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Abstract

Penetration depth (PD) is a distance metric that is used to describe
the extent of overlap between two intersecting objects. Most of the
prior work in PD computation has been restricted to translational
PD, which is defined as the minimal translational motion that one
of the overlapping objects must undergo in order to make the two
objects disjoint. In this paper, we extend the notion of PD to take
into account both translational and rotational motion to separate the
intersecting objects, namely generalized PD. When an object un-
dergoes rigid transformation, some point on the object traces the
longest trajectory. The generalized PD between two overlapping
objects is defined as the minimum of the longest trajectories of one
object under all possible rigid transformations to separate the over-
lapping objects.

We present three new results to compute generalized PD between
polyhedral models. First, we show that for two overlapping con-
vex polytopes, the generalized PD is same as the translational PD.
Second, when the complement of one of the objects is convex, we
pose the generalized PD computation as a variant of the convex con-
tainment problem and compute an upper bound using optimization
techniques. Finally, when both the objects are non-convex, we treat
them as a combination of the above two cases, and present an algo-
rithm that computes a lower and an upper bound on generalized PD.
We highlight the performance of our algorithms on different models
that undergo rigid motion in the 6-dimensional configuration space.
Moreover, we utilize our algorithm for complete motion planning
of polygonal robots undergoing translational and rotational motion
in a plane. In particular, we use generalized PD computation for
checking path non-existence.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling.

Keywords: Penetration depth

1 Introduction

Calculating a distance measure is a fundamental problem that arises
in many applications such as physically-based modeling, robot mo-
tion planning, virtual reality, haptic rendering and computer games.
Typical distance measures employed in these applications include
separation distance, Hausdorff distance, spanning distance and pen-
etration depth [Lin and Manocha 2003]. Among these measures,
penetration depth (PD) is used to quantify the extent of inter-
penetration between two overlapping, closed, geometric objects.

PD computation is important in a number of applications. In rigid
body dynamics, inter-penetration between simulated objects is of-
ten unavoidable due to the nature of discrete, numerical simula-
tion. As a result, several response algorithms like penalty-based
simulation methods need the PD information to compute the non-
penetration constraint force [Mirtich 2000; Stewart and Trinkle
1996]. The PD is also used to estimate the time of contact to ap-
ply impulsive forces in impulse-based methods [Kim et al. 2002a].
Sampling-based motion planning techniques perform PD compu-
tation between the robot and the obstacles to generate samples in
narrow passages in the configuration space [Hsu et al. 1998]. Many
6-DOF haptic rendering algorithms use penalty-based methods to
compute a collision response and need to compute the PD at haptic
update rates [Kim et al. 2003]. Other applications include tolerance
verification, where PD could be used to estimate the extent of inter-
ference between the parts of a machine structure [Requicha 1993].

Most of the prior work on PD computation has been restricted
to translational PD. The translational PD between two overlap-
ping objects is often defined as the minimum translational distance
needed to separate the two objects. Many good algorithms to es-
timate the translational PD between convex and non-convex poly-
hedra are known [van den Bergen 2001; Kim et al. 2002b; Kim
et al. 2002a]. However, translational PD computation is not suf-
ficient for many applications as it does not take into account the
rotational motion. For example, in rigid body dynamics simula-
tions, objects undergo both translational and rotational motion due
to external forces and torques. In order to compute an accurate col-
lision response, we also need to take into account rotational motion
during PD computation. Similarly in 6-DOF haptic rendering, the
rotational component in penalty forces, such as torque, should be
considered in order to compute the response force. Also, since the
configuration space of a rigid polyhedral model is a 6-dimensional
space, the rotational PD metric is important for motion planning.

In this paper, we take into account the translational and rotational
motion to describe the extent of two intersecting objects and re-
fer to that extent of inter-penetration as the generalized penetra-
tion depth. When an object undergoes rigid transformation, some
point on the object traces the longest trajectory. The generalized
PD between two overlapping objects is defined as the minimum of
the longest trajectories of one object under all possible rigid trans-
formations to separate the overlapping objects. To the best of our
knowledge, there is no prior work on generalized PD computation
between polyhedral models.

In general, computing the generalized PD between two non-convex
polyhedra is more difficult than computing translational PD due to
the non-linear rotational term embedded in the definition. In case
of translational PD, the problem reduces to computing the closest
point from the origin to the boundary of the Minkowski sum of
the primitives. The combinatorial complexity of Minkowski sum
can be as high as O(m3n3) for non-convex polyhedra, where m
and n are the number of features in the two polyhedra. However,
no similar formulation is known to compute the generalized PD.
Computing generalized PD can be viewed as minimizing a distance
metric in the configuration space. The configuration space for the
case of generalized PD computation in 3D is 6-dimensional and
the problem reduces to computing an arrangement of O(n2) five-



dimensional contact hyper-surfaces. The combinatorial complexity
of the arrangement is O(n12) [Halperin 2005].

1.1 Main Results

We present a formulation of generalized PD and present novel re-
sults related to computing PD between polyhedral models. These
include:

• We propose a novel definition for generalized penetration
depth to quantify both the translational and rotational amount
of inter-penetration between two overlapping polyhedra.

• We prove that for convex models, their generalized PD is the
same as translational PD.

• We present an approximate algorithm to compute the general-
ized PD for non-convex models. We compute a lower bound
on the generalized PD by using convex-covering techniques
and computing the translational PD for each pair of convex
polytopes.

• We reduce the problem of computing an upper bound for the
generalized PD to a variant of 3D convex containment prob-
lem using linear programming.

We have implemented our algorithm and applied to many non-
convex 3D models undergoing rigid motion in 6-dimensional con-
figuration space. The running time varies based on model complex-
ity and the relative configuration of two objects. In practice, our
algorithm takes about 2 ms to 6 ms on 2.8 GHz PC to compute the
lower bound on generalized PD, and 21 ms to 1.02 sec for the upper
bound. We also use our algorithms to perform C-obstacle query for
complete and collision-free motion planning of planar robots. We
use this query as part of a sampling-based complete motion plan-
ning algorithm and use the generalized PD computation to acceler-
ate the check for path non-existence.

1.2 Organization

The rest of the paper is organized in the following manner. Sec-
tion 2 briefly surveys the previous work on PD computation and
distance metrics in configuration space. Section 3 presents our for-
mulation of generalized PD and highlights many of its properties.
In Section 4, we show that the generalized PD computation between
convex polytopes is same as translational PD computation. Section
5 highlights the relationship between generalized PD computation
and the containment problem, which enables us to estimate the gen-
eralized PD between non-convex models in Section 6. Section 7
and 8 present our experimental results and an application to com-
plete motion planning.

2 Previous Work

In this section, we give a brief overview of prior work on PD com-
putation and distance metrics in configuration space (C-space).

