Streaming Computation of Delaunay Triangulations
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Figure 1: streaming computation of Delaunay triangulations in 2D (Neuse River) and 3D. Blue quadrants or octants are unfinalized space where future points will arrive. Purple
triangles and tetrahedra are in memory. Black points and their triangles and tetrahedra have already been written to disk or piped to the next application.

Abstract memory Delaunay triangulator, by Agarwal, Arge, and Yi [2005];

We show how to areatly accelerate algorithms that comoute Delau- S€€ Section 6. We also construct a nine-billion-triangle, 152 GB

. log y e ag ' mpu u triangulation in under seven hours and 180 MB of main memory.
nay triangulations of huge, well-distributed point sets in 2D and 3D A st . tati K I ber of tial
by exploiting the natural spatial coherence in a stream of points. We streamingcomputation makes a small number of sequentia
achieve large performance gains by introducipgtial finalization ~ Passes over adata file (ideally, one pass), and processes the data us-
into point streams: we partition space into regions, and augment{/r\‘/g ﬁ memorly buffetr (\;vthose Slé?hls a fé_acnon_of tT(:_streaPtleng[Lh.t
a stream of input points with finalization tags that indicate when a ed a\;e imp emfen e tWO' an tree-dlmercljsmnaD rllangu ato_rs a
point is the last in its region. By extending an incremental algo- Ireta S |_reartns of points e;}sfmpu : anThpro uce ?aL:na}yt rl]??t?u—
rithm for Delaunay triangulation to use finalization tags and pro- ations in streaming mesh formats. S memory footprint ot the
duce streaming mesh output, we compute a billion-triangle terrain 20 riangulator is typically less than 0.5% of the output mesh size
representation for the Neuse River system from 11.2 GB of LIDAR (SOmetimes much less). Theomemory footprint of the 3D triangu-
data in 50 minutes using only 71 MB of memory on a laptop with Iatgr is typically less .than 104) O.f the output mesh size when the
two hard drives. This is an order of magnitude faster than the pre- points are roughly uniformly distributed in a volume.

vious fastest out-of-core Delaunay triangulation software. The main new idea in our streaming Delaunay triangulators is
] ) spatial finalization(which differs from thetopological finalization
CR Categories: 1.3.5[COMPUTER GRAPHICS]: Computational  of mesh entities like points and triangles in previous papers). We

Geometry and Object Modeling—Geometric algorithms partition space into regions, and inclufiealization tagsin the
Keywords: geometry processing, Delaunay triangulation, stream stream that indicate that no more points in the stream will fall in
processing, TIN terrain model spétial finalization ' specified regions. Our triangulators certify triangles or tetrahedra

as Delaunay when the finalization tags show it is safe to do so. This
. make it possible to write them out early, freeing up memory to read
1 Introduction more from the input stream. Because only the unfinalized parts of a
New instruments have made huge geometric data sets commorriangulation are reS|dent_|n memory, the memory footprint remains
in terrain modeling (LIDAR, synthetic aperture radar), medical Small. We created our triangulators by making modest changes to
image analysis (magnetic resonance imaging, tomography), andexisting incremental Delaunay triangulation implementations—no
computer-aided engineering (laser range scanning, finite elementN€W triangulation algorithm was needed.
methods). These data sets are often many times larger than the Streaming algorithms can succeed only if streams have sufficient
memories of commodity computers, and overwhelm the algorithms spatial coherence-a strong correlation between the proximity in
and data formats used to manage and analyze them. Our expandingpace of geometric entities and the proximity of their representa-
capacity to collect geometric data has inspired a recent burst of re-tions in the stream. We present evidence in Section 3 that huge real-
search on streaming representations of large-scale geometry [|senW0r|d data sets often do have sufficient spatial coherence. This is
burg et al. 2003; Isenburg and Lindstrom 2005; Pajarola 2005].  not surprising; if they didn't, the programs that created them would
We detail here how we use streaming computation to construct have bogged down due to thrashing. Moreover, we can add more
a billion-triangle Delaunay triangulation of a planar point set in 50 Spatial coherence to a stream tfyunking—reordering points (in
minutes on an off-the-shelf laptop computer with two hard drives, memory, without resorting to an external sort) so all the points in
using 71 MB of memory to produce a 16.9 GB triangulation. This @ region appear consecutively. Many external memory algorithms
is about an order of magnitude faster than the previous best externalSort the geometry as a first step. One of our contributions is the
observation that spatial coherence often enables us to triangulate a
for demo software & source code see http://www.cs.unc-eidehburg/sd/ large point set in the time it takes just to sort it. (See Section 6.)
With these ideas and a laptop, we can process the 11.2 GB of
bare-earth LIDAR data for the Neuse River Basin, comprising over
500 million points (double-precision y, and height coordinates).
This data comes from the NC Floodplain Mapping prdjebegun
after Hurricane Floyd in 1999. North Carolina was the first state to

http://www.ncfloodmaps.com
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Unfortunately, our streaming triangulators do not enjoy the same
out-of-core performance for surface point clouds in 3D as they do
for terrains and volume-filling point clouds. The difficulty is caused
by the many large circumspheres in the Delaunay triangulations of
surface point clouds, which thwart spatial finalization from certify-
ing tetrahedra. We believe a more sophisticated finalization tech-
nigue can overcome this hurdle. See the Conclusions for details.

bounding box
counts and sprinkles

finalization tags

2 Processing large geometric data sets

How can we handle large data sets? Powerful computers with large
memories suffice for those who have them (and are often responsi-
ble for producing the data sets). To make large data sets useful to the
) ) ) . wider audience that have commodity processors, however, we need
use LIDAR (Light Detection and Ranging, an airborne laser scan- a|gorithms that use a small amount of memory wisely. Here we

ning technology) and capture elevation points to assess flood risks,review general approaches to algorithms for large geometric data

setinsurance premiums, and create disaster plans for an entire stat&ets, and the literature on computing large Delaunay triangulations.
The sheer enormity of the models has hindered their processing, de-
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Figure 2: The finalizer reads the points thrice and pipes a spatially finalized point
stream to the triangulator, which writes out a topologically finalized streaming mesh.

laying the project’s completion from 2002 to 2007 [Quillin 2002].
Faced with a half billion points, a typical in-core algorithm, with

perhaps a gigabyte at its disposal, must resort to virtual memory.

