Connectivity Shapes

Martin Isenburg*
University of North Carolina
at Chapel Hill

Stefan Gumhold*
University of Tubingen

Craig Gotsman'?
Technion — Israel Institute
of Technology

Figure 1: (a) Original polygonal mesh of a cow. (b) The connectivity of (a) embedded on the sphere. (c) The connectivity shape corresponding
to the connectivities of (a) and (b). (d) Connectivity shape after remeshing the cow of (a).

Abstract

We describe a method to visualize the connectivity graph of a mesh
using a natural embedding in 3D space. This uses a 3D shape rep-
resentation that is based solely on mesh connectivity — the connec-
tivity shape. Given a connectivity, we define its natural geometry
as a smooth embedding in space with uniform edge lengths and de-
scribe efficient techniques to compute it. Our main contribution is
to demonstrate that a surprising amount of geometric information
is implicit in the connectivity.

We also show how to generate connectivity shapes that approxi-
mate given 3D shapes. Potential applications of connectivity shapes
to modeling and mesh coding are described.

Keywords: Natural embedding, mesh connectivity, implicit ge-
ometry, polygon meshes, shape compression.

1 INTRODUCTION

The most widely used representation for three-dimensional geomet-
ric surfaces are polygonal meshes. These consist of mesh geometry
and mesh connectivity, the first describing the location of each ver-

*isenburg@cs.unc.edu http://www.cs.unc.edu/~isenburg/cs
tstefan@gumhold.de
fgotsman@cs.technion.ac.il

Connectivity Shapes, Isenburg, Gumhold, Gotsman

tex in 3D space and the latter describing how to connect the vertices
together to form polygons that describe a surface.

At first glance, these two components of the mesh seem to be
independent, namely that many different mesh connectivities could
co-exist with a given geometry, and vice versa. While this is theo-
retically true, it also seems that, in typical real-world meshes, some
correlation between the two exists. For example, "nice” triangu-
lations of mesh geometries, such as the Delaunay-type triangula-
tions, are traditionally preferred over "ugly” triangulations contain-
ing long and skinny triangles.

This form of the correlation imposes a "natural” connectivity on
a given geometry, and has been investigated in the context of mesh
generation from 3D point clouds in 3D scanning applications (e.g.
[1]) and optimal triangulations of point sets (e.g. [2]). The reverse,
imposing a "natural” geometry on a given connectivity, has been
treated less. This paper explores mainly that direction.

We introduce a shape representation that is based solely on con-
nectivity. In Figure 1(a) we see a well-known polygonal model of a
cow. Ignoring the geometry, we have mapped the cow’s connectiv-
ity onto the unit sphere (b), where the different densities hint to the
features of the cow. In (c) the corresponding connectivity shape is
shown. It is a smooth embedding with uniform edge lengths of the
connectivity graph of (a) and (b) in three dimensional space.

Imagine all edges of the cow being springs of the same equilib-
rium length. In the embedding (b) we forced the spring system into
a high energy state. In (c) we released all vertices and the spring
system relaxed into a low energy state, with more or less uniform
edge lengths. This can be thought of as the connectivity’s natural
shape. More poetically, the sphere embedding in (b) has the body
of a sphere, but the soul of an animal. The embedding in (c) reveals
the geometric soul of the cow’s connectivity.

Connectivity shapes are closest in spirit to the embedding tech-
niques used in the graph drawing community. The focus of most
of their attention has been on 2D embedding methods, and only
recently have embeddings in 3D [22, 10, 7] become popular for
visualization purposes. These graph drawing approaches use re-

appeared in Visualization "2001

; A=01 i | A=0.05 " ROOOGB'

Figure 2: Family of connectivity shapes computed from the cow’s connectivity with different smoothing parameters A.

pelling force techniques that allow to embed graphs of arbitrary
topology. However, for graphs that have the topology of a sur-
face (e.g. that are 2-manifold), the connectivity shape technique
will produce more aesthetically pleasing results, especially when
the graph’s surface characteristics are an important feature of the
visualization.

We can also generate connectivities whose natural shape resem-
bles that of a given shape. This is done by (re)meshing the given
shape with uniform edge lengths. For example, the connectivity
shape in Figure 1(d) bears a striking resemblance to the original
(a). The only information in this mesh is its connectivity, in the
sense that it induces the mesh geometry.

In the following section we define a connectivity shape as the
natural geometry associated with a connectivity and describe a
method to compute it. In Section 3 we show how to create con-
nectivities whose connectivity shape approximates a desired shape.
Hierarchical methods for faster computation of connectivity shapes
are the topic of Section 4. Finally we summarize our work, describe
some open theoretical problems and discuss potential applications
of connectivity shapes, such as modeling and mesh coding.