2.1 PD and Arrangement Computation

Given a finite set of hypersurfaces S in Rd , their arrangement
A (S ) is the decomposition of Rd into cells C of dimensions
0,1, . . . ,d. Here, a k-dimensional cell C k in A (S ) is a maximal
connected set contained in the intersection of a subset of the hyper-
surfaces in S that is not intersected by any other hypersurfaces in
S [Halperin 1997]. It is well known that the worst case combi-
natorial complexity of an arrangement of n hypersurfaces in Rd is
O(nd).

Since both the translational and generalized PD can be formulated
in C-space, the complexity of computing both the PD’s is governed
by that of C-space boundary. In case of polyhedral objects in 3D,
their C-space can be computed by enumerating their contact sur-
faces and computing their arrangement [Latombe 1991]. As a re-
sult, one can calculate the PDs by computing the arrangement of
contact surfaces. However, the combinatorial complexity of the ar-
rangement is O(n12) [Halperin 2005]. Moreover, in practice, robust
computation of arrangements is known to be a hard problem [Raab
1999].

2.2 Translational Penetration Depth

The translational PD, PDt , is defined as a minimum translational
distance to make two objects disjoint. This definition can be for-
mulated in terms of the Minkowski sum of two objects [Dobkin
et al. 1993]. Several algorithms have been proposed for exact or
approximate computation of PDt . Bergen proposes a quick lower
bound estimation to PDt between two convex polytopes by iter-
atively expanding a polyhedral approximation of the Minkowski
sum [van den Bergen 2001]. Kim et al. [2002b] presents an in-
cremental algorithm to estimate a tight upper bound on PDt be-
tween convex polytopes by walking to a “locally optimal solution”.
They have also presented an algorithm to compute an approxima-
tion of global PDt between two general polyhedral models by using
hierarchical refinement [2002a]. The hierarchical refinement ap-
proach decomposes the non-convex objects into convex polytopes
and uses a bounding volume hierarchy to recursively refine the es-
timation of PDt . Redon et al. [2005] describe a fast method to
compute an approximation of the local penetration depth between
two general polyhedral models using graphics hardware. The best
known theoretical algorithm to compute PDt between convex poly-
topes is given in [Agarwal et al. 2000] and its running time is
O(m

3
4 +ε n

3
4 +ε + m1+ε + n1+ε ) for any positive constant ε , where

m and n denote the number of features in the two polytopes. How-
ever, we are not aware of any implementation of this algorithm. In
case of general polyhedral models, it is known that the computa-
tional complexity of PDt computation can be as high as O(m3n3)
[Kim et al. 2002a].

2.3 Generalized Penetration Depth

To the best of our knowledge, there is no prior published work
on generalized PD computation for either convex or non-convex
polyhedral objects. If we view the problem of separating the ob-
ject A from B as placing A into B̄ - the complement space of B,
the most closely related work to generalized PD is the 2D polygon
containment algorithms [Chazelle 1983; Milenkovic 1999; Grinde
and Cavalier 1996; Avnaim and Boissonnat 1989; Agarwal et al.
1998] and rotational overlapping minimization [Milenkovic 1998;
Milenkovic and Schmidl 2001].

The standard 2D polygon containment problem is to check whether
a polygon Q with n vertices can contain another polygon P with m
vertices. For general non-convex polygons, the time complexity of
this problem is O(m3n3log(mn)) [Avnaim and Boissonnat 1989].
When restricted to convex objects, the time complexity of the 2D
containment problem can be significantly improved. [Chazelle
1983] proposed an enumerative algorithm with an O(mn2) time
complexity. [Milenkovic 1999; Grinde and Cavalier 1996] used
mathematical programming techniques to compute an optimal so-
lution.

Given an overlapping layout of polygons inside a container poly-
gon, the rotational overlapping minimization problem is to com-
pute the translation and rotation motion to minimize their over-
lap. [Milenkovic 1998] pose this problem as constraint-solving and



employ mathematical programming methods to solve it. By using
the non-overlapping property as a hard constraint, [Milenkovic and
Schmidl 2001] minimize a quadratic function of the position and
orientation of objects to compute a non-overlapping layout based
on quadratic programming.

2.4 Distance Metric in Configuration Space

The configuration space of an object is the space for all possible
placements of this object in environment [Latombe 1991; LaValle
2006]. For example, if a rigid object in 3D can translate and rotate,
its C-space is 6-dimensional. A configuration is called free if the
placement of the object at that configuration does not result in a
collision with other obstacles in the environment. Otherwise, it is
a colliding configuration. Essentially, the PD is a distance metric
in C-space to represent a shortest distance from a given, colliding
configuration to all the free configurations.

When only translation is allowed in the distance metric, the
corresponding configuration space can be formulated using the
Minkowski sum, which has O(n2) combinatorial complexity for
two convex polytopes (with n features), and O(n6) for non-convex
polyhedra [Halperin 2002]. Since only translation is allowed, we
can use the Euclidean distance between two configurations as a dis-
tance metric. Therefore, the translational penetration depth com-
putation, which finds a nearest point on the surface of Minkowski
sum to the origin, has the same combinatorial complexity as the
Minkowski sum formulation.

When both translation and rotation are allowed (i.e., 6-DOF C-
space), the corresponding C-space becomes more complex and its
combinatorial complexity is O(n12) for 3D non-convex polyhedra
[Halperin 2005]. Moreover, in 6DOF C-space, it is difficult to de-
fine a meaningful distance metric that can encode both translational
and rotational movement than the one in 3-DOF, Euclidean space
[Kuffner 2004; Amato et al. 2000].

The Lp (p ≥ 1) metric is one of the important family of metrics in
6DOF C-space [LaValle 2006]. Another important distance metric
is the displacement metric; this is the minimum Euclidean displace-
ment distance between all the points on the model when it is at two
different configurations.[LaValle 2006].

3 Generalized Penetration Depth

The translational PD, PDt is defined as a minimum translation dis-
tance to separate two overlapping objects A and B:

PDt(A,B) = min({‖ d ‖ |interior(A+d)∩B = /0}), d ∈R
3
. (1)

In our work, we extend the notion of PDt by taking into account
translational as well as rotational motion to separate the overlapping
objects. Before proceeding to the definition of generalized PD, we
first introduce our notation that is used throughout this paper.

3.1 Notation

We use a bold face letter, such as the origin o, to distinguish a vector
quantity from a scalar quantity. We use a sextuple (x, y, z, φ , θ , ψ)
to encode the 6-dimensional configuration of a 3D object, where
x, y and z represent the translational components, and φ , θ and
ψ are an Euler angle representation for the rotational components.
The rotation component can be also represented as a rotation vector
r = (r1,r2,r3)

T = α â, where α is the rotation angle and â is the
rotation vector. A(q) is a placement of an object A at configuration
q, and p(q) is the corresponding position of a point p on A.

3.2 Distance Metric Dg In C-Space

In order to define generalized PD, PDg, we first introduce a distance
metric Dg defined in configuration space (or C-space). We use this
metric to measure the distance of an object A at two different con-
figurations.