Then computations like chasing pointers through linked lists or tri-

angulation data structures, maintaining priority queues, and allocat-
ing and freeing objects produce memory access patterns that caus

thrashing—excessive paging—and slow the execution to a crawl.
We triangulate huge point sets with two concurrent programs de-

picted in Figure 2. Théinalizerreads a stream of raw points three

times from disk. During the first pass it finds the bounding box,

2.1 Algorithms for large data sets

Several types of algorithms are used to process large geometric
data sets:divide-and-conquer algorithmswhich cut a problem

into small subproblems that can be solved independentghe-
efficient algorithms which cooperate with the hardware’s mem-
%ry hierarchy (caches and virtual memorgjternal memory al-
gorithms which exercise control over where, when, and how data
structures are stored on disk (rather than trusting the virtual mem-
ory); andstreaming algorithmswhich sequentially read a stream

of data (usually once, perhaps in several passes) and retain only a

on which we overlay a grid of rectangular regions. During the Sec- gl portion of the information in memory. All of these algorithms
ond pass it counts the number of points in each region. During the try to exploit or create spatial coherence.

third pass it inserts spatial finalization tags, reorders the points, and Divide-and-conquer algorithms for huge data sets are, for some

writes a spatially finalized point stream to a pipe. Two finalizer
components reorder points during the third pass:cthenkerim-
proves spatial coherence by buffering points so that the points in
each region are contiguous, and #pinkler promotes representa-

problems, difficult to design: they often require ingenious algo-
rithms to choose the cuts, necessitate tedious programming to com-
municate across the cuts, or suffer from poor-quality results near the
cuts. For Delaunay triangulations, the very act of choosing cuts so

tive points (sampled during the second pass) to earlier positions in 4t ng further communication is needed requires a convex hull al-

the stream to avert the risk of quadratic running time. The triangu-

lator reads the finalized point stream from the pipe and triangulates

it with an incremental Delaunay algorithm, writing a finalized mesh
stream even while reading the finalized point stream.

The two programs triangulate the 11.2 GB Neuse River Basin
point stream, producing a 16.9 GB mesh, in 50 minutes using 71
MB of memory. The finalizer occupies 61 MB of memory (used

gorithm that itself can process huge data sets [Blelloch et al. 1999].
Cache-efficient algorithms (which often also cooperate well with
virtual memory) fall into two categories. Some software is opti-
mized for a particular cache architecture—a well-known example
is BLAS (the Basic Linear Algebra Subprograms), optimized by
most microprocessor vendors for their architectures. Some soft-
ware iscache-obliviousdesigned to cooperate well with any cache

mainly to reorder points), and the triangulator occupies 10 MB— o virtual memory, regardless of the details of its architecture. This
less than 0.1% of the size of the mesh. If the triangulator can read category includes heuristics for cache-oblivious data layouts that do

an already-finalized point stream from disk, there is no need for the
finalizer, and the triangulator runs in 37 minutes.

The triangulation may be piped directly to another application—
for instance, software for mesh simplification, or for extracting con-

tour lines or drainage networks from terrain. Because stream pro-

cessing modules typically have small memory footprints, we run

chains of them concurrently and stream gigabytes through them.

A major benefit of streaming (anabt sorting the points as a first

well in practice [Yoon et al. 2005], and cache-oblivious algorithms
that offer guaranteed bounds on the amount of traffic between cache
and memory [Kumar 2003] (and sometimes do well in practice).
External memory algorithms use disks for temporary storage of
data structures that do not fit in memory, and explicitly control data
movement and data layout on disk with the goal of minimizing the
number of disk accesses [Vitter 2001]. Like cache-oblivious algo-
rithms, external memory algorithms have received a lot of attention

step) is quick feedback, as our processes produce output while stillfrom theoreticians, who give provable bounds on the number of disk

consuming input. For example, a user can pipe the triangulator’s
output to our streaming isocontour extraction module, whose out-

put is piped to a visualization module. Isocontours begin to appear

within minutes or even seconds. If they look wrong, the user can
stop the toolchain and restart all the streaming components with

accesses their algorithms perform. Most of these algorithms build
sophisticated data structures on disk, notably B-trees.