2 SHAPE FROM CONNECTIVITY

Any polygon mesh can be thought of as an embedding of a connec-
tivity graph in three dimensions. The location of each vertex of the
mesh is carefully chosen since the surface is meant to represent a
geometric shape. However, our thesis is that for most meshes there
is a substantial amount of information about the shape present in
its connectivity. To illustrate, consider Figure 1. In (b) the vertices
of the connectivity graph of the cow mesh in (a) have been em-
bedded on the unit sphere such that each vertex is approximately
at the center of its neighbors. This embedding is computed from
the connectivity alone without any knowledge about the geometry.
However, the geometric features of the cow are reflected in the ver-
tex densities of the embedding. The regions of the connectivity
graph covering the body of the cow map uniformly onto the sphere,
whereas prominent extremities such as the legs or the tail map to
dense concentrations, suggesting that they would rather "pop” out
of the sphere and must be forced together by the mapping.

We now define a preferred geometric shape based on the con-
nectivity alone. Given a connectivity graph C = (V, £), consist-
ing of an indexed set of n vertices V = {v;},_, , and a set of
m undirected edges & = {e; = (i1(j),42(j))};=;.. ., the con-
nectivity shape C'S (C) corresponding to C is a list of n vectors
z = (z; € R?);—1..., associated with the graph vertices that best
satisfy some natural property. We have chosen the property that
all edges have unit length. This choice corresponds to the intuition
that the connectivity shape can be interpreted as the equilibrium
state of a system of springs with identical equilibrium length joined
together according to the connectivity graph. Alternatively, the con-

Connectivity Shapes, Isenburg, Gumhold, Gotsman

nectivity shape can be thought of as an isometric embedding of the
connectivity graph in R, which is a solution to the following set
of quadratic equations in the 3n unknowns:

lzi — 25| =1 V(i,j) €€ (1)
The number of equations, m, is the number of edges in £ and de-
termined by the Euler-Poincaré formula for a shell of genus g with
n vertices and f faces: m =n+ f +2g — 2.

On one hand the quadratic nature of the equations (1) introduces
ambiguity into the solution. This can be seen by considering a ver-
tex with a circular symmetric neighborhood forming a cap protrud-
ing out of the shape. Then the same shape with the vertex protrud-
ing into the shape is an equivalent solution to the system; it cannot
distinguish between the two. On the other hand the quadratic nature
might not admit a solution at all. Hence, we seek a solution in the
least squares sense by minimizing the following spring energy:

Es(ee RV) = 3 (lei—xll-1)° @

(i,7)€E

Furthermore, the problem of an isometric embedding of a two di-
mensional manifold in three dimensions has no smooth solution in
general. The geometry minimizing (2) typically does not have a
“nice” shape, rather it will be a rough surface with extremely high
local curvatures. In order to bound the curvatures of the solution
and also eliminate unwanted local minima resulting from the in/out
cap protrusion problem, it is necessary to regularize the solution
by adding a roughness term to the cost function. This term Eg is
defined using the discrete Laplacian operator

1
L) = > wi—w ®)
(i,7)EE

Volume(CS{ Cow, 4})

0.03 Mo, 0.03
0.02 0.02
0.01 “/ 0.01

=0.0066 _°
1 0.1 0.0 " 0.001 A

Figure 3: Finding the optimal smoothing parameter A: The volume
of the connectivity shapes from Figure 2 as a function of A.

appeared in Visualization "2001

2832 vertices

34834 vertices

48485 vertices

Figure 4: Connectivity shapes computed from the connectivity of (a) giraffe, (b) triceratops, (c) Stanford bunny, and (d) horse.

where the sum is over all edges incident on node ¢ and d; is the
degree of node 7. Minimization of the roughness energy term

Er(ce RV) =3 £(w,)? @

also minimizes the second derivatives and thus the curvature of the
shape. Using the two energy terms Es and E'r we define a family
of connectivity shapes

CS(C,\) = argmin [(1—A)Es(z)+ AEr(z)] (5)
zeR™*3 N~ d
Ex(z)

The tradeoff between unit edge length and smoothness is con-
trolled by the positive real parameter A. Figure 2 illustrates the
influence of this parameter on the resulting connectivity shapes.
Large values of X result in very skinny and smooth meshes. Small
values of X cause the mesh to inflate to its natural shape until it be-
comes bumpy and looses its appeal. The obvious question is how
to choose the optimal value Aop¢. It should be as small as possible
without introducing bumpiness. A human observer can easily find
the optimal smoothing parameter by visual inspection, but an auto-
matic method is more elusive. We have found that the volume of
the mesh is useful in this context:

Aopt(C) = argmax Volume (CS(C, \)) (6)

A€[0,1]

namely, the optimal smoothing parameter A,p¢ corresponds to the
value X at which the connectivity shape has maximal volume.