Let li be a curve in C-space, which connects two configurations q0
and q1 (Fig. 1-(a)) and is parameterized in t. When the configura-
tion of A changes along the curve l, any point p on A will trace out
a trajectory in 3D Euclidean space shown in Fig. 1-(b). This tra-
jectory can be represented as r = p(l(t)), and its arc-length µ(p, l),
which is denoted as trajectory length, can be calculated as:

µ(p, l) =

∫
||ṗ(l(t))||d(l(t)).

As Fig. 1-(a) shows, there can be multiple curves connecting two
configurations q0 and q1. When A moves along any such curve,
some point on A corresponds to the longest trajectory length as
compared all other points on A. For each C-space curve connecting
q0 and q1, we consider the corresponding longest trajectory length.
We define the distance metric Dg(q0,q1) as the minimum over all
longest trajectory lengths (Fig. 1-(c)):

Dg(q0,q1) = min({max({µ(p, l)|p ∈ A})|l ∈ L}), (2)

where L is a set of all the curves connecting q0 and q1.

Properties of Dg metric. The distance metric defined above has
the following properties [LaValle 2006]:

• Non-negativity: Dg(q0,q1) ≥ 0,

• Reflexivity: Dg(q0,q1) = 0 ⇐⇒ q0 = q1,

• Symmetry:Dg(q0,q1) = Dg(q1,q0),

• Triangle inequality: Dg(q0,q1)+Dg(q1,q2) ≥ Dg(q0.q2).

Lower bound on Dg(q0,q1). Let DISP(q0,q1) be the displace-
ment metric, which is defined as the maximum Euclidean displace-
ment of points on a model at these two configurations. It follows
that DISP(q0,q1) is a lower bound of Dg(q0,q1):

Dg(q0,q1) ≥ DISP(q0,q1).

Upper bound on Dg(q0,q1). In order to compute an upper
bound for a 3D rigid object with translational and rotational DOFs,
we first consider computing the Dg of by only varying a single
DOF. Then, when we vary all the DOFs simultaneously, the final
Dg would be less than or equal to the sum of the Dg’s computed
with respect to each DOF [Schwarzer et al. 2005; LaValle 2006].

When Euler angles are used to represent rotation, the upper bound
on Dg can be calculated as:

Dg(q0,q1)≤∆(qx)+∆(qy)+∆(qz)+Rφ ∆(qφ )+Rθ ∆(qθ )+Rψ ∆(qψ ),
(3)

where the Lipshitz constants Rφ ,Rθ , Rψ are the maximum Eu-
clidean distances from any point on A to X ,Y,Z axes in the local
coordinate system, respectively. ∆ denotes the difference of each
DOF between these two configurations.



Figure 1: Generalized penetration depth PDg definition : (a) In the C-space, there are an infinite number of curves, such as l1, l2, that connect
two configurations q0 and q1. (b) When the configuration of the object A changes along any curve l, any given point on A will trace out a
distinctive trajectory in the 3D Euclidean space. This sub-figure shows the trajectories traced by p when A travels along l1 and along l2,
while µ(p, l1) and µ(p, l2) are the arc-lengths of these trajectories, respectively. For each curve l, some point on A corresponds to the longest
trajectory length as compared all other points on A. The distance metric Dg(q0,q1) is defined as the minimum over longest trajectory lengths
over all curves connecting q0 and q1. (c) PDg is defined as the minimum of Dg(q0,q) over all free configurations, which do not intersect with
B (such as q1, q2).

If the rotation vector is used to represent rotation, the upper bound
can be calculated by:

Dg(q0,q1) ≤ ∆(qx)+∆(qy)+∆(qz)+R
3

∑
k=1

∆rk, (4)

where the constant R is the maximum Euclidean distance from the
origin of A to every point on A. In section 6, we use these two upper
bound formulae to compute an upper bound on PDg.

3.3 PDg Definition

Using Dg metric, we define our generalized PD, PDg as:

PDg(A,B) = min({Dg(q0,q)|interior(A(q))∩B = /0}) (5)
where q0 is the initial configuration of A, and q is in C-space (Fig.
1).

The translational PDt defined by Eq. (1) is essentially a special case
of PDg. When an object A can only translate, all the points on A tra-
verse the same distance. As a result, the distance metric D(q0,q1)
is equal to the Euclidean distance ‖ q0 −q1 ‖. In this case, Eq. (5)
can be simplified to Eq. (1). Our generalized PD formulation has a
geometric interpretation in C-space. PDg is realized by some con-
figuration q on the boundary of free space whose distance (Dg) to
the given configuration q0 is the minimum.

In terms of handling general non-convex polyhedra, it is difficult
to compute PDg. This is due to the high combinational complex-
ity of C-Space arrangement computation, which can be as high as
O(n12). However, reducing the problem to only dealing with con-
vex primitives can significantly simplify the problem. In the follow-
ing sections, we show that if both the input polyhedra are convex,
their PDg is equal to PDt . Furthermore, if the complement of one
of the polyhedra is convex, we reduce PDg to a variant of a convex
containment problem. In case of general non-convex polyhedra, we
treat them as a combination of above two cases to compute a lower
bound and an upper bound on PDg.

4 PDg Computation between Convex Ob-

jects

In this section, we consider the problem of computing generalized
PD between two convex objects. In this case, we prove that PDg is

equal to PDt . As a result, the well known algorithms to compute
PDt between convex polytopes [van den Bergen 2001; Kim et al.
2002b] are directly applicable to PDg.

Figure 2: Proof for PDt(A,B) = PDg(A,B) for convex objects A
and B. Let A′ a placement of A which realizes PDg. L is an arbi-
trary separating plane between A′ and B, which divides the space
into two half-spaces L− and L+. For any L, there always exists a
point f on A on L− side with ||d|| ≥ PDt(A,B). As a result, we can-
not move A towards L+ side with a traveling distance that is less
than PDt(A,B) even when rotational DOFs are allowed. Therefore,
generalized PD is equal to translational PD for convex objects.

Theorem 1 Given two convex objects A and B, we have

PDg(A,B) = PDt(A,B)

Proof Let us assume that A and B intersect, otherwise it is trivial
to show that PDg = PDt = 0.

First of all, we can say that PDg ≤ PDt , as PDg is realized under
more DOFs than PDt . Next we show that PDg

< PDt is not possible
and therefore, we can conclude PDg = PDt . We use a proof by
contradiction.

Suppose PDg
< PDt . Let us call A′ as the placement of A that re-

alizes PDg, implying that A′ is disjoint from B (Fig. 1). Since A′

and B are convex, there exists a separating plane L that separates A′

and B. Moreover, let L divide the entire space into two half-spaces:
L−, which contains B and L+, which contains A′. Let f be the far-
thest point on A on L− side from the separating plane L and d be



Figure 3: An example of PDg
< PDt between convex A and non-

convex B. The trajectory length that A travels is much shorter when
both translation and rotation transformation are allowed (b) than
the length when only translation is allowed (a).

the vector from f to its nearest point on L. As a result, ||d|| ≥ PDt .
Otherwise, we could separate A and B by translating A by d, which
would result in a smaller PDt (i.e. d) and this contradicts the defi-
nition of PDt in Eq. 1.

