe performanceof
both commercialstatefulinspectionfirewalls and raw Unix-
basedIP forwardingrouterswhenusedin networksof up to
500Mbit persecond.For all of theexperiments,theinterposed
machinethatrantheTCP/IPscrubbingkernel,theIP forward-
ing kernel,andtheTISFWTK plug-gw proxywasthesame:
a 300 MHz PentiumII CPU; 128 megabytesmain memory;
and two Intel EtherExpressPro 10/100BEthernet(fxp de-
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Fig. 4. FreeBSDimplementation’skernelsoftwarearchitecture.

vice driver) cards. The TCP/IP scrubbingkernel was used
to generatethescrubber’s statistics.An unmodifiedFreeBSD
2.2.7kernelwasusedfor theIP forwardingnumbers.Finally,
a modified2.2.7kernelwasusedasasubstratefor theplug-
gw experiments.

TABLE I

THROUGHPUT FOR A SINGLE EXTERNAL CONNECTION TO AN INTERNAL

HOST (M BPS, �� "! # % AT 99% CI)

IP Forwarding Scrubbing Plug Proxy
83.84 82.87 82.71

Severalexperimentswereundertakento determinethemax-
imum sustainablebandwidthfor theTCP/IPscrubber. There-
sultsin TableI provide a baselinemeasurementof the maxi-
mumTCP throughputfor a singleconnection.This through-
putwasmeasuredusingtheNetperfbenchmark[8]. Threema-
chineswereusedfor thetest;all wereconnectedthrougha100
MbpsEthernetswitch. Theperformanceof all threeforward-
ing mechanismswerecomparable;thenetworkingbandwidth
wasclearlythefirst-orderbottleneck.In theabsenceof larger
capacitynetworkingresources,we undertooka seriesof mi-
crobenchmarksto pinpoint the TCP/IPscrubber’s maximum
throughput.Thesemicrobenchmarksmeasuredtheamountof
time it took for a packetto completethekernel’sip input
routine(seeFigure4). For anIP forwardingkernel,the time
spentin ip input correspondsto theamountof timeneeded
to do IP processingandforwarding,includingqueuingat the
outboundlink-level device (Ethernet).For theTCP/IPscrub-
ber it representsthe time to scrubthe packetandqueueit on
theoutboundlink-leveldevice. Numberswerenotgatheredfor
theplug-proxydueto difficulty in matchingincomingpackets
boundfor onesocketbuffer to theoutgoingpacketsfrom an-
other. TableII shows theresultsfrom this experiment.From
thesenumbersit is possibleto calculatetheoptimalsustained
throughput(excludinginterrupthandlingoverhead)of boththe
IP forwardingandTCP scrubber. For scrubbinga streamof
TCPpacketswith full-sizeddatapayloads,thecurrentimple-

mentation’sceiling on our testhardwareis 366Mbps.We be-
lieve thatwith optimizationsandfewer datacopieswe could
increasethisceilingto891Mbps(13.19useclatency for scrub-
bing1460bytedatapayloads).

TABLE II

LATENCY OF TCP/IP FORWARDING AND TCP SCRUBBING (IN

M ICROSECONDS)

Forwarding Type Mean Std Dev
IP Forwarding 8.00 2.91

TCPScrub(1 byte) 13.19 3.38
TCPScrub( $&%(')'*' ) 31.85 5.72

10.0.0/24

Untrusted Clients

10.0.1/24

Trusted Servers

S

D

Fig. 5. Experimentalapparatusfor measuringtheprotocolscrubber’s imple-
mentation.

The next set of experimentsshow that the TCP scrubber
doesnot have a negative impacton the performancecharac-
teristicsof well-behaved TCP streams. They show this by
measuringthe sustainableclient-server connectionsper sec-
ond(similar to transactions)from a setof externalclient ma-
chinesto a setof internal server machines. Specifically, an
external setof customweb clientsmadeidentical fetchesto
an internalsetof Apachewebservers. Theclientsrepeatedly
fetched1k bytepagesfrom theservers,stressingtheconnec-
tion setupandteardown process.Figure5 shows the experi-
mentalconfigurationusedin theseexperiments.Theserver’s+-,/.0,1.2+"3 �54 network is comprisedof an Intel Express10/100
Ethernetswitch; whereasthe client’s

