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Abstract— Our goal is to perform a system-wide character-
ization of the workload of wireless access points (APs) in a
production 802.11 infrastructure. The key issues of this study
are the characterization of the traffic at each access point (AP),
its modeling, and a comparison among APs of different wireless
campus-wide infrastructures. Unlike most other studies, we
compare two networks using similar data acquisition techniques
and analysis methods. This makes the results more generally
applicable. We analyzed the aggregate traffic load of APs and
found that the log normality is prevalent. The distributions of the
wireless received and sent traffic load for these infrastructures are
similar. Furthermore, we discovered a dichotomy of APs: there
are APs with the majority of clients that are uploaders and APs
in which the majority of their clients are downloaders. Also, the
number of non-unicast wireless packets and the percentage of
roaming events is large. Finally, there is a correlation between
the number of associations and traffic load in the log-log scale.

I. INTRODUCTION

Wireless networks are increasingly being deployed and
expanded in airports, universities, corporations, hospitals, res-
idential, and other public areas to provide wireless Internet
access. It is interesting to observe its evolution both in the
spatial and temporal domain. While there is a rich literature
characterizing traffic in wired networks (e.g., [9], [8], [13],
[3]), there are only a few studies available that examined
and modeled wireless traffic load. Furthermore, there is no
study that compares the different wireless infrastructures to
generalize the models and characteristics of the traffic load.
Access points (APs) are a critical element of the wireless
infrastructure in campus network. The key issues of this
study are the characterization of the traffic at each AP, its
modeling, and a comparison among APs of two different
wireless campus-wide infrastructures. Unlike most other stud-
ies, we compare two networks using similar data acquisition
techniques and analysis methods. This makes the result more
generally applicable.

In this paper, we study two large wireless infrastructures
of the University of North Carolina at Chapel Hill (UNC)
and Dartmouth College using a lightweight data acquisi-
tion methodology. The data was collected using the Simple
Network Management Protocol (SNMP), the most widely
available monitoring service in wireless platforms. Any AP in
the market supports monitoring using SNMP, so it is important
to understand how much operators and researchers can learn
from SNMP data. Other types of data, such as packet or flow
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level data, are generally too detailed for this purpose, and
their acquisition is much more resource-intensive. This paper
makes use of SNMP data for analyzing traffic characteristics,
such as the total number of bytes and packets that each access
points sent and received during the monitoring period. We also
discuss some of the challenges of analyzing this type of data
accurately.

Our study considers three dimensions of the workload an
AP: number of bytes sent and received, number of packets
sent and received, and number of associations and roaming
operations. In addition, we have also consider how the building
types (e.g., academic, residential, etc.) affect the characteristics
of the AP workloads. While previous works have partially
considered some of these aspects, our focus on access points
is rather unique. Furthermore, we performed system-wide
characterization, rather than focusing only the most utilized
areas of the studied networks. We believe this type of analysis
provides a useful view of the entire utilization of a wireless
network, at least from the point of the access points that form
the backbone of the wireless infrastructure.

In general, we found a surprising degree of similarity in the
characteristics of the UNC and Dartmouth wireless networks.
Our results therefore provide strong evidence in support of
the development of parsimonious workload models of campus
wireless networks. This type of modeling would make it
possible to develop more realistic simulations and testbed
experiments.

We can summarize our contributions as follows. We ana-
lyzed the aggregate traffic load of APs across the two campus
networks and found a wide range of workloads. Our analysis
reveals that log normality is prevalent in both UNC and
Dartmouth traces. In general, the traffic load in both wireless
infrastructures is light, although there are long tails. There is
no clear dependency with the type of building at which the
AP is located, although some stochastic ordering in present in
the tail of the distributions. An interesting dichotomy among
APs is prominent in both the two infrastructures, namely, APs
dominated by uploaders and APs dominated by downloaders.
Specifically, we observed that as the total wireless received
traffic of an AP increases, there is also an increase in its total
sent traffic and at the same time a decrease in the sent to
received ratio. The number of of non-unicast wireless packets
is substantial. Furthermore, the number of unicast received
packets is strongly correlated in the log-log scale with the
number of unicast sent packets. We have also studied average
packet sizes. While the majority of APs send and receive
packets of relative small size, a significant number of APs
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show rather very asymmetric packet sizes, i.e.,, APs with an
average large sent and small receive packets, and APs with
small sent and large receive packets. Furthermore, we studied
the distribution of the associations and roaming operations and
found them quite heavy. We found a correlation of the traffic
load and number of associations in the log-log scale.