Since f, which is on L− side, is at least PDt far away from L, f must
travel at least by PDt to reach the new position f′, which can be lying
on L or contained in L+. However, according to the definition of
PDg in Eq. (5) and the assumption of PDg

< PDt , there must exist
a trajectory l connecting f and f′, whose arc-length is less than PDt .
This means that f could be moved to L or within L+ by less than
the amount of PDt , which is contradictory to the earlier observation
that f must travel at least by PDt . Therefore, we conclude that L can
not be a separating plane between A′ and B.

The above deduction shows under the assumption that PDg
< PDt ,

no separating plane can exist. This contradicts the fact that there
must exist a separating plane when convex objects are disjoint.
Therefore, PDg

< PDt is not possible and hence PDg = PDt . Q.E.D.

Corollary 1 For two convex objects A and B, their generalized PD
is commutative; i.e.,

PDg(A,B) = PDg(B,A).

Proof For convex objects, PDg(A,B) = PDt(A,B) and PDg(B,A)
= PDt(B,A)). Since PDt is commutative such that PDt(A,B) =
PDt(B,A), it follows that PDg(A,B) = PDg(B,A). Q.E.D.

Non-Convex objects. Note that, for non-convex objects,
PDg(A,B) is not necessarily equal to PDt(A,B). Figs. 3 and 4
show such examples. In Fig. 3, PDg(A,B) < PDt(A,B), because
the trajectory length that any point on A travels is shorter when
both translation and rotation transformation are allowed (b) than its
corresponding length when only translation is allowed (a). In Fig.
4, an object B, which could be infinitely large with a hole inside,
can contain A only when A adjusts its initial orientation. Hence, the
PDt(A,B) = ∞ (i.e. the height of B), but PDg(A,B) is not ∞ (i.e. is
much smaller than the height). So, PDg(A,B) < PDt(A,B). We can
also see that PDg(A,B) is not necessarily equal to PDg(B,A) in this
example. If B is movable, the Dg metric for B at any two distinc-
tive orientations is always ∞, because B is unbounded. Therefore,
PDg(B,A) is ∞ in this case, while PDg(A,B) is not ∞.

5 PDg Computation between a Convex Ob-

ject and a Convex Complement

In this section, we show how to pose the generalized PD computa-
tion as a containment problem. Using this formulation, we inves-
tigate a special case of generalized PD where a movable object A
and the complement of a fixed object B (i.e. B̄) are both convex

Figure 4: PDg between the convex object A and the object B
whose complement - B̄ is convex. In this case, the PDg(A,B) 6=
PDt(A,B) = ∞ and PDg(A,B) 6= PDg(B,A) = ∞. We compute an
upper bound on PDg by reducing the problem to a variant of the
convex containment problem by using linear programming.

(as shown in Fig. 4). Instead of computing an exact solution, we
compute an upper bound of PDg by using a two-level optimization
algorithm based on linear programming.

5.1 Relationship between PDg and Object Contain-

ment

The general object containment problem can be stated as follows:
given two objects P and Q, determine whether Q can contain P by
performing translation and rotation transformation on P. The PDg

definition in Eq. (5) is closely related to the object containment
problem. That is, testing interior(A(q))∩B = /0 in Eq.(5) can be
reduced to a containment problem: whether B̄ can contain A, as
shown in Fig. 4. However, there are a few differences between
these two problems. The object containment problem finds one in-
stance of a placement of A that can fit inside of B̄, whereas PDg

computation needs to search through all valid containment configu-
rations to find a configuration that minimizes the objective function
Dg in Eq. (5).

The standard object containment problem is known to be difficult
even for 2D polygonal models. However, if the primitives are
convex, computational complexity of containment reduces from
O(m3n3log(mn)) to O(mn2) for polygons with m and n vertices
[Chazelle 1983; Avnaim and Boissonnat 1989]. As a result, we
consider the case when a movable polyhedron A is convex and the
complement of a fixed polyhedra B is convex as well. To compute
an upper bound of PDg for this case, our algorithm performs two
levels of optimizations:

1. We compute a configuration q1 for A such that the convex
container B̄ contains A(q1). This is performed by minimizing
their overlap. The valid containment yields an upper bound of
PDg, which may not be tight.

2. We iteratively compute a configuration, q2, to yield a tighter
upper bound of PDg by setting the upper bound of Dg metric
in Eq. (4) as the objective function for optimization.

5.2 Computing a Containment

In this section, we introduce the formulation of the convex con-
tainment problem, and extend the 2D optimization-based algorithm
described in [Milenkovic 1999; Grinde and Cavalier 1996] to 3D
objects, both of which serve as a foundation of finding a locally-
optimal containment.



Formulation of 3D Convex Containment. To check whether
A fully lies inside B̄ can be mathematically formulated as follows.
The convex object, B̄ with n faces is represented as an intersection
of n half-spaces c jx ≤ b j, j = 1, ...,n. A placement of A lies fully
inside B̄ if and only if every vertex pi(i = 1, ...,m) on A lies inside
all the half-spaces, i.e. c jpi ≤ b j, i = 1, ...,m, j = 1, ...,n, or:

Cpi ≤ b, i = 1, ...,m, . (6)

Here c j is normalized so that for a given point p, |c j ·p−b j| is the
Euclidean distance from p to its corresponding face j.

Denote R as the rotation matrix when A is rotated around an ar-
bitrary axis with respect to its origin o. When A is rotated by R,
followed by the translation of t, the new position of p in A can be
calculated as:

p′ = R(p−o)+o+ t. (7)

Using the above notation, the 3D containment problem now can be
stated as finding a solution to the following system:

Cp′
i ≤ b, i = 1, ...,m. (8)

Linearizing 3D Convex Containment Problem. The 3D con-
tainment computation is a non-linear problem, as the rotation
matrix R is embedded with non-linear terms. These non-linear
terms could be linearized by using a small-angle approximation
[Milenkovic and Schmidl 2001]. When A is rotated by α around
an arbitrary axis â, its rotation vector r is equal to α â. If the varia-
tion of a rotation angle α is small enough, we can get a linearized
approximation for Eq. (7) can be obtained:

p̃ ≈ p+ r× (p−o)+ t. (9)

By replacing p′ by its approximation p̃, the non-linear system in
Eq. 8 is simplified to a linear one:

gi j = c j · t− (c j × (pi −o)) · r+(c j ·pi −b j) ≤ 0, ∀i, j. (10)

Here t and r are the unknown vectors. gi j, which is called as con-
tainment function, is defined for each pair of the vertex on A and
the face of B̄:

In order to solve the linear system defined in Eq. (10), a slack
variable di j is introduced to represent the distance from p̃i, the ap-
proximate position of pi on A after it is transformed, to the j’th face
on B̄. In this case, the 3D convex containment constraint for A and
B̄ can be approximated as a linear programming problem (LP1):

min Z =
m

∑
i=1

n

∑
j=1

di j,

subject to gi j(t,r)−di j ≤ 0 ∀i, j.