+-,/.0,1.6,3 �54 network is
an Intel Express10/100Ethernethub. Theexperimentswere
measuredusinga promiscuousmechanismon the client-side
hub. TheTCPscrubber, IP forwardingrouter;andplug-gw
proxy all ran on the � machine.For a secondsetof experi-
ments,adummynet routerwasusedasmachine� [14]. All
tenmachineswereequippedidentically to the TCP/IPscrub-
ber describedabove. The clientsandserversall ran a mod-
ified FreeBSD2.2.7 kernel that was compiled with a large
maxusers constant.

Figure 6a shows the numberof sustainedconnectionsper
secondmeasuredfor the TCP/IP scrubber, the IP forward-
ing router, and the user-spaceplug-gw proxy. The pairs
of lines in the graphrepresentthe 99% confidenceintervals
for themeansustainableconnectionspersecond.The results
aretwofold: the TCP scrubber’s performanceis comparable,
even betterthanthe raw IP forwardingkernel; andthe user-
level proxy’s performanceis extremely low comparedto the
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Fig. 6. TCPscrubberscalabilityresults.

two in-kernelimplementations.Thefirst resultis a somewhat
surprising;however, whenlooking closelyat the datait can
be explained by buffering at the TCP scrubber. By buffer-
ing the incomingTCP connections,theTCP scrubbershapes
the traffic that the servers see,effectively smoothingthe re-
queststreamsso that they aremoreeasilyhandledat the re-
ceivers. Theseresultsonly applywith very short-livedbursty
traffic; the TCPscrubber’s performancewould decreaserela-
tive to IP forwardingwhenscrubbinglong-livedflows. How-
ever, thisdecreasewouldberelatively smallonlow-bandwidth
networks(100Mbps)asshown in TableI. The secondresult
is not a surprise.The original plug-gw codewasmodified
so that it did no logging andno DNS resolutions,which re-

sulted in a large performanceincrease. The proxy’s kernel
wasalsomodifiedso that a large numberof processescould
beaccommodated.A customuser-spaceproxy optimizedfor
speedwould certainlydo better(theplug-gw proxy forks a
child for eachincomingconnection).However, the multiple
datacopiesandcontext switchingwill alwaysresignany user-
spaceimplementationto significantlyworseperformancethan
thetwo in-kernelapproaches[6], [16].

Finally, weconducteda setof experimentsto determinethe
effectsof a lossylink betweentheexternalclientsandthein-
terposedmachine. In theseexperiments,the numberof web
clientswasfixedat480,while artificial packetlosswasforced
on eachnetworkflow by a dummynet router, labeled � in
Figure 5. The resultsof this experimentare shown in Fig-
ure 6b. The vertical axis representsthe numberof requests
servicedper second;the horizontalaxis representsthe pro-
portionof bidirectionalpacketlossrandomlyimposedby the
dummynetrouter. Thepairsof linesrepresentthe99%confi-
denceintervalsfor themeansustainedconnectionspersecond.
Themainresultfrom thisexperimentis thattheTCPscrubbed
flowsbehave comparablyto theraw IP forwardedflows.

To put theseresultsin perspective it is useful to compare
them with the performanceof a fast commercialfirewall.
CheckPointreportsin aperformancewhitepaperthatthepeak
throughputfor their FireWall-1 producton a dual 167 MHz
UltraSparcwith four 100MbpsEthernetadapters(200Mbps
on eachside)is 89.75Mbps[19]. While it is difficult to accu-
ratelycomparethe resultsfrom separateperformanceexperi-
ments,the TCP scrubber’s performanceis clearly asgoodas
currentfirewall technology.