Streaming, the approach we advocate here, differs from external
memory algorithms in that disk storage is used in a limited and
simple way. The data stream encodes no elaborate data structures.

different parameters. Other methods force users to wait hours for ain the strictest form of streaming, an algorithm makes just a single

triangulator to finish before glimpsing the results.

sequential pass through a data file and processesiite For our

We advocate that applications that create huge geometric datapurposes, this means that it cannot backtrack through the stream

sets, such as scientific simulations, should strive to write their out-
put in the form of spatially coherent, spatially finalized, streaming

and cannot store more data than what fits in an in-core buffer (a
small fraction of the stream).

geometry. The effort needed to do so is often small, and the reward Some online algorithms can be remarkably more effective if

is the ability to perform large-scale computations normally thought
to be the exclusive domain of parallel supercomputers.

the stream includes a small amount of information about the “fu-
ture” of the stream [Karp 1992]. Representations for streaming
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Figure 3:Three terrain data sets: the 6 million-point “grbm” (left), the 67 million-point “puget” (middle) and the 0.5 billion-point “neuse” data set (right). Colors illustrate spatial
coherence in selected grid cells: each cell’s center is colored by the time of its first point, and each cell’s boundary is colored by the time of its last point, with time increasing from
black to white along the color ramp (bottom).

meshes [Isenburg and Gumhold 2003; Isenburg et al. 2003; Isen-three-dimensional point sets in linear time, afteiG{mlogn) sort-
burg and Lindstrom 2005] contain not only points, triangles, and ing step whose hidden constant factor is tiny. Buchin [2005] proves
tetrahedra, but alsfinalizationtags that certify when a topological  that incremental insertion, coupled with similar randomization and
entity is seen for the last time. Finalization tags permit a geometric point location based on space-filling curves and bucketing, runs in
algorithm to output partial results and discard associated informa- O(n) time on certain random point sets.

tion, freeing room in memory for more data to stream in. Agarwal, Arge, and Yi [2005] have designed and implemented
an external memory algorithm for constructing constrained Delau-
2.2 Delaunay triangulations and large data sets nay triangulations in the plane, with theoretical bounds on the num-

ber of disk block accesses their algorithm performs. They use a
divide-and-conquer approach in which a small random sample of
the points breaks the problem up into small subproblems, which
are triangulated in-core by Triangle. Their algorithm uses no com-
plicated external data structures (not even B-trees) and is akin to
streaming, but it does many read passes over the points. Our stream-
ing implementation outperforms their external memory implemen-
tation strikingly—see Section 6—but we have not implemented
support forconstrainedDelaunay triangulations.

The Delaunay triangulation and its dual Voronoi diagram [Auren-
hammer 1991; Okabe et al. 2000] have been ubiquitous in ge-
ometry processing since algorithms for them first appeared in the
1970s [Frederick et al. 1970; Shamos and Hoey 1975]. The De-
launay triangulation (or tetrahedralization) of a set of points has
the property has the circumscribing circle of every triangle, or
the circumscribing sphere of every tetrahedron, encloses no point
in the set. Many surveys of Delaunay triangulations are avail-
able: see Fortune [1992] for mathematical properties, Su and Drys-
dale [1995] for a summary of two-dimensional algorithms and their
behavior in practice, and Liu and Snoeyink [2005] fora survey and 3 Point streams with spatial finalization
comparison of five three-dimensional implementations.

Because of its simplicity, we implemented Lawson’s [1977] in- Isenburg and Lindstrom [2005] observe that large mesh data files
cremental insertion algorithm as modified and extended to any di- have inherentopological coherence (i.e., locality in vertex refer-
mension by Bowyer [1981] and Watson [1981]. Clarkson and €nces). It comes as no surprise that geometric data sets also exhibit
Shor [1989] were first to show that incremental algorithms can run inherentspatial coherence (i.e., locality in vertex positions). Fig-
in optimal time in any dimension if the points are inserted in random ure 3 illustrates the spatial coherence in three terrain data sets. We
order. Nearly all modern three-dimensional implementations use overlay the points with a grid, and color selected cells according
incremental insertion, with various strategies pmint location— to the time of arrival (in the data stream) of their first point (inner
determining where each new point should be inserted. color) and their last point (outer color). A cell with two contrasting

Our 2D in-core standard for comparison is the divide-and- colors has a large gap between the first and last points. Fortunately,
conquer algorithm [Shamos and Hoey 1975] as implemented in Tri- the proportion of cells with widely contrasting colors is small, indi-
angle [Shewchuk 1996], which runs in optin@(nlogn) time and cating that these data sets have good spatial coherence.
is the fastest in practice as long as all data fits in main memory. The aim of a streaming format is to document coherence so

Recent papers address the problem of computing Delaunay tri- that algorithms can exploit it. Isenburg and Lindstrom describe a
angulations too large to fit in memory. Blandford et al. [2005] de- Streaming mesformat consisting of vertices, triangles, afidial-
scribe data structures for dynamically maintaining compressed tri- ization tags A finalization tagfinalizesa vertexv after the last
angulations in two or three dimensions, thereby increasing the sizetriangle incident orv appears in the stream. The tag tells the ap-
of triangulation that fits in memory by a factor of three to five. plication processing the streaming mesh that it may complete any

For larger triangulations, researchers turn to disk storage. Unfor- local computation that was waiting feis topology, output partial
tunately, the randomness that makes incremental insertion fast disfesults, and free some data structures (probably including the one
tributes data structures randomly through memory, with no spatial representing). We call thistopological finalizationbecause it de-
coherence, so the virtual memory thrashes as soon as the physicapends purely on the connectivity of the mesh.
memory is exhausted. Amenta, Choi, and Rote [2003] address this  There is no topology in a stream of points, but one can define
problem (in any dimension) by choosing a point insertion order that other notions of finalization suited to algorithms that operate on
has strong spatial coherence, but retains just enough randomness tpoint sets. Pajarola [2005] globally sorts points along one axis to
preserve the proof of optimal running time. They call this order a derive what we calk-neighbor finalizatiorfrom the sorted point
biased randomized insertion ordéBRIO). By using a BRIO, they stream: a point is finalized after itsnearest neighbors have ar-
increase substantially the size of triangulation they can construct rived. We advocate a more general concepspdtial finalization
with a fixed main memory and a large virtual memory. that provides similar spatial guarantees for stream processing of