Section III describes briefly the wireless infrastructure at
UNC, and data acquisition process. In Section IV, we focus
on analysis. Section II discusses previous related research. In
Section V, we summarize our main results and discuss future
work.

II. RELATED WORK

There is only a small number of measurements studies that
have examined the workload of 802.11 APs in production
environments. In general, these studies have considered a
wider range of issues, such as overall usage of a wireless
infrastructure, and client mobility patterns, providing only a
limited picture of the utilization of APs. Our work character-
izes the workload of APs in a more systematic manner, and the
results should have implications for the design of new wireless
equipment and its evaluation.

Tang and Baker [12] used tcpdump traces and SNMP data
to study a building WLAN with 12 APs and 74 users. Their
only AP-specific results have to do with the variability in
the maximum number users (between 3 and 12), and small
number of handoffs (at most five within a five-minute period).
Balazinska and Castro [2] used SNMP to characterize a much
larger wireless network in three IBM buildings (177 APs).
The study examined the maximum number of simultaneous
users per AP (mostly between 5 and 15), total load and
throughput distributions. Two interesting observation found
in this paper are that offered load and number of users are
weakly correlated, and that user transfer rates are dependent
on the location of the AP. Balachandran et al. [1] performed
measurements in a three-day conference setting, also focusing
on the offered network load and global AP utilization. They
characterized wireless users and their workload and addressed
the network capacity planning problem. The overall bursty
behavior and peaks and troughs are similar at all APs, though
the absolute peak throughout at each AP varies. They observed
that offered load is more sensitive to individual client traffic
characteristics rather than just the total number of clients.

Kotz et al. [7], [5] studied the wireless network at Dart-
mouth College using syslog, SNMP, and tcpdump traces. Their
first study [7] reported the distribution of average daily traffic
for 451 APs, which ranged from 39 MB to more than 2 GB,
and observed that maximum daily traffic was far larger than
the average daily traffic. In their follow-up study [5], they
reported the average number of active cards per active AP per
day (2-3 in 2001, and 6-7 in 2003/2004), and average daily
traffic per AP by category (2-3 times higher in 2003/2004;
twice or thrice more inbound than outbound traffic). A subset
of the same data (syslog messages and tcpdump traces from 31
APs in 5 buildings) was revisited by Meng et al. [10] for flow
modeling purposes. The authors proposed a two-tier (Weibull
regression) model for the arrival of flows at APs and a Weibull

model for flow residing times, and they also observed high
spatial similarity within the same building. This paper makes
a compelling case against Poisson modeling of wireless flows
(at least for busy APs). The authors also study the modeling
of flow size, and suggest that a log-normal model provides the
best approximation. This is consistent with the large body of
work on this topic for wired networks and file systems (e.g.,
[11], [6], [4]).

III. DATA ACQUISITION

The data comes from the large campus wireless networks
deployed at UNC and Dartmouth. UNC’s network provides
coverage for 729-acre campus and a number of off-campus
administrative offices. The university has 26,000 students,
3,000 faculty members, and 9,000 staff members. Undergrad-
uate students (16,000) are required to own laptops, which
are generally able to communicate using the campus wireless
network. A total of 488 APs were part of the campus network
at the start of our study. These APs belong to three different
series of the Cisco Aironet platform: the state-of-the-art 1200
Series (269 APs), the widely deployed 350 Series (188 APs)
and the older 340 Series (31 APs). The 1200s and 350s ran
Cisco IOS while the 340s ran VxWorks. Dartmouth’s network
serves 190 buildings in a 200-acre campus. The university
population includes 5,500 students and 1,200 faculty members.
Laptops are also required in this institution, and almost all of
them are equipped with a wireless interface. During the period
of time considered in this study, the infrastructure had 557
Cisco Aironet 350 APs running VxWorks.

The data in this paper was collected using SNMP for polling
every AP on campus every five minute. We collected the UNC
trace using a custom data collection system, being careful to
avoid the pitfalls described in [5]. The system was imple-
mented using a non-blocking SNMP library for polling each
AP precisely every five minutes in an independent manner.
This eliminates any extra delays due to the slow processing of
SNMP polls by some of the slower APs. The system ran in a
multiprocessor system and the CPU utilization in each of the
three processors we employed never exceeded 70%. The UNC
trace was collected between 9:09 AM, September 29th, 2004
and 12 AM, November 25th, 2004. The monitoring system
did not suffer any problems during this period.