(11)

If Z = 0 for this optimization problem, we end up computing a
solution to Eq. (10).

Containment Computation. Given A and B̄, we construct a lin-
ear programming problem defined as in Eq. (11) and apply the stan-
dard linear programming technique to optimize its objective func-
tion Z. We compute the solution, say (t,r), and place A at A′. A new
linear programming formulation (like LP1) is constructed for A′ and
solved iteratively until a local minimum for Z is computed. As the
algorithm iterates, the small-angle approximation for the rotation
matrix R becomes more accurate. When the objective Z approaches
zero, a valid containment of A at configuration q1 has been found.

5.3 Computing a Locally-Optimal Containment

The optimization algorithm highlighted above can only find a valid
containing placement A(q1) for A, which yields an upper bound for
PDg. We perform a second level of optimization to compute an
even tighter upper bound for PDg by using the first level containing
placement A(q1) as an initial placement for the second level.

Let q0 = (t0,r0) be the initial configuration of A used in the first
level optimization. Let q1 = (t1,r1) be the configuration for the
containing placement A as a result of the first level optimization.
Our goal is to compute ∆q = (∆t,∆r), such that q2 = (t1 +∆t,r1 +
∆r) yields another containing placement of A while Dg(q0,q2) <

Dg(q0,q1).

We perform the second level optimization by setting the upper
bound on the Dg metric in Eq. (4) as an optimization objective
function. Here we do not choose Eq. (3), because the 3D contain-
ment computation uses the notations of rotation vector. By impos-
ing that A needs to be contained by B̄ as a hard constraint, we get
the system:

min Z =
3

∑
k=1

|∆tk + t1,k − t0,k|+R
3

∑
k=1

|∆rk + r1,k − r0,k|,

subject to gi j(∆t,∆r) ≤ 0 ∀i, j,

(12)

where t0,k and r0,k are, respectively, the kth translational and rota-
tional DOF for an initial configuration of A, and similarly t1,k and
r1,k are the kth DOF for a configuration as a result of the first level
optimization, and ∆tk, ∆rk are the variables. Note, now the contain-
ment function gi j is computed from every vertex of A(q1) (instead
of A(q0)) and each face of B̄. Let us further set uk = ∆tk + t1,k − t0,k
and vk = ∆rk + r1,k − r0,k. In this case, we can rewrite the second
level optimization problem in Eq. (12) as:

min Z =
3

∑
k=1

|uk|+R
3

∑
k=1

|vk|,

subject to g1
i j(u,v) ≤ 0 ∀i, j,

(13)

where g1
i j is obtained from gi j in Eq. 12 by the change of variables:

u = ∆t+ t1 − t0 and v = ∆r+ r1 − r0.

The objective function in the optimization system (Eq. (13)) con-
tains absolute arithmetic operations. We replace |uk| with u+

k + u−k
in the objective function, and uk with u+

k − u−k in the containment
function g1

i j, where u+
k ,u−k ≥ 0 for k = 1,2,3. A similar replacement

is performed for vk. After the replacement, finally we formulate this
optimization problem as a linear programming problem:

min Z = ∑
k

(u+
k +u−k )+R(v+

k + v−k ),

subject to g2
i j(u

+
,u−,v+

,v−) ≤ 0 ∀i, j

u+
k ,u−k ,v+

k ,v−k ≥ 0,k = 1,2,3.

(14)

where g2
i j is obtained from g1

i j by the change of variables.

By solving Eq. (14), we get u+
k ,u−k ,v+

k ,v−k . Using the solution, we
can compute ∆t+1,k,∆t−1,k,∆r+

1,k and ∆r−1,k, which yields a new config-
uration q2 to replace q1. This process is iterated until the objective
Z in Eq. (14) converges to a local minimum. At this stage, since
u+

k ,u−k ,v+
k ,v−k are zeroes, our small-angle approximation becomes

accurate and A is forced to be disjoint from B. After computing an
optimal containing placement q2 of A, we compute an upper bound
on PDg using Eq. (3).



6 PDg Estimation for Non-Convex Objects

In this section, we present our algorithm to efficiently compute a
lower bound and an upper bound on PDg between non-convex ob-
jects. Our algorithm is built on the properties of PDg, presented in
Section 4 and Section 5.

6.1 Lower Bound on PDg

Our algorithm to compute a lower bound on PDg is based on the
fact that PDg is equal to PDt for convex polyhedra. As a result,
we compute a lower bound of PDg by first computing the inner-
convex covers for each input models The inner-convex cover refers
to a set of convex pieces whose union is a subset of the original
model [Milenkovic 1998; Cohen-Or et al. 2002]. Next, we take
the maximum value of PDt

i’s between all pairwise combinations of
convex pieces. The overall algorithm proceeds as:

1. As a preprocessing, compute inner-convex covers for A and B
i.e., ∪Ai ⊆ A and ∪Bi ⊆ B where Ai,Bi are convex sets, but
are not necessarily disjoint from each other.

2. During the run-time query, place Ai at the configuration q, i.e.
compute Ai(q).

3. For each pair of (Ai(q),B j) where i = 1, . . . ,M and j =
1, . . . ,N,

(a) Perform collision detection to check for overlaps.

(b) If the pair overlaps, let PDg
k = PDt((Ai(q),B j); other-

wise PDg
k = 0, where k = 1, . . . ,MN.

4. Finally, PDg = max(PDg
k) for all k.

6.1.1 Translational Penetration Depth Computation

In our method, the lower bound on generalized PDg computation
is decomposed into a set of PDt queries among convex primitives.
The PDt between two convex polyhedra can be computed using
the algorithms presented in [Cameron 1997; van den Bergen 2001;
Kim et al. 2002b]. These methods compute PDt by calculating the
minimum distance from the origin to the surface of the Minkowski
sum of the two convex polyhedra.

Since we are computing a lower bound to PDg, this imposes that the
PDt computation algorithm used by our method should compute an
exact value or a lower bound to the PDt . In particular, the algorithm
proposed by Cameron [1997] satisfies this requirement and Gino’s
algorithm [2001] also provides a tight lower bound.

6.1.2 Acceleration using Bounding Volume Hierarchy

Our lower bound to PDg computation can be accelerated by em-
ploying a standard bounding volume hierarchy. For two disjoint
convex pieces, their PDt corresponds to zero. Typically there are
many disjoint pairwise combinations of convex pieces (Ai,B j). We
detect such disjoint pairs using an oriented bounding box (OBB)
[Gottschalk et al. 1996] hierarchy and prune them away.