Figure 3 plots the volume of the connectivity shapes of Figure 2
as a function of A. The volume is small for large values of A and
increases for smaller values until it reaches the maximum volume at
Aopt- When the shape starts to become bumpy the volume decreases
again. This happens because the total surface area of the mesh is
fixed by the unit edge lengths and volume decreases with increasing
fractality of the surface.

Figure 4 shows various examples of connectivity shapes gener-
ated with optimal smoothing parameters for the connectivities of
some popular polygonal meshes. Remember, that these shapes do
not use any of the original geometric information, but are computed
from the connectivities of the meshes alone.

2.1 Embedding with an Iterative Solver

Generating a connectivity shape implies a numerical solution to
the optimization problem (5). Since the input is just a connectiv-
ity graph, and we use an iterative method, we have to compute an
initial location for each vertex. For polygon meshes with genus

Connectivity Shapes, Isenburg, Gumhold, Gotsman

zero we use an embedding of the mesh on the unit sphere. While a
pure 3D approach to this is difficult, an easy way out is to reduce it
to two 2D problems. This is achieved by finding a vertex separa-
tor that partitions the connectivity graph into two components with
approximately the same number of vertices in each component and
a common boundary. Each component may be mapped to the unit
disk by the Tutte procedure [21], which positions the boundary ver-
tices at fixed locations on a circle, and each interior vertex at the
centroid of its neighbors. We use a variant of the Tutte procedure
which computes positions on half a sphere, rather than in the plane.
Thanks to the common boundary, the two components fit together
perfectly along the sphere equator.

The iterative solver then proceeds to solve (5) using the conju-
gate gradient method. A fast conjugate gradient solver relies on
two major components. Firstly, a method to compute the gradient
of the energy VE» (z) € R™*?, where V consists of all the partial
derivatives 8/8951,1, 8/8931,2, 8/8931,3, 8/8952,1, Ceey 8/(’9%,3.
The second component of the solver computes for a given displace-
ment vector d € R"*3, added to the current solution z, the real
parameter ¢, such that

Qopt = argmin Ex(z + - d).
a>0

In the steepest descent method just the negative energy gradient is
used as the displacement vector d. In the conjugate gradient method
d is incrementally calculated from the negative gradients in a way
that avoids unnecessary iterations in directions previously explored.
The calculation of the step size aop+ Can accelerate the convergence
of the conjugate gradient method significantly. In our case aops
cannot be expressed analytically, since Es is not polynomial in z.
To overcome this, we use a modified version of the spring energy

S (lls—al?-1)", @

(i,5)€€

E% (w € Rnxg) =

where the edge lengths have been squared. E5 has the same global
minimum as Es in the case there exists a smooth unit edge length
embedding. The energy E = E% + Er is a quartic polynomial in
T, SO aopy €an be computed analytically. After minimization of EY
the solver continues to minimize E, with only a few iterations.

A second method of accelerating convergence, which also avoids
most local minima, is to cool down the smoothing. The initial
spherical embedding is very smooth and corresponds to A = 1 (un-
der the constraint that all vertices are on the sphere). From there
we continue with A = 0.5. After convergence we halve A and
continue again. This terminates when the target smoothing param-
eter is reached. The discrete halving is preferred over a continuous
decrease of A because it reduces the number of restarts of the con-
jugate gradient solver. Excessive restarting would cause our solver
to degenerate into the slower steepest descent solver.

appeared in Visualization "2001

500 vertices
dev=0.15
Ager = 0.056

2000 vertices
dev=0.11
haer = 0.016

5000 vertices
dev=0.08
Agey = 0.009

Figure 5: Three bunnies remeshed with 500, 2000, and 5000 ver-
tices (left) and their corresponding connectivity shapes (right). Re-
ported are the relative deviation in edge length dev after remeshing
and the smoothing parameter Age. .

The convergence of various connectivity shapes is illustrated in
the accompanying video. For large meshes the convergence is quite
slow. Hierarchical methods (see Section 4) can speed it up.

3 CONNECTIVITY FROM SHAPE

So far we have created the natural geometry for a given connectiv-
ity. In this section we describe how to do the opposite, namely how
to generate a connectivity graph whose corresponding connectivity
shape approximates the geometry of a given mesh.