The Dartmouth trace corresponds to the most recent dataset
studied in [5]. It was collected between November 1st, 2003,
and February 28, 2004, so the duration of this trace is twice
the duration of the UNC one. The data was acquired using a
similar approach, although the data collection system has some
shortcomings that are described in section IV-A. This trace
includes 6875 unique MAC addresses which were associated
with one or more APs during the data collection period. This
number is larger for the UNC trace, which reports on the
activity of 14,712 unique MAC address. In summary, while the
number of access points in both campus networks is similar,
the population of wireless clients is more than twice larger for
the UNC trace.
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Fig. 1. Total traffic load in Dartmouth trace.
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Fig. 2. Total traffic load in UNC trace.

IV. ANALYSIS

A. Traffic Load

The first dimension of the workload of the wireless infras-
tructure that we examine in this study is the total traffic load in
terms of bytes. Most of the APs considered in this study made
use of the 802.11b wireless LAN standard. This limited the
bandwidth that could be used by an AP to communicate to its
wireless client to 11 Mbps. All of the APs in the Dartmouth
trace and the majority of the ones in the UNC trace used
802.11b. A higher capacity standard is 802.11a, which can
reach a bandwidth of 54 Mbps. At the start of the our tracing
of the UNC infrastructure, 802.11a was used in 152 APs, while
802.11b was used in 335 APs. A number of the APs were
upgraded during the tracing period, so at end of the trace were
observed 169 using 802.11a and 311 using 802.11b.

The SNMP traces for UNC and Dartmouth consists of
samples of cumulative counters. For example, one of the
counters reports on the total number of bytes sent by an access
point using its wireless interface since its last reboot. These
cumulative counters are encoded using only 32 bits, so wrap-
arounds are frequent and they must be properly handled to
reconstruct cumulative values above ����� bytes. In this section,
we first consider the total number of bytes observed by each
wireless interface. Computing this quantity is straight-forward,
but it requires to walk through the entire sequence of values for
each counter to detect wrap-arounds. Given our sampling rate,
5 minutes, we expected that wrap-around could be detected
simply by looking for values of the cumulative counters below
their previous values. In practice, the analysis is far more
complicated. First, every time an AP reboots, its counters
are reset. It is possible to distinguish this case by examining
the up time SNMP counter, which keeps track of the time

since the last reboot in each AP. Each reboots makes this
counter decrease below the sampling interval, and this fact can
be used to detect a reboot between two consecutive SNMP
samples. Second, the firmware in the APs is not bug-free,
and this has to be taken into account when computing the
total number of bytes. One frequent problem is an off-by-one
error in which the counter is decreased by one byte between
two consecutive samples1. Third, the Dartmouth trace was
collected using an SNMP polling system which sometimes
suffered long delays to the extend that there is a significant
number of samples that are in the wrong order2. This problem
can be detected by checking for decreases in the up time not
due to reboots. Fourth, the byte/packet counters of the Cisco
Aironet 340s sometimes get reset for no apparent reason. We
apply a heuristic to detect and correct this case. In summary,
obtaining precise load information from this type of data
requires extreme care. A single spurious wrap-around can skew
the result significantly by adding Gigabytes of inexistent load.

Figures 1 and 2 provide an overview of the total traffic
loads in the Dartmouth and UNC infrastructures. Since we are
interested in studying the heterogeneity in the load of different
APs due to their different uses, we consider here only those
APs that remained operational for the majority of the tracing
period. This means that the number of APs studied was 499
for Dartmouth (out of 557 present in the trace), and 447 for
UNC (out of 488). The left scatter-plots in the two figures
shows one symbol for each AP, comparing the total number
of bytes that each access point received from its clients (x-
axis) to the total number of bytes that it sent (y-axis). The

1We know this is a bug because the corresponding SNMP counters for
packets do not increase accordingly.

2The researchers that collected this trace have confirmed the presence of
this problem.
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plots illustrate the wide range of loads in the infrastructure.
Some APs had extremely light loads (a few Megabytes during
months of operations) while others were used much more
heavily (hundreds of Gigabytes). This is consistent for both
campus wireless networks. We can also observe in both plots
a clear linear trend with a positive slope. This shows that while
byte loads were generally asymmetric, no extreme cases were
present.