IV. APPLICATION PROTOCOL SCRUBBING

While theTCP/IPprotocolscrubberenablesNID systemsto
accuratelydetectattacks,thereis still a needto actively pre-
ventattacksratherthanmerely identifying them. While this
is easilyaccomplishedby applicationlevel proxies,suchso-
lutions requireclient modification. Thesemodificationsare
practically impossiblewhen attemptingto protect important
infrastructurelevel protocolssuchas Internetrouting proto-
cols. For this reasonwe have developedanapplicationproto-
col scrubberthatsupportsflexible transparentapplicationpro-
tocol scrubbingthroughboth a customsocket-basedAPI. By
creatinga lightweight transparentapplication-level protocol
scrubbingsubstrate,weallow for thelow-costmonitoringand
scrubbingof importantinfrastructurelevel protocolsin a fail-
closedmanner. The protocol scrubbersupportstransparent
application-level scrubbingby enablinguser-level processes
to binda local socketto a setof remotenetworkaddresses.

Theapplicationprotocolscrubber’sapproachto lightweight
transparentinterpositioncontrastssharplywith theexplicit ap-
proachtakenby traditional application-level proxies. As a
transparentmechanism,neitherendpointis awareof theappli-
cationscrubber, thusremoving theneedto modify the server
or the client. Moreover, the applicationscrubber’s approach



addresses@ two problemswith NAT-basedtransparentproxies:
it allows for bidirectional transparency; and it provides ex-
plicit mappingsfor the unambiguousreverselookup of UDP
datagramdestinations.Theapplicationscrubbingmechanism
allows a securityadministratorto implementan application-
level scrubberusing any standardUnix programminglan-
guage.Thisgreatlysimplifiesthecreationof application-level
proxiesfor new protocols.

Set of ServersScrubber

Client
ServerS

C

A

Fig. 7. Overview of transparentapplication-level socketmechanism.

The application-level protocolscrubberrequiresno modi-
ficationsof the client or server code. It supportstranspar-
ent application-level scrubbingthrough a single conceptual
changeto the socketprogramminginterface: the protocol
scrubberenablesa user-level processto bind a local socketto
a setof remoteaddresses.In this wayanapplicationscrubber
canmasqueradeasan entirenetwork’s setof services.Con-
ceptually, this is shown in Figure7. The user-level scrubber
createsa socket� andbindsit to thewell-known port aswell
as the addressesthat representa set of servers. After bind-
ing thesocket,thescrubberusesit asany other: it performsa
listen andaccept call usingits descriptor. Whena client
initiates a connectionto a server coveredby the scrubber, a
new socketis created(asusual)andboundto the specificre-
moteserver’s addressandport. This socketis returnedby the
kernelas � . This is thesamesocketa traditionalproxy uses
to communicatewith theclient. As aninterposedmechanism,
thescrubberthencreatesa new socket,�BA for communicating
with the server. Thescrubberbinds � to the client’s address
andconnectsit to the true server usinga normalconnect
call. Thesourcecodein Figure8 providesanactualexample
of this process.Thesetsockopt call is usedwith a new
value (SO REMOTEBIND) to flag a socketas remote. After
this, thebind systemcall is usedto associatetheremotead-
dresswith thesocket.Theremoteaddresscanbewidenedby
supplyinganetworkmask,thedefaultis 32bits,usingthenew
SO REMOTEBIND MASK option.

The simple interface to the application scrubberhides
significant complexity in the actual implementation. The
in-kernel modificationsrequired significant changesto the
FreeBSDsocketcode.Thechangesto thekernel’ssocketcode
weremadedifficult by thecode’s original assumptionsthata

1 int server_socket;
struct sockaddr_in addrClient;
struct sockaddr_in addrServer;

5 server_socket = socket(AF_INET,
SOCK_STREAM, 0);

setsockopt(server_socket, SOL_SOCKET,
SO_REMOTEBIND, &on,

10 sizeof(on));

bzero((char *) &addrClient,
sizeof(addrClient));

addrClient.sin_family = AF_INET;
15 addrClient.sin_addr.s_addr =

addrActiveRemote.sin_addr.s_addr;
addrClient.sin_port =

addrActiveRemote.sin_port;

20 bind(server_socket,
(struct sockaddr *)&addrClient,
sizeof(addrClient));

connect(server_socket,
25 (struct sockaddr *)&addrServer,

sizeof(addrClient));

Fig. 8. Exampleapplicationlevel code.

socketonly hasa singleaddress,andthat the socket’s IP ad-
dressis boundto oneof thehostmachine’s interfaces.These
changeswerecontainedwithin thebasefunctionsfor mapping
incoming packetsto socketbuffers. In normal operation,a
Unix machineonly sendsincomingpacketswith IP addresses
thatmatchoneof theinterfacecard’sIP addressesto thehost’s
TCPstackandeventualsocketinputprocessingroutines.This
is a relatively simplecheckthatdoesnot consumesignificant
overhead;however when a protocol scrubberhasa number
of applicationlevel scrubberswith socketsboundto setsof
remoteIP addresses,the checkconsumesa larger amountof
processingresources.