6.1.3 Analysis

The computational complexity of the lower bound PDg is deter-
mined by the number of convex pieces decomposed from the robot
A and the obstacle B, and the geometric complexity of these con-
vex pieces, which is determined by the total number of features of
the resulting convex pieces. Let m, n be the number of the convex
pieces of A and B, respectively. Let the geometric complexity of
the convex pieces of A and B be a and b, respectively. Then, the

Figure 5: Separating plane, convex separator and non-convex sep-
arator: (a). L1 and L2 are separating planes, which separate A′

and B, and A′′ and B respectively. (b). S1 is a separator, which is
composed by a set of piece-wise linear plane. S1 separates A′ from
B. A separator is called convex (i.e. S1), if it lies on the boundary
of its convex hull. (c). A non-convex separator S2 separates A from
B′.

average numbers of features in each piece of A and B are a
m and

b
n , respectively. Using computational complexity of translational
PD, we can derive that the computational complexity of PDg for
2D rigid objects is O(an+bm), and for 3D rigid objects is O(ab).

6.2 Upper Bound on PDg

One simple way to compute an upper bound to PDg for gen-
eral non-convex objects is to compute the PDt between their
convex hulls. This corresponds to an upper bound because
PDg(A,B) ≤ PDg(CH(A),CH(B)), and the latter is equal to
PDt(CH(A),CH(B)), thanks to Theorem 1. In practice, this up-
per bound is relative simple to compute. However, this algorithm
could be overly conservative for non-convex models, as shown in
Figs. 3 and 4.

PDt(A,B) is also an upper bound on PDg(A,B). However, this can
result in a conservative upper bound in practice. Since the com-
putational complexity of exact computation of PDt(A,B) for non-
convex models can be high, current approaches typically compute
an upper bound of PDt(A,B) [Kim et al. 2002a].

We present an algorithm to compute an upper bound on PDg for
non-convex polyhedra by reducing this problem to a set of contain-
ment optimization sub-problems (as defined in Section 5).

6.2.1 Algorithm Overview

Given two disjoint non-convex objects A and B, there is either a
single separating plane between the objects (as shown in Fig. 5-
(a)) or there is a set of piecewise linear surfaces, which is called a
separator [Mount 1992]. (Figs. 5 -(b) and -(c)). More precisely,
the separator is defined as a simple piece-wise linear surface that
divides the space into two half-spaces. The separator can be an open
surface or a closed surface. A separator S is convex if and only S ⊂
∂ (CH(S)), as shown in Fig. 5-(b). Otherwise, the separator is non-
convex, as shown in Fig. 5-(c). A single separating plane can be
regarded as a special case of a separator. However, we specifically
use the term separator to refer to the non-plane separator.

Our upper bound PDg(A,B) computation algorithm proceeds as fol-
lows: during the preprocessing phase, we enumerate all possible
separating planes and convex separators by analyzing the convexity
of the boundary of B. During the query phase, for each separating
plane L (or each convex separator S), we compute an upper bound
on Dg distance when A is separated from B with with respect to the
separating plane L (or separator S) using the technique described in
Sec. 5. The minimum over all these upper bounds yields a global
upper bound on PDg. Now we explain how to efficiently enumerate
L and S as part of the preprocessing step.



Figure 6: The ‘hammer’ example: (a) When the ‘hammer’ is at time t=0, it collides with the ‘notch’. (b) The collision-free placement of the
‘hammer’ for scenario (a). We use our containment optimization algorithm to get this free configuration, which realizes the UB1(PDg). (c)
The ‘hammer’ at time t=0.5. (d) The collision-free placement is computed for scenario to get the UB1(PDg)

6.2.2 Separating Planes

The set of all possible separating planes is included in the comple-
ment of the convex hull of B. According to Theorem 1, PDg = PDt

for convex objects, and the minimum Dg distance with respect to all
these separating planes is PDt(CH(A),CH(B)). This means that the
computation of PDt(CH(A),CH(B)) implicitly takes into account
all possible separating planes. Therefore, we need not enumerate
any separating planes explicitly during the preprocessing phase.

6.2.3 Convex Separators

Any separator S divides the whole space into two half-spaces. One
half-space would include the object B. We can regard the other half-
space as a container. Placing A inside the container is equivalent to
making A and B disjoint with respect to each separator S. Therefore,
the computation of the minimum Dg distance for S can be regarded
as a 3D convex containment optimization problem. By applying
two levels of linear programming optimization algorithm, discussed
in Sec. 5, we compute an upper bound of PDg for each convex
separator S. The minimum of all PDg over all enumerated convex
separators yields an upper bound on PDg.

6.2.4 Convex Separators Enumeration

Enumerating convex separators of B can be performed as a prepro-
cessing. This step can be regarded as computing a convex covering
of the complement space of B. Given the fact that we are comput-
ing an upper bound of PDg, the conservativeness of the separator
enumeration does not affect the correctness of our algorithm.

We use the surface convex decomposition for the complement space
of B [Ehmann and Lin 2001]. We discard the surface with one
face from the surface decomposition, since these planes have been
processed as separating planes.

Moreover, if the geometry of input A and B is very complex, i.e.
high polygon count or a number of features, we compute a simplifi-
cation of each primitive to compute a coarser model A′, B′. If A⊆A′

and B̄ ⊆ B̄′, it is easy to prove that PDg(A,B)≤ PDg(A′,B′). There-
fore, we can compute the upper bound by applying our algorithm
on these simplified models.

6.2.5 Separator Culling

We can cull some of the separators by making use of the currently
known upper bound on PDg during any stage of the algorithm. If the
separator is farther away from the object A than the current upper
bound, we can discard this separator. We use the PDt between the
two convex hulls of input models as an initial upper bound of PDg.

Figure 7: Comparison of lower and upper bounds on PDg for ‘ham-
mer’ example. The lower and upper bounds on PDg between the
‘hammer’ and the ‘notch’ models are computed over all interpo-
lated configurations. The dash-dot blue curve LB(PDg) stands for
the lower bound of PDg by computing pairwise translational PD.
The dashed red curve UB2(PDg) stands for the upper bound of PDg

computed by the translational PD of their convex hull. The solid
green curve UB1(PDg) highlights the upper bound of PDg by using
our containment optimization, which always lies between LB(PDg)
and UB2(PDg). In this example, UB1(PDg) is less than UB2(PDg)
for most of time t.

7 Implementation and Performance

We have implemented our lower and upper bound computation
algorithms for generalized PD computation between non-convex
polyhedra. We have tested our algorithms for PDg on a set of bench-
marks, including ‘hammer’ (Fig. 6), ‘hammer in narrow notch’
(Fig. 9), ‘spoon in cup’ (Fig. 8) and ‘pawn’ (Fig. 10) examples.
All the timings reported in this section were taken on a 2.8GHz
Pentium IV PC with 2 GB of memory.