As an unexpected bonus, their method speeds up point loca-points without imposing a strict global order on the points.
tion so much that their implementation triangulates most real-world ~ We subdivide space into regions, and finalize a region after the



last point in that region arrives. Finalization injects information | inPut |depth) time/pass, m:ss|, o | points | occud | points per cell

about the future into a stream—in this case, promises that certain gr;;%ms (Z) 0%2 0_202 0?’03 = lbng:rggl Cegzl 3:"2%12 6?1;
regions contain no addlthnal points. These promises can be used tg 6Mpts| 5 |002 0:02 003 28|1200.3068 679 8861 20157
certify thgtaDelaunay cwcumgphere is empty, and could_ perhaps| eomel 6 |002 002 0:04 20 1007898 2594 2310 5414
be used in surface reconstruction to certify that all the points near [yt 6 (028 028 041 25|1,995724 4.096] 16,387 41,681
a specified point are known, or in visualization to certify that some | g7mpts| 7 |0:28 0:28 0:43 161,059,705 16,384 4,097 12,103
portion of an image can be rendered immediately. 768MB| 8 |0:28 0:28 0:3§ 14| 579,424 65,536 1,024 3,290

Formally, we define goint streamto be a sequence of points, neuse 8 |[556 5:56 8:37 94[3,843,621 19,892[25,142 66,171
and aspatially finalized point strearfor simplyfinalized pointyto 500Mpts| 9 |5:56 5:56 7:55 612255569 77,721 6,435 20,208

10

be a sequence of entities, of which all but one are points or final- | 11.2GB 5:56 5:56 6:49 61]1518,675 306,334 1,632 6,544

ization tags. The first entity in the stream is special: it specifies a ) o ) ) i
subdivision of space into regions, such that each point in the stream | 2P!€ 1:Running times (minutes:seconds) and maximum memory footprints (M)
lies in one of the regions. Thaidth of a finalized point stream is for the three passes afpfinalize when finalizing three t.erram pomtl set's u5|lng
. g . . p . . 2%x 2¢grids (quadtrees of dep#). Each pass reads raw points from a firewire drive,
th,e m‘?lXImum number of unfinalized points at any t!me' A St,ream S and the third pass simultaneously writes finalized points to the local disk. We also
width is usually a lower bound on the number of points a point Pro-  report the maximum number of points buffered in memory at one time, the number of
cessing algorithm must retain in a buffer at any one time. occupied grid cells, and the average and maximum points per occupied cell.
Geometric processing tasks whose operations are sufficiently
“local” in space can take advantage of spatial finalization to pro- randomly selected points to the front of the chunk before releasing
cess a point stream in a memory footprint roughly proportional to them into the output stream, thereby averting the possibility of a
the width of the stream, rather than its length. Most large real-world quadratic number of changes to the triangulation within the cell.
point sets have enough spatial coherence to be streamed with low To be fully effective, though, reordering must be global too. Dur-
width, but they do not document this fact with spatial finalization ing its second pass over the input, our finalizer builds a quadtree
tags. We add them with a program callefiralizer, which makes whose leaves are the grid cells, and stores one point from each
three passes over an input point stream and outputs a spatially fi-quadrant (the point nearest the quadrant’s center) at each level of
nalized point stream. Normally, the output is piped directly to an the quadtree. During the third pass, it moves tregsinkle points
application program—in particular, our Delaunay triangulators—so to early spots in the output stream. In the manner of Amenta et al.,
there is no need to store the point stream again on disk. we could write them out in level order (from the top to the bottom
Our choice of partition is a rectanguldf 2 2K grid of cells. The level of the quadtree) at the front of the stream, but the number of
finalizer stores cells in a hash table, so only cells that contain points points we reorder is so large that the width of the stream would blow
take up memory. The finalizer's first pass over the input stream up. Instead of releasing them all at once, we “sprinkle” them in a
simply computes the points’ smallest axis-parallel bounding box. lazy fashion into the stream: when a cell is finalized, the sprinkle
This box is partitioned into equal cells, and the second pass countspoints associated with all its ancestors and their immediate children
how many points fall into each cell. The third pass is like the second in the quadtree are released (if they haven't already been) before
pass, except that the finalizer decrements these counters instead dhe points of the finalized cell are released.
incrementing them. When a cell's counter reaches zero, the finalizer ~Table 1 documents the time and memory requirements for spa-
inserts a finalization tag for that cell into the stream. tial finalization of the point sets depicted in Figure 3. The 6 million
Although real-world point sets usually have a lot of spatial co- points of “grbm” come from LIDAR of Baisman Run at Broad-
herence, it pays to add more. A finalizer can do more than just final- moor, Maryland, captured to analyze watersheds. The 67 million
ize points—ours (in its default setting) also reorders them. During points of “puget” are the vertices of an unstructured TIN model
the third pass, it buffers all the points in each cell until the cell's of the Puget Sound, obtained by coarsening a regular triangulation
counter reaches zero, then it releases all the cell’s points into thefrom USGS digital elevation maps. The “neuse” point set is de-
output stream, followed by the cell’s finalization tag. We call this scribed in Section 1. The points in all three sets are distributed
actchunking Chunking reduces width and increases spatial coher- fairly uniformly—the maximum number of points in a grid cell is a
ence. It exploits and enhances the coherence already in the datasmall multiple of the average.
but requires far less work than fully sorting the points. From the timings we see that the first two passes are strictly I/O-
The buffers used for chunking increase the memory footprint of bound—our LaCie 5,400 RPM firewire drive has a throughput of 2
the finalizer, but that increase is more than offset by the reduced GB/min, so it takes six minutes to read the 11.2 GB neuse data setin
memory footprint of the stream-based application receiving the fi- each pass. The third pass is also I/O-bound, but it is slower because
nalizer’s output stream. Buffers filled with points take much less it simultaneously writes finalized points to the local disk. If we
memory per point than the corresponding triangulation data struc- discard the output instead, the third pass is almost as fast as the first
ture. We implement the point buffers as linked lists of memory two passes, with some additional time spent chunking the points.
page-sized blocks, so that if there is insufficient main memory we A finer grid (a largerk) reduces the maximum number of points
use virtual memory efficiently. However, all the data sets we used buffered for chunking, but increases the memory occupied by the
in this paper were coherent enough to chunk in main memory. quadtree data structure. Subsequent sections explore the effects of
Sometimes it pays to give up a little spatial coherence. Recall streaming, chunking, and sprinkling on the resources used by our
from Section 2.2 that several Delaunay triangulation algorithms Delaunay triangulation codes.
use random sampling to improve their performance. Adding ran-  An observant reader might object that a point-creating applica-
domness to the input order is not just a technique for getting the- tion could destroy the coherence that our finalizer is expecting sim-
oretical results. If a Delaunay triangulator inserts the vertices of ply by delaying one point in each cell to the end of the stream.
a large square grid in Cartesian order—a natural order for streamlindeed, the “grbm” data set makes the finalizer buffer many points,
processing—it will degenerate to quadratic running time. because there is a diagonal stripe across the terrain at the end of the
Our streaming implementation borrows ideas from Amenta et file. (It appears that the airplane was still collecting data on the way
al. [2003] to avoid this danger. The finalizer samples a small frac- home.) This vulnerability is not an inherent limitation of stream-
tion of points from the stream, and promotes them to earlier spots in ing, only of our current implementation of the finalizer. Although
the stream. On a local level, the finalizer reorders the points within we did not find it necessary with our current data sets, we could re-
each cell into a BRIO as a part of chunking. When the last point order such points by identifying them during the second pass, and
in a cell arrives in the input stream, the finalizer moves a sample of storing them in a memory buffer or a temporary file. If there are too