Connectivity shapes aim, by definition, at achieving unit edge
length for the entire mesh. This is the main reason that the connec-

Connectivity Shapes, Isenburg, Gumhold, Gotsman

tivity shapes of the giraffe (a) and the triceratops (b) in Figure 4 look
quite different from the original polygon meshes. These meshes
were created with a modeling package and their edge lengths are
non-uniform. On the other hand, the connectivity shapes of the
Stanford bunny (c) and the horse (d) better resemble the original
meshes. These meshes were created by surface reconstruction from
the point cloud produced by a 3D scanner. Due to the regular spac-
ing of the sample points, they have fairly uniform edge lengths.

Had we used the original edge lengths instead of a unit edge
length of 1 in Eq. (7), the resulting shapes would always closely
resemble the original. But we aim at a shape whose geometry is
a function of connectivity only. To generate a connectivity whose
natural shape matches a given shape, we need to create a triangle
mesh with edges of equal length that describes this shape. Figure 6
shows examples of connectivity shapes approximating some pop-
ular polygon meshes. We generated these connectivities using the
method described in the next subsection.

3.1 Meshing and Remeshing

The process of creating a polygonal mesh from a geometric shape
is called meshing. If the geometric shape is already in a polygonal
form, generating another polygonal mesh is also called remeshing.
Our objective is a (re)meshing method that results in a faithful ap-
proximation of a given shape while using only edges of unit length.
In the ideal case the resulting geometry will then be a solution of
(5) given the resulting connectivity.

Mesh generation techniques used in the finite-element commu-
nity have a similar objective. For fast convergence and high accu-
racy of numerical computations they require meshes with optimal
element shapes, which usually means equilateral triangles. For the
2D case, a wealth of meshing methods exist (e.g. see survey in
[2]). The 3D surface case has been treated less, but some notable
methods are those of Turk [20] and Frey [6].

It seems quite difficult to optimize both the geometry and the
connectivity of the mesh such that on the one hand unit edge lengths
are achieved, and on the other hand we remain faithful to the orig-
inal shape. Instead of attempting this, we customized Turk’s re-
tiling procedure [20], which was well suited for our purposes.

Turk’s method distributes n points as uniformly as possible over
the mesh and triangulates them into a surface. The variation in edge
length is then further minimized with local edge flips. Uniform dis-
tribution of the points is achieved by applying a relaxation method
to initially randomly placed points on the mesh. This method asso-
ciates with each point a force that repels neighboring points within
aradius r. This radius reflects the target edge length in the vicinity
of the point. For uniform edge length this is a constant that only
depends on the total surface area and the number of points n.

Our variation alternates between two stages: One relaxes the po-
sitions of the points with Turk’s method and the other displaces
them by Laplacian smoothing. The connectivity between the points
used for the Laplacian smoothing is constantly re-computed, aim-
ing at uniform edge length. While these two stages alternate, we
slowly decrease the amount of of relaxation and smoothing until the
points are frozen. Remeshed versions of the Stanford bunny using
500, 2000, and 5000 vertices and the connectivity shapes computed
from their connectivities are shown in Figure 5.

Remeshing with a larger number of vertices not only results in a
more accurate approximation of the original shape, but also reduces
the spring energy (2), as the relative deviation (the ratio between
the standard deviation and average) in edge length decreases—both
factors bring the connectivity shape closer to the desired shape. In-
creasing the number of vertices, however, increases the complexity
of the generated connectivity, which makes the computation of its
connectivity shape more expensive.

From the relative deviation in edge length of the remeshed shape
we can determine a smoothing parameter Age for which the con-

appeared in Visualization "2001

n = 48485
dev=0.29

dev =0.68

dev =0.09

n = 40000
dev =0.07

n = 5000
dev =0.08

n = 40000
dev=0.01

nectivity shape will be a good match. Connectivity shapes try to
realize unit edge length for the entire mesh (i.e. relative deviation
of zero). In general the edges of the remeshed shape will not have
unit length, so we can choose the smoothing parameter at which the
connectivity shape has the same relative deviation in edge length as
the shape it is trying to match. Experimentally this Aqe, turns out
to be close to the optimal Aop¢, as defined in (6).