7.1 Implementation

Lower bound on PDg. In our implementation, the convex cover-
ing is performed as a preprocessing step. Currently, we use the sur-
face decomposition algorithm proposed by [Ehmann and Lin 2001],
which can be regarded as a special case of convex covering prob-
lem. In order to compute the PDt between two convex polytopes,
we use the implementation available as part of SOLID [van den
Bergen 2001]. In order to accelerate this algorithm, we precompute



Figure 8: The ‘cup’ example. The left column shows the place-
ments of the ‘spoon’ in the ‘cup’, when t=0.0, t=0.5, and t=1.0,
respectively. At all of these placements, the ‘spoon’ collides with
the ‘cup’. The right column shows the collision-free configurations
which are realized for UB1(PDg) at each t.

an OBB hierarchy [Gottschalk et al. 1996] and use the bounding
volumes to conservatively cull convex pairs that do not intersect
with each other.

Upper bound on PDg. The preprocessing step of convex sepa-
rator enumeration can be regarded as convex decomposition of the
complement of the input model. In our implementation, we used
the surface decomposition algorithm to generate a set of convex
surfaces [Ehmann and Lin 2001] and discard the surfaces that have
only one face. For each convex separator, we use the containment
optimization technique developed in Sec. 5 to compute an upper
bound on PDg. Moreover, we use the QSopt 1 package to solve
the linear programming problems. In order to accelerate the upper
bound computation, we conservatively cull the convex separators
that are farther away than the current upper bound on PDg.

7.2 Performance

We use different benchmarks to test the performance. Our exper-
imental setup is as follows. Each benchmark includes two poly-
hedral models A and B, where A is movable and B is fixed. The
model A is assigned a staring configuration q0 and an end configu-
ration q1. We linearly interpolate between these two configurations
with n intermediate configurations (i.e. n samples). For each in-
terpolated configuration q = (1− t)q0 + tq1, t ∈ [0,1], we compute
various bounds for PDg between A(q) and B, including:

1. LB(PDg): The lower bound on PDg based on pairwise trans-
lational PDt computation.

2. UB1(PDg): The upper bound on PDg computed by contain-
ment optimization.

3. UB2(PDg). The upper bound on PDg based on the transla-
tional PDt computation between their convex hull.

1http://www2.isye.gatech.edu/˜wcook/qsopt/

In order to get accurate timing profiling, we run our PD algorithms
for each configuration with a batch number b. The average time
for each bound computation is the total running time on all samples
over the product of the number of samples and the batch number b.

’Hammer’ example. Fig. 6, and Tab. 1 and Fig. 7 show the
results and timings for the ‘hammer’ example. In this case, the
‘hammer’ model has 1,692 triangles, which is decomposed into
214 convex pieces. The ‘notch’ model has 28 triangles, which is
decomposed into 3 convex pieces and there is a notch (i.e. convex
separator) in the center of the ‘notch’ model. Initially (at t=0), the
‘hammer’ intersects with the ‘notch’ as shown in Fig. 6(a). Fig.
6(b) shows a collision-free placement of the ‘hammer’, which cor-
responds to the position after moving by UB1(PDg). According to
Fig. 7, the value is UB1(PDg) = 4.577083, which is greater than
LB(PDg) (0.744020) and less than UB2(PDg) (6.601070).

For this example, we generate 101 samples for the ‘hammer’ when
it is rotated around the Z axis. The rotation motion is linearly in-
terpolated from the configuration (0,0,0)T to (0,0,π)T . Fig. 6(c)
shows the placement of the ‘hammer’ at t = 0.5. Fig. 6(d) is the cor-
responding collision-free placement, which realizes the UB1(PDg).

We also compare the lower and upper bounds on PDg over all the
configurations. In Fig. 7, the solid green curve highlights the value
of UB1(PDg) between the ‘hammer’ and the ‘notch’ over all inter-
polated configurations. The dashed red curve, which corresponds to
UB1(PDg), always lies between LB(PDg) and UB2(PDg). In this
example, UB1(PDg) is less than UB2(PDg).

The timing for this example is shown in Tab. 1. We run the PDg

algorithm 5 times (b=5) for all the configurations (n=101). The av-
erage timing for LB(PDg), UB1(PDg), and UB2(PDg) is 1.901ms,
21.664ms and 0.039ms respectively.

‘Hammer in narrow notch’ example. We perform a similar
experiment on ‘Hammer in narrow notch’ example (Fig. 9) to test
the robustness of our algorithm. This example is modified from the
‘hammer’ example, where the size of the notch is decreased such
that there is only narrow space for the ‘hammer’ to fit inside. Our
algorithm can robustly compute the lower and upper bounds on PD
for this example. Fig. 11 compare the lower and upper bounds on
PDg over all sampled configurations (n=101). The third row of Tab.
1 shows the performance of our algorithm for this example.

‘Spoon in cup’ example. We apply our algorithm on more a
complex scenario such as shown in Fig. (8). In this example, the
‘spoon’ model has 336 triangle and is decomposed into 28 con-
vex pieces. The ‘cup’ model has 8,452 triangles. We get 94 con-
vex pieces and 53 convex separators after simplifying the original
model to 1,000 triangles.

In Fig. 8, the left column shows the placements of the ‘spoon’ in
the ‘cup’, corresponding to t = 0.0, t = 0.5, and t = 1.0, respec-
tively. At all these placements, the ‘spoon’ collides with the ‘cup’.
The right column of this figure shows the collision-free configura-
tions that are computed based on UB1(PDg) in each case. We also
compare our computed lower bound and upper bounds over all the
samples (n=101), which is shown in Fig. 8. The timing perfor-
mance for this example is also listed on Tab. 1.

‘Pawn’ example. The last benchmark used to demonstrate the
performance of our algorithm is the ‘pawn’ example. As Fig. 10
shows, the large ‘pawn’ is fixed, while the small one is moving. The



Figure 9: The ‘hammer in narrow notch’ example. This example is modified from the ‘hammer’ example, where the size of the notch is
decreased such that there is only narrow space for the ‘hammer’ to fit inside. (b) and (d) shows the placement of the ‘hammer’ at t=0 and
t=0.5. (c) and (e) are their corresponding configurations respectively, which realize the UB1(PDg). The computed UB1(PDg) is tighter than
the UB2(PDg) for most of time t.

Figure 10: The ‘pawn’ example. The large ‘pawn’ is fixed and
the small one is movable. (a) shows the colliding placement of the
‘pawn’ at t = 0. (b) shows its corresponding collision-free place-
ment, which is computed based on UB1(PDg).

Figure 11: Comparison of lower and upper bounds on PDg for the
‘hammer in narrow notch’ example.

Figure 12: Comparison between lower and different upper bounds
on PDg for ‘cup’ example.

Figure 13: Comparison of lower and upper bounds on PDg for the
‘pawn’ example.

‘pawn’ model has 304 triangles and is decomposed into 44 convex
pieces. The large ‘pawn’ has 43 convex separators. Fig. 10(a)
shows the colliding placement of the ‘pawn’ at t = 0. Fig. 10(b)
shows its corresponding collision-free placement, which is com-
puted based on UB1(PDg). 13 compares the lower bound and up-
per bounds over the sampled configuration (n=101). Tab. 1 shows
the average time to compute the lower and upper bounds over all
configurations.