The scatter-plots in Figures 1 and 2 use different symbols
for the APs located in different types of campus buildings.
The building classification is based on main purpose of the
building (e.g., residential buildings are inhabited year-round by
students). For both datasets, the majority of APs were located
in academic or residential buildings. The left scatter-plots of
Figure 1 and 2 show a wide range of traffic loads for each
type of building. However, in both cases, the types of the
most loaded APs were residential or library. Further analysis
of this data using cumulative distribution funtions revealed
that the tails of the distributions of loads exhibit significant
stochastic ordering in their tails. The tails of the distributions
of loads in residential buildings are heavier than those of the
academic buildings, which are themselves heavier than those in
administrative, athletic and business buildings. We must note
that the building type classifications, while interesting, are not
completely reliable. Buildings may have areas dedicated to a
different purpose and APs may serve some rooms in nearby
buildings.

The middle and right plots in Figure 1 and 2 show an
interesting finding. These plots use the y-axis for the ratio
of bytes sent to bytes received. This quantity characterizes
the symmetry in the load of APs. The smaller the ratio, the
more dominated the load of the APs was by data sent from
its own clients. As the two middle plots illustrate, there is
a clear downward trend when the ratio of sent to receive
bytes is plotted against the total number of received bytes.
This implies that APs with more bytes sent from their clients
tend to send less data to them. We can say that these access
points are dominates by uploaders, i.e., clients that mostly
serve data rather than download it from the Internet. We
conjecture that this is due to peer-to-peer applications, which
are fairly popular in both campus networks. The building type
breakdown reveals some structure, although there is again a
wide variety among the buildings of each type. Most social and
dining buildings had a ratio above one, so uploading behavior
was not very significant in them. Residential buildings account
for a large fraction of the buildings with a ratio below 1.

The right plots in Figures 1 and 2 do not show the prominent
linear trend found in the middle plots. This is most clear for
the Dartmouth data. Rather than a positive trend, which would
indicate that the APs with more bytes sent were dominated
by downloaders, we find no trend (Dartmouth) or a slight
downward trend (UNC). Since most clients are downloaders,
this indicated that the total number of bytes sent by an AP
increased as the number of clients increased, rather than as the
clients become heavier downloaders. This is sharp contrast to
the structure found for total received bytes, which increased
as the APs became more dominated by uploaders.

The left plot of Figure 3 shows the cumulative distribution

functions, ���������
	�� , for sent and received bytes. Dart-
mouth is heavier in both cases, as one would expect from a
longer monitoring period. We also found that in general the
distribution of AP aggregate loads can be well-approximated
with a log-normal model. This is illustrated in the middle and
left plots of Figure 3. These quantile-quantile plots compare
the quantiles of an empirical distribution with the theoretical
quantiles of a fitted model. Quantiles are represented using
dots, with their theoretical value as the x-coordinate and
their empirical value as their y-coordinate. In addition, the
solid 45-degree line flanked by dashed confidence interval
curves represents the area where the quantiles should appear
in the case of a good fit. The middle plots, which correspond
to the distribution of the total number of bytes sent by
UNC APs, show an excellent match with the log-normal
model. Note the theoretical quantiles correspond to those of
a normal distribution, since the data has been transformed by
taking the logarithm. Therefore, the system-wide distribution
of sent bytes can be modeled accurately with a log-normal
distribution. This is also true for the Dartmouth APs. On
the contrary, the fit is not as good for received bytes. The
highest quantiles show a systematic deviation above the upper
confidence interval curve. This suggests that the empirical
distribution has a tail that is significantly heavier than that
of the fitted log normal model. Given the linearity of this
deviation, we believe that a bimodal fit (e.g., two log-normals
with different parameters) would provide a good fit3. This is
also true for the Dartmouth received bytes distribution. This
finding is consistent with the results in Figures 1 and 2, which
show two types of APs workloads (uploader vs. downloader
dominated). Uploader dominated APs made the tails of the
received bytes distributions heavier than captured by log-
normal models. It is important to note that this conclusions
cannot be extrapolated from the log-normality of flow sizes
observed in previous studies4 [10] (except, of course, in
extreme cases of APs with only one flow in total).