V. CONCLUSIONS AND FUTURE WORK

This paperpresentedthe designand implementationof a
protocolscrubber, an active interposedmechanismfor trans-
parentlyremoving attacksfrom bothtransportandapplication
protocollayersin real-time.Thekey contributionsof thiswork
are: the identificationof transportscrubbingasa mechanism
thatenablespassive NID systemsto operatecorrectly;thede-
signandimplementationof thehigh performancehalf-duplex
TCP/IPscrubber;and the creationof an active transparently
interposedapplication-level protocolscrubbingmechanism.

The transportscrubberis an active interposedmechanism
for converting ambiguousnetwork flows into well-behaved
flows that are interpretedidentically at all downstreamend-
points. The transportscrubbereliminatesa classof insidi-
ousattacksthatsubvert passive NID systemsby explicitly re-
moving theseambiguities.Whenusedin conjunctionwith a
NID system,a transportscrubberremovestheseinsertionand
evasionattacksinsuringa high confidencein their detection.



While thesecuritycommunityhasexaminedapplicationprox-
ies, theconceptof removing transportlevel attacksthrougha
transportscrubberhasnot beenpreviously introduced.

The paperpresentedthe novel designandimplementation
of the TCP/IPscrubberthat removes attacksfrom the Inter-
net’s mostcommontransportprotocols. The removal of am-
biguitiesfrom theTCPreassemblyprocess– oneof themost
difficult aspectsof NID systemcorrectness– was presented
as a specificexampleof the TCP scrubber’s operation. The
transportscrubberachieveshigh scalabilityandperformance
by leaving thebulk of theTCPprocessingto theendpoints.It
usespacketarrivalsastheonly mechanismfor driving proto-
col processing.Whencoupledwith thehalf-duplex scrubbing
designandanin-kernelimplementation,theTCP/IPscrubber
achieves performancefor well-behaved flows comparableto
Unix-basedroutersand statelesscommercialfirewalls. The
TCPscrubber’seffectonwell-behavedflowsis anegligible in-
creasein transmissiondelaydueto theinterposedmechanism.
However, this effect is increasedfor flows with ambiguities,
effectively tradingperformancefor security.

The paperalsopresentedthe creationof a transparentac-
tive application-level protocolscrubbingmechanismthat can
beusedto elideor modify applicationlevel flows in real-time
responseto attacks.By creatinga lightweight,transparentap-
plicationscrubbingmechanism,weallow for activescrubbing
– amethodof active intrusionresponse– of critical infrastruc-
ture level protocols. We envision applicationlevel scrubbers
removing attacksin real-timefrom Internetcontrolflows that
threatentheinfrastructure’sstability. Thesupportcomesfrom
thecustomsocket-basedAPI extensionsto the FreeBSDker-
nel.

Thereare two main directionswe are taking this work in
the future. Onedirectionis to improve the transportandap-
plication scrubbingmechanisms.Specifically, we plan to in-
corporatezero-copyingtechniquesto the TCP/IP scrubber’s
datahandlingroutines,bringing the performanceeven closer
to highspeednetworkinglevels– 1Gbpsandbeyond.Wealso
planto improvetheperformanceof theapplicationscrubber’s
socket-basedmechanismsanddispatchingroutines.A second
areafor future work is the constructionof applicationscrub-
bersfor Internetcontrol protocols,suchas BGP and OSPF.
We believe that intrusiondetectionwill becomeincreasingly
importantassociety’s organizationsgrow moredependenton
the Internet. We have shown how protocolscrubberscanbe
usedto significantlybenefitan organization’s networksecu-
rity throughbothimproveddetectionandactive preventionof
protocolattacks.
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