Our remeshing solution runs anywhere between a few minutes to
generate meshes containing thousands of vertices and a few hours

Connectivity Shapes, Isenburg, Gumhold, Gotsman

n = 23984
dev =0.39

AVAVAVAVAYS
TAVAVATAVAY
TETATAV S
RS
CRAOOCs

]
£

A

n = 20000
dev =0.08

n = 20000
dev =0.07

Figure 6: Connectivities generated such that their corre-
sponding connectivity shapes resemble a given mesh: The
original polygon meshes (first row), the remeshed ver-
sions (second row), the connectivity shapes correspond-
ing to the remeshed connectivities (third row). The num-
ber of vertices (n) and the relative deviation (dev) of the
edge length are reported for each mesh. The bumpy horse
at the bottom left is a connectivity shape generated us-
ing a very small value of the smoothing parameter A. It
achieves almost unit edge length (i.e. dev is very small).

for meshes containing hundreds of thousands of vertices. As the
specific remeshing method is not the main focus of this work, and
in fact, other surface remeshers could be adapted to our purposes,
we have made no real effort to optimize the software.

3.2 Adaptive Remeshing

The disadvantage of meshing a geometric shape solely with unit
edge length is that the smallest feature dictates the edge length for
the entire mesh. This may increase the number of vertices to unrea-

appeared in Visualization "2001

sonable numbers, especially for meshes with fine detail. A possible
solution would be to deviate from the pure concept of a connec-
tivity shape and attach sparse information about feature size to the
connectivity. Instead of specifying this for every edge, we would
provide explicit edge length information only at the finest and the
coarsest regions of the mesh. Locally, edges would still have equal
lengths, but smoothly vary across the mesh, interpolating the ex-
plicit information. The challenge remains to (re)mesh in a manner
such that the resulting edge lengths are close to those we would get
from interpolating the sparse data on the connectivity graph.

3.3 Limitations

While Figure 6 demonstrates that it is possible to approximate given
meshes by connectivity shapes surprisingly well — remember that
these shapes contain no explicit geometric information whatsoever
— it also exposes the limitations of the method: Without supplemen-
tary information, it will not be possible to generate a connectivity
whose shape is identical to a target shape. This is especially notice-
able in the teapot and the fine features of the dinosaur and horse.
The limitations follow both from the definition of a connectivity
shape, which is not unique, and the unit edge length objective of
the remeshing method. The first might invert convexities and con-
cavities and the second makes fine details expensive to capture.

4 HIERARCHICAL EMBEDDING

The iterative solver generating the connectivity shape, as described
in Section 2.1, started with an initial embedding on the sphere,
which is typically quite distant from the final solution. This results
in a very slow procedure to generate the connectivity shapes of large
meshes. To improve this, we adopt a hierarchical approach. In this
setting the initial geometry for the solver at some level is taken as
the result from a coarser level, which is a much better approxima-
tion of the final shape than a spherical embedding. Hence only the
coarsest level uses a spherical embedding as the initial geometry.
The hierarchical method proceeds as follows: Starting from the
given connectivity, we build from the connectivity alone a hierar-
chy of coarser and coarser connectivities. For each coarse level we
compute new target edge lengths, not necessarily unit, which are
derived from the finer level. The finest level, of course, has unit
target edge lengths. When solving, we start with the coarsest level
and embed its connectivity on the sphere. To accommodate non-
unit edge lengths /; ; the spring energy term of (7) is refined to

S (lwi—wl’ =12,)° ®

(1.5)€€

ES (a: € Rnxg) =

After convergence at a coarse level, the initial geometry of the next
(finer) level is generated from the coarse geometry. At each level
we do not iterate through all the smoothing parameter values, but
distribute the smoothing parameter interval over the levels. For ex-
ample, for the hierarchical embedding of the horse as shown in the
accompanying video with an optimal A of 0.0002 we varied A on
the coarsest level between 0.5 and 0.05, in the middle level between
0.02 and 0.001 and on the finest level between 0.0005 and 0.0002.

Since the hierarchy must be built from the connectivity alone, we
chose to build the hierarchy levels by partitioning the mesh faces
into patches as illustrated in Figure 7. This was done with the gen-
eral purpose MeTis graph partitioning library [14]. MeTis partitions
a connected graph into equal sized connected subgraphs. To group
the faces and not the vertices into patches we feed the partition-
ing algorithm with the dual of the connectivity graph. This results
in vertex separators, as opposed to the standard edge separators.
MeTis minimizes the number of vertices on the patch boundaries,
which results in nicely formed (small diameter) patches. From this
we construct a coarser polygonal connectivity. The vertices of the

Connectivity Shapes, Isenburg, Gumhold, Gotsman

Figure 7: Stages of the hierarchical solver: (a) Partitioning of fine
connectivity. Large vertices will be inherited by the coarse level.
(b) Coarse level connectivity and target edge lengths. (c) Mapping
back the solved coarse geometry on the fine connectivity. (d) The
initial locations of the patch interior vertices

new connectivity are the vertices of the original connectivity where
more than two patches meet (large vertices in Figure 7(a)). In order
to minimize the number of vertices in the coarse level, we merge
vertices of degree three of the coarse level, which are adjacent also
in the fine level, by local patch growing operations. The faces of
the new connectivity are the patches, as shown in Figure 7 (b).