The previous plots examined the total load of the APs over
the tracing period. It is also interesting to study the load during
shorter intervals of time. Our SNMP data was sampled every
five minutes, so it seemed natural to study AP loads using such
interval of time. This analysis required to handle irregularities
in the SNMP polling rate. We can distinguish two types of
irregularities. The first types of irregularity is the presence of
gaps in the polling sequence. When an APs is very busy, it
may not reply to the polling request from the SNMP collector.
In this case, the trace shows polling samples separated by a
multiple of the sampling interval. We used linear interpolation
to reconstruct the values of the missing samples (i.e., obtained
5-minute samples by splitting the load of a longer sample). The
second type of irregularity is due the scheduling inaccuracies
in the polling process. In the case of the UNC trace, the

3See [6] for a successful application of this approach in a similar context.
4APs handled many thousands of flows during the tracing periods. By the

central limit theorem, the sum of many thousands of samples from a log-
normal distribution is normally distributed (not log-normally distributed). The
phenomenon we observed is due to the spacial distributions of loads across
large campus networks, and not just to the distributional properties of flow
sizes.
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Fig. 3. Cumulative distribution functions for total traffic loads (left), and Q-Q plots for the distributions of total traffic sent (middle) and received (left) by
UNC APs.
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Fig. 4. Three different visualizations of the distributions 5-minute traffic loads for UNC and Dartmouth.

SNMP collector polled each access points precisely every five
minutes. However, if the request was lost or the APs did not
respond to it, the collector tried up to three more times, spacing
each request by 5 seconds. This meant that the polling may
have been late by at most 20 seconds. As in the previous case,
we used linear interpolation to correct the measured values,
and obtain the total number of bytes in a five minute interval.
In the case of the Dartmouth trace, polling can be delayed
much longer, and even be performed after the next scheduled
poll. We ignored any polling not spaced at least 250 seconds
from the previous poll, and made use of linear interpolation
to adjust values and fill gaps.

The cumulative distribution functions shown in the left plot
of Figure 4 study the load of the APs during 5-minute intervals.
Note that we only report intervals with non-zero loads, and our
analysis was performed for all the APs in both traces, rather
than those APs that were on-line for most of the tracing period
as in previous figures. This plot shows that the distributions
of sent bytes are surprisingly similar for both networks. APs
sent between 500 KB and 2 MB during most active intervals.
In contrast, the distributions of bytes received from clients are
quite different. The distribution for Dartmouth has a very light
body, with less than 100 KB sent in 75% of the intervals. The
UNC distribution shows two different regions: a very light
one with 40% of the intervals; and a heavier one which is
quite close to the distribution of sent bytes. This difference
may seem at odds with the similarity between the two sites
in Figures 1 and 2. However, the total bytes sent shown in
those Figures are dominated by the largest values. As the
middle plot in the Figure shows, the distributions of sent bytes
for Dartmouth and UNC are similar when we consider the
probability per byte rather than per interval. While the number

of intervals with very small loads was large, their impact was
small in terms of the total bytes (e.g., only 15-20% of the bytes
came from the lower 95% of the intervals). Finally, the tails
of these distributions are shown in the right plot of Figure
4 using a complementary cumulative distribution function,
����� � � 	�� . The plot shows that the most utilized intervals
follow similar distributions for both sent and received bytes.
The sharp decrease around 1000 Megabytes is not surprising
given the bandwidth limits in 802.11. The similarity, and
linearity, of the curves between 1 and 100 Megabytes is more
remarkable.

B. Packet Load

A scatter-plot of the total number of unicast packets ob-
served in UNC APs are shown in the left plot of Figure 5.
The plots for Dartmouth is very similar and is not included
here. The range of packets loads is very variable, with APs
that handled only a few tends of thousands of packets during
months of operation, while others handled tends of millions
of packets. It is interesting to note that there is a far stronger
correlation between the numbers of sent and received packets
that between the corresponding numbers of bytes (see Figures
1 and 2). The byte plots showed a large variability around the
linear trend which was due to the variable degree to which APs
were dominated by more or less asymmetric communications
(e.g., lighter or heavier downloaders). On the contrary, when
the total number of packets is examined, this heterogeneity is
ameliorated by the ubiquitous use of TCP, which requires at
least one acknowledgment packets for every two data packets.
This severely limits the degree of asymmetry in packet load,
and this observation can have implications for the design of
APs and the improvement of the 802.11 protocols.
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Fig. 5. Unicast (left) and non-unicast packets loads for UNC APs, and average packet sizes for UNC APs.
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Fig. 6. Distributions of client associations for UNC APs (left) and correlation between total traffic load and number of associations for Dartmouth APs
(middle and right).

The middle plot in Figure 5 shows packets load for UNC
access points due to non-unicast packets. The numbers are
rather large, suggesting that this type of packet are quite
significant in this type of infrastructures. Unfortunately, no
similar data was collected for Dartmouth. Our preliminary
analysis shows that these non-unicast packets mostly came
from Net-Bios and ARP.