many points to buffer, then the data set is spatially incoherent, and The sequential triangulator that we modified performs point lo-

any out-of-core triangulator must globally rearrange the data. cation by walking a straight line from the most recently created tri-
angle toward the new point. (This strategy is advocated by Amenta
4 Streaming 2D Delaunay triangulation et al. [2003] in conjunction with the BRIO point reordering per-

) ) ) ) formed by our chunker.) In a streaming triangulator, however, this
Conventional Delaunay triangulation programs output triangles af- method sometimes fails, because it tries to walk through final trian-
ter all the input points have been processed. By taking as input gles, which are no longer in memory. The active triangles do not,

a Spatlally ﬁnalized pOint Stl’eam, our tl’iangulah?fdelaunade in generaL define a convex region.
constructs a Delaunay triangulation incrementally and outputs a tri-  \we modified the walking point locator so when it walks into a
angle whenever it determines that the trianglénia—that its cir- final triangle (i.e., a null pointer), the walk is restarted from a dif-

cumcircle does not touch or enclose an unfinalized cell. Such aferent starting point. For reasons described in the next section, each
triangle must be in the Delaunay triangulation, since no point arriv- |eaf of the quadtree maintains a list containing some of the trian-
ing in the future can be inside the triangle’s circumcircle. We calla gles whose circumcircles intersect the leaf’s quadrant. We find the
triangleactiveif it is not final. o o quadrant enclosing and start a new walk from one of the triangles
_We createdspdelaunay2d by modifying an existing Delaunay  on the quadrants list. If this walk fails as well, we first try start-
triangulator so that it keeps in memory only the active triangles ing from another triangle, and then from triangles on neighboring
and their vertices. This change dramatically reduces the program'squadrants’ lists, before resorting to an exhaustive search through
memory footprint. The main addition to the triangulator is a compo- || the active triangles. In theory we could do better than exhaustive
nent that discovers when active triangles become final, writes them search, but in practice these searches account for an insignificant
to the output stream, and frees their memory. This component usesfraction of our running times. Fewer than 0.1% of point insertions
a small fraction of the total running time. require exhaustive search, and because we retain comparatively few
Our triangulator maintains triangles in memory and maintain a linked list of them with the
two data structures: a triangu- . . .. - . most-recently created triangles at the front of the list, the exhaus-
lation, and a dynamic quadtree - tive searches are faster than you would expect.
that remembers which regions . Final triangles pose no problem for thgpdateoperation. We
have been finalized. Both are il- simply modified the depth-first search so it does not try to follow
lustrated in Figure 4. The pur- null pointers. For numerical robustness, we use the robust geomet-
pose of the quadtree is to iden- - . ric predicates of Shewchuk [1997] to perform circle tests (deciding
tify final triangles, as described whether a circle encloses a point) and orientation tests (deciding
in Section 4.2. If the quadtree which side of a line a point lies on). These tests suffice to produce

were fully expanded, its leaves a robust Delaunay triangulator.
would be the cells of the final-

ization grid; butthereisnoneed -
to store the descendants of a - -

qguadrant unless it contains both .
finalized and unfinalized cells. ..
Thus, our quadtree’s branches :
extend and contract dynami-