The target edge lengths of the finest level are unit. The target
length of an edge in the next coarser level is taken to be the length of
the corresponding edge path in the finer connectivity. In Figure 7(b)
the edges are labeled with their target lengths calculated from the
finer level.

Finally, we have to specify how to map the geometry of a coarse
level back to the next finer level. Figure 7(c) illustrates this process.
The locations of the vertices in the fine connectivity (fine vertices),
which are preserved on the coarse level, are kept. Fine vertices
on a coarse edge are distributed along the geometry of the coarse
edge according to the target edge lengths on the finer level. All the
remaining fine vertices are mapped into the interior of the coarse
faces, corresponding to the patches they reside in. To find good ini-
tial locations for the latter fine vertices, we fix the fine vertices on
coarse vertices or edges and perform a few “shape-preserving” iter-
ations [5] based on the target edge lengths. The resulting locations
are shown in Figure 7(d).

We varied the patch size for building the hierarchy between 3
and 10. It turned out that the hierarchical solver converged faster
with small patch size. A patch size of 3 outperformed the patch
size of 10 by about twenty percent. We compared the hierarchical
embedding times of various meshes with that of the standard solver.
Small meshes like the cow, giraffe and triceratops, required only
two coarser levels and the hierarchical solver was four times faster.
The cow’s connectivity shape was computed hierarchically in 25
seconds and the other two in 50 seconds each on a Pentium 11 600
MHz. For the dino and the horse meshes, the speedups with five

appeared in Visualization "2001

hierarchy levels were eight and eleven, respectively, resulting in 13
minutes for the dino and 40 minutes for the horse. Fifty percent of
the embedding time for the horse was consumed on the finest level.

5 DISCUSSION

This paper has capitalized on the fact that a natural geometry may
be associated with a given connectivity. This connectivity shape is
defined as the geometry that minimizes some natural cost function
of both the connectivity and the geometry. While showing how to
work with these concepts in practice, there are still two open ques-
tions about the uniqueness of connectivity shapes, which we elab-
orate on here: (a) Is the definition unique ? (b) Does the iterative
solver always find the desired solution ?

The definition of a connectivity shape is not unique. First of all
the minimization problem (5) is, as expected, invariant under rigid
body transformations and therefore adds six degrees of freedom to
the solution. Furthermore, in the case of a non-triangular connec-
tivity or a connectivity with border edges, the number of equations
in (1) is less than the number of unknowns. Only in case of a tri-
angular connectivity with genus zero does the number of equations
equal the 3n — 6 degrees of freedom.

The quadratic nature of (2) causes the in/out cap protrusion prob-
lem, which is not limited to caps of the size of a vertex neighbor-
hood. Entire legs of the animal meshes can invert into the body of
the mesh. Our regularization of the solution avoids some of this, but
even if (5) has a unique minimum, it could be by accident a shape
with the legs inside the body, and the desired shape (with the legs
outside the body) could be a local minimum with slightly more en-
ergy. A topic of future work is to find this desirable "almost-global”
minimum that maximizes the volume of the shape. This would au-
tomatically force extremities to protrude from the shape and avoid
most self intersections.

A possible solution to the cap protrusion problem would be to
augment the connectivity shape concept with another bit per vertex,
denoting whether the surface at that point is concave or convex (the
so-called "bump-bit”). Although we have not yet investigated this
enough, we have some experimental evidence that this could solve
the uniqueness problem.

There is a connection between connectivity shapes and the
branch of combinatorial geometry called "Rigidity Theory” ([4],
Chap. 6). A classical result of Cauchy implies that every triangu-
lated convex polyhedron is uniquely determined by its edge lengths.
For many years it was believed that non-convex triangulated poly-
hedra, while not uniquely determined by their edge lengths, are
rigid”, namely, that there is no continuous transformation between
the solutions which preserves the prescribed edge lengths. How-
ever, Connelly [3] and others showed that there are some patholog-
ical constructions where this does not hold (the so-called "flexible”
polyhedra). In these few cases, however, the volume of the solu-
tion is fixed during the transition between solutions. Given a set of
edge lengths of a graph, finding an embedding in R® which satis-
fies the edge length constraints, if one exists, is known to be NP-
complete [17]. Determining whether there exists a unique solution
may be done in polynomial time [11].