The right plot shows the average packet sizes for the APs
in the UNC campus. Most average packets sizes are sizes
are below 600 bytes, although we observe some degree of
axis-hugging, where a small average received packet size
corresponds to a large average sent packet size. This con-
firms the previous observation that some APs are dominated
by highly asymmetric client behaviors (mostly uploading or
mostly downloading), which sent mostly large (data) packets
in one direction and mostly small (acknowledgment) packets in
the other direction. Note that this plot was created by dividing
the total number of bytes by the total number of packets
(both unicast and non-unicast). A similar plot for Dartmouth
using total bytes divided by total unicast packets results in
average packet sizes well above the Maximum Transfer Unit
of 802.11b, so it is clear that the number of non-unicast packets
was also rather significant for Dartmouth.

C. Client Associations

Client association dynamics represent another important
aspect of the workload of wireless APs. The SNMP counters
in the Dartmouth and UNC trace include cumulative counts of
the number of client that associated with each APs, number
of clients that roamed into each access points, and number
of clients that roamed away from each AP. The left plot
in Figure 6 shows the cumulative distribution function for

these three parameters for UNC. As in previous cases, we
find distributions that are quite heavy. One third of the APs
received between 10,000 associations and 250,000 association
during the monitored period. This represents daily averages
between 170 and 4,310, which should be considered rather
high. In addition, the distributions for roaming operations are
also rather heavy. It is unlikely that this is purely due to client
mobility, so we conjecture that associations instabilities are
common, i.e., clients that roamed to a nearby APs due to
interferences and poor signal strength.

Previous studies [2] observed no correlation between the
number of associations and the total traffic per AP. We have
also studied this question and found only weak correlations
for the Dartmouth and UNC traces (Pearson’s correlation of
0.30 and 0.41 respectively). The middle plot of Figure 6
illustrates the absence of any clear trend in the Dartmouth
data. However, when the data is examined in a log-log scale
as in the right plot, it is clear that a linear upward trend is
present. The correlation between the logarithm of the total
bytes and the logarithm of the number of associations was
0.80 for Dartmouth and 0.74 for UNC. This means that���������
	���
������������������

where
	

is the total traffic and
�

is the
number of associations. Therefore

	���������� �
, and the total

amount of traffic grows very quickly with the total number
of associations. In our further analysis, we have plotted (not
shown here) the total traffic against the average association
size, and found a upward trend. This implies that higher loads
in APs with more associations are not only due a greater
number of associations but also to “bigger” associations, i.e.,
associations that transfer a greater number of bytes in average.



7

V. CONCLUSIONS AND FUTURE WORK

We have studied the workload of APs in large campus
networks. Our results show substantial similarities between
these two environments, and open numerous avenues for
further research. Our analysis of the load in bytes reveal
interesting structure due to heavy uploading behavior. We
intend to clarify the cause of this phenomenom by collecting
and analyzing packet headers traces. This type of data would
also help us to further analyze the causes of the shapes of the
load distributions, and the origin of the large fraction multicast
packets. Our finding of pervasive log-normality in the system-
wide load of the two networks is intriguing, and we intend to
study the generative process more carefully and propose more
formal parametric models for the different characteristics. We
also intent to study its applicability to other periods (e.g., daily
loads).

We found surprisingly heavy distributions of total client as-
sociations and roaming operations. We are currently analysing
an alternative source of data, syslog event messages, which
should help us to estimate the fraction of these events that
comes from mobility rather than infrastructural problems.
Additional SNMP data that reports client information should
prove useful for this analysis.

We intend to study the spatial correlations of APs and clas-
sify APs based on various parameters (e.g., traffic characteris-
tics, number of associations, and distinct clients). Furthermore,
we aim to explore the topological properties of the wireless
network infrastructure.

Another ongoing effort focuses on forecasting of the traffic
load at APs in various time scales. Short-term forecasting
can assist in designing more energy-efficient clients. Long-
term forecasting is essential for capacity planning and under-
standing the evolution of the wireless traffic and networks. To
forecast accurately the traffic load, a very good understanding
of its traffic characteristic is necessary.

This research is a part of a comparative analysis study on
wireless access patterns in various environments, such as a
medical center, research institute, campus, and public wireless
network. We intend to analyze traces from testbeds in these
environments and contrast their traffic models. We believe that
understanding and forecasting the traffic of APs can have a
dominant impact on the operation of wireless APs and clients
and this study sets a direction for exploring further these
issues.
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