4.2 Identifying final triangles

When spdelaunay2d reads a finalization tag, it needs to check
which active triangles become final—that is, which triangles have
circumcircles that no longer touch or enclose an unfinalized cell.
We first check whether the circumcircle of a triangle is completely
cally to maintain the finalization inside the cell that was just finalized—this cheap test certifies many
state without consuming more ) newly created triangles as final. If that test fails, we use the fast
memory than necessary. Figure 4: A closeup of streaming circle-rectangle intersection checking code by Shaffer [1990] to

When spdelaunay2d reads  Delaunay in 2D. The points on the left €St 9”’_CU_mC|rC|es against Cel_ls- We ex_pI0|t the_quadtree h'erar_Chy
a point, it inserts it into the have been processed, and their trian-  t0 mMinimize the number of circle-box intersection tests—if a cir-
Delaunay triangulation. When gles written out. All triangles in this cumcircle does not intersect a quadrant, then it cannot intersect the
it reads a finalization tag, it figure areactive We have drawn a guadrant’s descendants. When it does intersect, we recurse on each
notes the finalized cell in the fewrepresentative circumcircles, allof  child quadrant that intersects the circle.

quadtree, determines which ‘t’;’]hiCh imerstem Fmtﬂ"a'izzd_Sp?‘ce' tAL Once atriangle’s circumcircle is found to intersect an unfinalized
. ) . IS moment, points are being inserte : . .

active triangles become final, o he Ieﬂmozt cell which WQ:" be fi- cell, it would be wasteful to check the triangle again before that cell

writes them to the output palized next ' is finalized. Thus, we link the triangle to a list maintained with

stream, and frees their memory. the unfinalized cell, and ignore it until the cell's finalization tag

Before a final triangle is written out, any vertex of that triangle that arrives (or until a point insertion deletes the triangle). When we
has not yet been output is written out. (Each vertex is delayed in check the triangle again, we do not test it against the entire quadtree;
the output stream until the first triangle that depends on it.) After We continue searching the hierarchy from the cell it is linked with,
a final triangle is written out, each of its vertices has its memory Where the check failed last time.

freed if it is no longer referenced by active triangles. For our algorithm to be correct, circle-box intersection tests can-
not report false negatives. False positives are acceptable because
4.1 Delaunay triangulation with finalization they only cause final triangles to stay longer in memory, though we

We use a triangle-based (not edge-based) data structure. Each triprefer not to have too many of them. Rather than resorting to exact

angle stores pointers to its three corners and its three neighbors ”érithmetic (which is slow), we make the intersection tests conser-
gle S oI o . ) 19 " “vative by computing error bounds;, Ey, andE; on the center co-
a neighboring triangle is final, the corresponding pointer is null.

Standard incremental Delaunay algorithms insert a new moint ordinates and radius of a triangle’s circumcircle. Before we invoke
. . M y alg : EW o Shaffer’s code (or the simpler test using the circle’s bounding box),
in two steps.Point locationfinds a triangle whose circumcircle en-

closesp. Updatefinds all the triangles whose circumcircles enclose we enlarge the box bigx andEy and the circle by
p by depth-first search in the triangulation, starting with the trian-

gle where point location ended. These triangles are deleted. New
Delaunay triangles adjoining are constructed, filling the hole left ~ Recall from Section 3 that our finalizer reorders points both locally
by the deletion [Bowyer 1981; Watson 1981]. (in the chunker) and globally (in the sprinkler) to avert the quadratic

4.3 Effectiveness of reordering with a BRIO



MB. If spdelaunay2d is receiving the point stream via pipe from
spfinalize, the combined memory footprint of the two programs
is 39 MB at depth 6, or 21 MB at depth 8.

We can triangulate the pre-finalized half-billion point Neuse
River Basin in as little as 37 minutes and 10 MB of memory at
quadtree depth 9. If the points are not finalized, the finalizer and tri-
angulator together use a combined 71 MB of memory and complete
the task in about 50 minutes. This time includes reading 11.2 GB of
Figure 5: skinny temporary triangles (left) are avoided by lazily sprinkling one ~ raw points three times and writing a 16.9 GB streaming mesh. (Our
point into each unfinalized quadrant at each level of the evolving quadtree (right). current streaming mesh interface only supports single precision co-
ordinates; with double precision the mesh would be 24 GB.)

finalized input points spdelaunay2d output mesh ) - . K X
name *ofpoints  op-|maxactivg h:mm:ss #of triangles To test4 oE_L)er falllpproaclhs scalablllcl)ty, Wedmodlfleplflnalllzedto .
filesize tiong triangles | disk | pipe file size create a 4.5 billion point stream by reading nlne.trants ated copies
ouget 67.125,100 s 109,337 503 525 14  (nge) of the Neuse River Basin in a 33 tiling. spfinalize and
) I 50,830 4:39 5:05 9§ 134,207,228 spdelaunay2d together process 4,501,271,817 points (a number
(snge) - 768MB | 52,295 4:31 451 | 2.3GB too large to be represented with an unsigned 32-bit integer) with an
neuse 500,141,313 's€ | 148,198 30:24  40:53 20 (single) off-the-shelf_ Iz_iptop._ Fev_ver than 7 hours SL_Jffice to turn 101 GB of
dowble)  112Gp % | 75705 3714 38:37 101,000,282,528 double precision points into a 152 GB terrain composed of 9 billion
les| 60,026 3515 35:18 11 16.9GB triangles. (The 152 GB figure is with single precision coordinates
neuse 4,501,271,17 108 | 114,894 —:— 529:02 15 (snge) in the output—double precision would add 50 GB more.) The two
(doxume) 101 GB :EZ ;gﬁg :;: jgggéi 119,0(1)?25;;3‘;623 programs occupy 178 MB of memory, of which 167 MB is used to
: chunk the points. The first two passesspft inalize account for
Table 2: Performance ofpdelaunay2d on large terrains. Thepfinalize op- nearly two of the seven hours.
tion “I;” selects a quadtree of depthand “g” finalizes all empty quadrants in the Because we do not have enough external storage available, we
bottom j levels of the tree at the beginning of the stream. Rowssjigielaunay2d’'s piped the streaming mesh to a program that measures its size. The
memory footprint (MB) and two timings: one for reading pre-finalized points from  fact that we produce more data than we can store also hints that
disk and one for reading finalized points vig#e from spfinalize. Timings and a common assumption of external memory algorithms, that disk