Since we incorporate a roughness term into our cost function,
hence do not force precise edge lengths, none of this theory is re-
ally applicable. While this roughness term eliminates some of the
solutions that minimize only the edge length component, it is still
not clear whether the global minimizer of the complete cost func-
tion is unique.

The second aspect of uniqueness is whether the solver finds the
desired solution, and does not get stuck in a local minimum far
away from the global one. We normally achieve this by a good
initial guess and cooling of the smoothing parameter. The spherical
embedding as an initial guess has the advantage that we do not have
any self intersections nor surface inversions to start off with. As the

Connectivity Shapes, Isenburg, Gumhold, Gotsman

edge lengths are far from uniform in this initial mesh, we start with
heavy smoothing to avoid minima with inverted surfaces.

For connectivities of genus greater than zero, the spherical em-
bedding as initial geometry is suboptimal, since it will contain self-
intersections. For the teapot shape of Figure 6 the spherical em-
bedding worked well, but in general a more adapted approach is
needed. Currently, we investigate how to map a connectivity graph
with higher genus to a standard shape of the same genus.

An interesting connection between mesh connectivity and geom-
etry may be made through the mesh Laplacian operator, as defined
in (3). It has been observed in the past [9] that the d eigenvectors of
the corresponding Laplacian matrix that have the smallest non-zero
eigenvalues may be used as coordinate vectors, forming a natural
embedding of the connectivity graph in R%. Hence a natural ”spec-
tral” embedding in 3D would be obtained using three such eigen-
vectors. It is easy to prove that this embedding minimizes the total
squared Euclidean edge length in R, subject to the constraint that
the norm of the three coordinate vectors is unit. Our experiments
with this “spectral” embedding have resulted in pleasing 2D em-
beddings for meshes of disk topology (using two eigenvectors), but
often distorted 3D embeddings for meshes of sphere topology (us-
ing three eigenvectors). This is probably because our connectivity
graphs just describe a two dimensional surface in a three dimen-
sional space. Interestingly enough, the eigenvectors of the Lapla-
cian matrix have also been used for mesh geometry coding [13].

6 OTHER APPLICATIONS

Connectivity shapes proved very useful for the visualization of con-
nectivity graphs describing a two manifold. In this section we men-
tion some other potential applications of connectivity shapes.

6.1 Shape Modeling

The notion of a connectivity shape suggests using it as a modeling
tool. Envision an interactive modeling system, in which the model-
ing primitives are connectivity operations only, e.g. spray on some
vertices, change the connectivity by edge flips, collapse edges. It
remains to be seen whether such a tool would be intuitive to use
with enough expressive power to generate a rich variety of shapes.

6.2 Connectivity Creatures

It is entertaining to generate the connectivity shapes of existing
mesh connectivities, as we did in Figures 1(c), 4(a,b), and 8 and
see how they turn out. These connectivity creatures will not have
the shape of the meshes whose connectivity was used, but some dis-
tortion of it, usually with exaggerated features as commonly seen in
caricatures. Connectivity creatures certainly have some entertain-
ment value and there exists a large volume of 3D content that can
be manipulated this way without any extra modeling.

6.3 Mesh Coding

Another possible application for connectivity shapes is 3D mesh
coding. For storage and transmission purposes it is important to
represent a mesh as compactly as possible. This problem has re-
ceived a lot of attention recently, and much of the effort has fo-
cused on coding the connectivity component efficiently [18, 19, 8,
16, 15, 12]. While this has resulted in codes requiring less than 4
bits per vertex (bpv) on the average, the geometric information now
dominates the coding cost, and, assuming 10 bpv pre-quantization,
even efficient predictive coding [18, 19] is not able to reduce these
30 bpv to much less than 15 bpv on the average. It would be very
beneficial to reduce the geometric component of a mesh further. A
possible way to achieve this are connectivity shapes.

Using connectivity shapes (with or without “bump bits™) for cod-
ing means that the code will be lossy, in the sense that the recovered

appeared in Visualization "2001

Figure 8: Connectivity creatures: tuna fish, stegoratops, penguin, gila monster, dragon, and elephant.