8 Application to Motion Planning

In this section, we apply our lower bound on PDg computation
algorithm for complete motion planning of planar robots with 3-
DOF. The complete motion planning checks for the existence of a
collision-free path or reports that no such path exists. It is differ-
ent from motion planning algorithms based on random sampling,
which can not check for path non-existence.

8.1 C-obstacle Query

We mainly use our lower bound on PDg computation algorithm to
perform the C-obstacle query. This query for a given C-space is
formally defined as checking whether the following predicate P is
always true [Zhang et al. 2006b]:

P(A,B,Q) : ∀q ∈ Q, A(q)∩B 6= /0 (15)

Here, A is a robot, B represents obstacles and Q is a C-space prim-
itive or a cell; A(q) represents the placement of A at the configura-



Hammer H2 ? Spoon Pawn
A Hammer Hammer Spoon Small

tris # 1,692 1,692 336 304
convex pieces # 215 215 28 44

B Notch Notch Cup Large
tris # 28 28 8,452 304

convex pieces # 3 3 94 44
separator # 1 1 53 43

sample # (n) 101 101 101 101
batch # (b) 5 5 5 5

t for LB1 (ms) 1.901 4.300 6.127 4.112
t for UB1 (ms) 21.664 108.024 1027.014 482.511
t for UB2 (ms) 0.039 0.053 0.154 0.055

Table 1: This table highlights the benchmarks used to test the per-
formance of our algorithms. The top rows in the table list the model
complexity and the bottom rows report the time taken to compute
the lower and upper bounds to PDg on a 2.8GHz Pentium IV PC.
‘H2?’ is the example ‘hammer in narrow notch’.

tion q. Q may be a line segment, a cell or a contact surface that is
generated from the boundary features of the robot and the obstacles.

The C-obstacle query is useful for cell decomposition based algo-
rithms for motion planning [Latombe 1991]. These algorithms sub-
divide the configuration space into cells and need to check whether
a cell is fully contained either in the free space or in C-obstacle
space. The free space is the set of all collision-free configurations
of the robot. The C-obstacle space is the complement of the free-
space. The C-obstacle query checks whether a subset of the C-
space (i.e. Q) fully lies in the C-obstacle space.

The C-obstacle query also arises in sampling based approaches for
motion planning, especially complete motion planning. These in-
clude the star-shaped roadmap algorithm [Varadhan and Manocha
2005], which is a deterministic sampling algorithm and subdivides
the configuration space into a collection of cells in a hierarchical
fashion. Given that the time and space complexity of these meth-
ods grows quickly with the level of subdivision, it is important to
identify cells that lie in C-obstacle space and no further subdivision
is executed.

Another benefit of the C-obstacle query is to determine non-
existence of any collision-free path. The methods in [Zhang et al.
2006a; Varadhan and Manocha 2005] conclude that no path exists
between the initial and goal configurations if they are separated
by C-obstacle space. These methods can be performed using the
C-obstacle query to identify these regions which lie in C-obstacle
space.

In order to efficiently perform C-obstacle query for any cell in C-
space, we compute the PDg by setting its configuration as the center
of the cell. Then we compare it with the maximal motion that the
robot can undergo when its configuration is confined within a cell
[Schwarzer et al. 2005]. If the lower bound of PDg is larger than
the upper bound of the maximal motion, we conclude that the cell
(i.e. Q) fully lies in C-obstacle space [Zhang et al. 2006b].

8.2 Experimental Results

We apply our C-obstacle query algorithm to improve the perfor-
mance of a deterministic sampling motion planning algorithm - the
star-shaped roadmap method by [Varadhan and Manocha 2005]. To
demonstrate the effectiveness of our C-obstacle cell query, we de-
fine the cell culling ratio as the number of cells in C-obstacle space

Figure 14: This figure illustrates an application of our C-obstacle
query algorithm to speedup a complete motion planner - the star-
shaped roadmap algorithm. In this example, the object Gear needs
to move from initial configuration A to goal configuration A′ by
translating and rotating within the shaded rectangular 2D region.
We show the robot’s intermediate configurations for the found path.
Using our C-obstacle query, we can achieve about 2.4 times speed
up for the star-shaped roadmap algorithm for this example.

Gear
Cell Culling Ratio 75.21%

Time Per Cell Culling(ms) 0.12
Time of Original Method(s) 261.4

Time of Accelerated Method(s) 110.4
Speedup 2.4

Time for C-obstacle Cell Query(s) 13.3

Table 2: Performance for C-obstacle Cell Query: For the Gear
example, our query can identify about 75.21% C-obstacle cells.
The average query time is about 0.12ms. Based on PDg compu-
tation and C-obstacle query, we improve the performance of the
star-shaped motion planning algorithm by 2.4 times in this case.

identified by our query algorithm over the total number of cells in
C-obstacle space.

Tab. 2 illustrates that our C-obstacle query algorithm can achieve
75.21% cell culling ratio in our Gear benchmark. Tab. 2 also shows
that the average time for each C-obstacle query in the Gear exam-
ple is about 0.12ms. In this complex 2D scenario, the C-obstacle
query algorithm improves the performance of the motion planning
algorithm by 2.4 times.

9 Limitations

Our PDg computation algorithm has a few limitations. Given the
complexity of exact PDg computation for non-convex polyhedra,
we only compute lower and upper bounds and not the exact an-
swer. Moreover, the convex containment optimization algorithm
that linearizes the rotational component can not guarantee a global
minimum. The bounds computed by our algorithm also depend
on convex covering and separator enumeration of the non-convex
polyhedra, performed as part of preprocessing step. As a result,
we are unable to provide any tight bounds on the approximation to
PDg computed by our algorithm. However, in most practical cases
the extent of penetration is small and we expect that our algorithm
would compute a good approximation.



10 Conclusions and Future Work

We have addressed the problem of generalized PD computation be-
tween non-convex models, which takes into account translational as
well as rotational motion. To the best of our knowledge, this is the
first algorithm for general 3D polyhedra models. We present three
main results related to PDg computation. Specifically, we show
that for convex models, generalized PD is the same as translational
PD. We also present practical algorithms to compute the upper and
lower bounds on PDg for non-convex models.

Our empirical results show that we can efficiently compute the
lower and upper bounds of generalized PD for non-convex objects.
We also use our algorithm for complete motion planning of polyg-
onal robots with 3-DOF C-space.

Future Work. There are many avenues for future work. On a
theoretical side, there are two open questions with respect to gener-
alized penetration depth: how to formulate the distance metric Dg
and compute the PDg for non-convex models in a computational
tractable way. It would be useful to derive tight bounds on the ap-
proximations (i.e. the lower and upper bounds). Furthermore, we
would like to use our algorithm for other applications, including
motion planning in 6-DOF C-space, dynamic simulation and toler-
ance verification.
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