memory footprints dmotincludespfinalize, except that the “pipe” timings include
spfinalize’s third pass (both programs work concurrently). For total running times,
add the pass 1 & 2 timings from Table 1. For total memory footprints, add the footprint
from Table 1 (take the maximum if the programs are run separately). Disk timings for
the “neuse” tiling are omitted—we do not have enough scratch disk space.

space is for practical purposes unlimited, is not always a safe as-
sumption. Whereas most people find their main memory cannot
keep up with their disk storage, we have the opposite problem.

5 Streaming 3D Delaunay triangulation
worst-case behavior that point lattices might produce. Figure 5 de- )
picts snapshots of the triangulator without and with global reorder- From the stunning performance of
ing. Without sprinkling, many very thin, temporary triangles form. ~Stréaming Delaunay triangulation
Although few of these triangles typically survive to the final trian- N 2D, one would hope for a similar
gulation, their circumcircles are large, so they are more likely to be Success story for tetrahedralizing
deleted by any given vertex insertion. points in 3D. Unfortunately, many
Nevertheless, in practice we get more improvement through local 9igantic data sets in 3D come from
reordering, which lowers the average number of deleted triangles Scans of surface models, and these
per point insertion from 4.4 to 4.2. Global reordering further low- &€ nhot amenable to a straight-
ers this number to 4.1. (Mathematically, the average for points in forward extension of the finaliza-
completely random order would be 4.) The margin increases with tion procedures we developed for
the resolution of the finalization grid, but it is not enough to give 2D. Delgunay tetrahedra 0f3D sur-
a measurable improvement in running time on our point streams. face points often have large cirum-
Nevertheless, we still prefer the security of knowing that perfor- SPheres that touch many cells; only Figure 6: points sampled on a
mance will not degenerate on square grids of points in CartesianWhen all touched cells are final-  ciosed curve. Most of space has
order, for which the average number of deleted triangles per point ized do such tetrahedra become fi- been finalized, yet few triangles

insertion would be proportional to the width of the grid nal. Figure 6 illustrates the 2D ana- are final—most circumcircles in-
) log of this situation. tersect the unfinalized region.
4.4 Results Nonetheless, we implemented a

finalizer and a tetrahedralizer namegdelaunay3d using the

Table 2 summarizes the running times and memory footprints of same techniques described in Sections 3 and 4. Table 3 shows the
spdelaunay2d for triangulating the largest terrain datasets that we performance okpdelaunay3d on pre-finalized points, using the
could get our hands on. The measurements are made on a Dellaptop described in Section 4.4. The “pgnmput points consist of
Inspiron 6000D laptop with a 2.13 GHz mobile Pentium processor everykth vertex of an isosurface mesh extracted from one timestep
and 1 GB of memory, running Windows XP. The points are read of a simulation of Richtmyer—Meshkov instability. In this turbulent
from a LaCie 5,400 RPM firewire drive with 2 GB/min throughput, surface, the points distribute roughly evenly over a 3D volume and
and the meshes are written to the 5,400 RPM local disk. are more suitable for streaming tetrahedralizaton than surface scans.

The table shows that while running times and memory footprints The table shows that the memory fgsdelaunay3d is 5-10% of
vary with the resolution of the finalization grid, little fine tuning is  the output size.
necessary to use our software. Streaming triangulation of 768 MB  Results on two smaller data sets, “sf1” and “f16,” appear in Ta-
of single precision floating-point “puget” data takes about six min- ble 4. Each comes from volumetric data used for finite element
utes (including preprocessing) for finalization grids with depths 6, analysis: points in “sf1” are from a breadth-first traversal of an
7, and 8. However, the finer grid reduces the number of trian- adaptive octree grid used in CMU’s Quake earthquake simulation
gles that need to be in memory simultaneously from 109,337 to project. “sfl” is tetrahedralized slowly because its points lie on
52,295, which reduces the memory footprint from 14 MB to 7 a grid, often forcing the robust geometric predicates [Shewchuk