(decoded) mesh will not be identical to the original, both in con-
nectivity and geometry. While loss is undesirable for some applica-
tions, and the first mesh coding algorithms made an effort to avoid
this, it is becoming more and more acceptable to code meshes in a
lossy manner, as long as the decoded version is sufficiently close
to the original. In the context of connectivity shapes, this means
that the coding algorithm is the remeshing procedure, the code is
some efficient coding of only the connectivity information, and the
decoding algorithm is the connectivity shape generation procedure.
A remeshed shape often has a much larger number of vertices than
the original mesh. While this increases the amount of connectiv-
ity information that needs to be encoded, preliminary experiments
suggest that overall this method is still cost effective. This is es-
pecially true since connectivity coding algorithms favor highly reg-
ular meshes like those produced by our remeshing procedure. An
approach using adaptive remeshing, as envisioned in Section 3.2,
which reduces the number of vertices, but retains sparse geometric
information, would combine the best of both worlds.

Acknowledgments

Thanks to Greg Turk for supplying us with his retiling software and
to Zachi Karni for technical support. This work was funded by the
European MINGLE project HPRN-CT-1999-00117.

References

[1] N. Amenta, M. Bern, and M. Kamvysselis. A new VVoronoi-based surface recon-
struction algorithm. In SIGGRAPH’98 Conference Proceedings, pages 415-421,
1998.

M. Bern and D. Eppstein. Mesh generation and optimal triangulation. In Com-
puting in Euclidean Geometry, pages 71-78. World Scientific, 1995.

[2

—

[3

it

R. Connelly. A counterexample to the rigidity conjecture for polyhedra. Inst. des

Hautes Etudes Scientifiques Publications Mathematiques, (47):333-338, 1977.
[4] P.R. Cromwell. Polyhedra. Cambridge University Press, 1997.

5

_

M. S. Floater. Parameterization and smooth approximation of surface triangula-
tion. Computer Aided Geometric Design, 14:231-250, 1997.

Connectivity Shapes, Isenburg, Gumhold, Gotsman

(6]

[71

(8]
(]
[10]
[11]
[12]
[13]

[14]

[15]
[16]
[17]
[18]
[19]
[20]
[21]

[22]

P. J. Frey. About surface remeshing. In Proceedings of the 9th International
Meshing Roundtable, pages 123-136, 2000.

P. Gajer, M. T. Goodrich, and S. G. Kobourov. A fast multi-dimensional algo-
rithm for drawing large graphs. In Graph Drawing’00 Conference Proceedings,
pages 211-221, 2000.

S. Gumhold and W. Strasser. Real time compression of triangle mesh connectiv-
ity. In SIGGRAPH’98 Conference Proceedings, pages 133-140, 1998.

K. M. Hall. An r-dimensional quadratic placement algorithm. Management
Science, (17):219-229, 1970.

D. Harel and Y. Koren. A fast multi-scale method for drawing large graphs. In
Graph Drawing’00 Conference Proceedings, pages 183-196, 2000.

B. Hendrickson. Conditions for unique graph realizations. SIAM Journal of
Computing, (21):65-84, 1992.

M. Isenburg and J. Snoeyink. Face Fixer: Compressing polygon meshes with
properties. In SIGGRAPH’00 Conference Proceedings, pages 263-270, 2000.
Z. Karni and C. Gotsman. Spectral compression of mesh geometry. In SIG-
GRAPH’00 Conference Proceedings, pages 279-286, 2000.

G. Karypis and V. Kumar. METIS - a software package for partitioning un-
structured graphs, partitioning meshes, and computing fill-reducing orderings of
sparse matrices. Version 4, University of Minnesota., Available on WWW at
URL http://www-users.cs.umn.edu/ karypis/metis/.

B. Kronrod and C. Gotsman. Efficient coding of non-triangular meshes. In
Proceedings of Pacific Graphics, pages 235-242, 2000.

J. Rossignac. Edgebreaker: Connectivity compression for triangle meshes. IEEE
Transactions on Visualization and Computer Graphics, 5(1), 1999.

J. B. Saxe. Embedding of weighted graphs in k-space is strongly NP-hard. In
Proc. 17th Allert. Conf. in Commun. Control and Comput., pages 480-489, 1979.
G. Taubin and J. Rossignac. Geometric compression through topological surgery.
ACM Transactions on Graphics, 17(2):84-115, 1998.

C. Touma and C. Gotsman. Triangle mesh compression. In Graphics Inter-
face’98 Conference Proceedings, pages 26—-34, 1998.

G. Turk. Re-tiling polygonal surfaces. In SIGGRAPH’92 Conference Proceed-
ings, pages 55-64, 1992.

W. T. Tutte. How to draw a graph. Proceedings of London Mathematical Society,
13(743-768), 1963.

C. Walshaw. A multilevel algorithm for force-directed graph drawing. In Graph
Drawing’00 Conference Proceedings, pages 171-182, 2000.

appeared in Visualization "2001