input points spdelaunay3d output mesh input spfinalize spdelaunay2d  total Triangle output
name # of points| MB |opt| max activg h:mm:sq MB | # tetrahedra GB name MB| old old old old MB
opt MB MB MB —-1/0 MB
ppms 11,737,698 136l,s 951,683 7:42 137 80,751,131 1.4 # of points| PL hew new new new triangleg
ppmg 29,362,621 341lss 1,903,241 22:19 30@01,721,882 3.b grbm 69 | 0:04 20 1:09 2 1:13 24 1:47 1:02 495 208
ppmy 58,725,279 686lgs 4,010,296  56:23 592105,940,587 7.0 6,016,883 ¢ 0:04 0:25 0:29 0:34 0:17 12,018,597
ppmy 117,450,465 1,42pl;s 6,907,250 2:41:06 79%815,321,347 14 puget 154 | 0:10 9 2:57 5 3:07 14 thrash 863 460
13,423,821 ° 0:10 1:09 1:19 3:45 1:22 26,840,72(
Table 3: Performance okpdelaunay3d tetrahedralizing pre-finalized 3D points - — -
) ) . ) input spfinalize spdelaunay3d total Pyramld output
sampled from the ppm isosurface. The output is a streaming tetrahedral mesh. Option
Rt ) 8 . . name MB| old old old old MB
“l;” indicates an octree of depth and “s” sprinkles the input stream. The middle # of points opt W MB new MB new MB new —1/0 MB tetrahedrd
tl;lrd OT the tabl.e shovzs the rga;(lmum numfber of act':;llg tetrahedra, the running time 7 13 — 0:00 . 116 " 116 o 253 246 2o 125
(hours:minutes:seconds), and the memory footprint (MB). 1,124,648 M5 .90 0:34 0:34 137 1:26 7,027,643
sfl 29 0:02 9:57 9:59 thrash 251
2,461,694|Gm5 0:02 16 4:15 29 4:17 45 5:16 4:57 537 13,980,309

Table 4: Running times (minutes:seconds) and memory footprints (MB) of trian-
gulators on an old laptop (top of each time box) with 512 MB memory and a new
laptop (bottom of each time box) with 1 GB memory, for several 2D and 3D point
sets.spfinalize iS run in tandem withspdelaunay2d or spdelaunay3d; timings

for spfinalize reflect only the first two passes over the input stream, and timings for
spdelaunay2d or spdelaunay3d reflect the combined times for both the finalizer
and the triangulator during the third pass only (which is a good indicator of how fast
the triangulator would run alone on a pre-finalized point stream). The “total” column
is the total running time for all three passes. For the in-core triangulators Triangle and
Pyramid, we give total running time and running time excluding 1/©1(O”).

Four data sets, two in 2D and two in 3D, appear in the table.
The 2D data sets, “grbm” and “puget,” are described in Section 3
and depicted in Figure 3. “puggtis computed by downsampling
“puget” by a factor of five. The 3D data sets, “f16” and “sf1,” are
described in Section 5.

The most striking differences are the memory footprints.

1997] to resort to exact arithmetic. The points in “f16” are the SPdelaunay2d uses less than 1% of the space of Triangle;

vertices of a tetrahedral mesh ordered along a space-filling z-orderSPdelaunay2d and spfinalize toogether use less than 5%.
curve. Figure 7 depictspdelaunay3d as it triangulates “f16.” spdelaunay3d uses less than 11% of the space of Pyramid;
spdelaunay3d and spfinalize together use less than 13%.

6 C . Moreover, Triangle and Pyramid’s memory footprints increase lin-
omparisons early with the size of the triangulation, whereas the streaming trian-

Here we compare the performance of our streaming triangulators gulators’ memory footprints increase more slowly with the stream
with in-core triangulators and with the previous fastest external Size. Of course, the in-core triangulators begin thrashing long be-
memory Delaunay triangulator, by Agarwal, Arge, and Yi [2005], fore the streaming trlangulatorg Wo'uld. Trlgngle begins to thrash on
which also constructsonstrainedelaunay triangulations. the new laptop at about 14 million input points. Compare this with
Agarwal et al. “process 10 GB of real-life LIDAR data”—the the 4.5 billion points we have triangulated by streaming.
500 million point Neuse Basin point set tabulated in Table 2, plus ~ The running times are more surprising. How can the streaming
755,000 segments that constrain the triangulation—“using only 128 triangulators, with the extra work of finalization, run faster than
MB of main memory in roughly 7.5 hours.” This timing omits a dedicated in-core triangulators? First, they offset the extra work
preprocessing step that sorts the points along a space-filling HilbertPy overlapping computation with file 1/O, whereas Triangle and
curve, taking about three additional hours. Their total time is thus Pyramid do not. The speed of the streaming triangulators on pre-
10-11 hours, compared to our 50 minutes to triangulate the un- finalized points is almost entirely CPU-bound.sffdelaunay2d,
sorted points. This comparison is skewed (in opposite directions) While triangulating the Neuse Basin point stream (recall Table 2),
by two complications. First, our triangulator does not read or re- discards the 16.9 GB output mesh stream instead of writing it to
spect the segments (although we plan to add that capability anddisk, it saves only three minutes of the 35-minute processing time.
expect it will cost less than 20% more time for the Neuse data). ~ Second, the streaming triangulators benefit from improved cache
Second, Agarwal et al. used a slightly faster processor, and muchperformance because of their smaller memory footprints.
faster disks, than we did.
Our streaming Delaunay triangulators do more work than stan- :
dard in-core algorithms, because they must identify final Delau- 7 Conclusions
nay triangles and tetrahedra. Nevertheless, Table 4 shows thatResearchers with whom we have discussed external memory trian-
they can outperform state-of-the-art in-core triangulators even for gulation suggest, almost by reflex, sorting the points first. For data
data sets that fit in memory. We compare them with the 2D tri- sets with no spatial coherence at all, we too advocate sorting. But
angulator Triangle [Shewchuk 1996] and the 3D triangulator Pyra- in our experience, large, real-world data sets have plenty of spa-
mid [Shewchuk 1998], modified to read and write the same binary tial coherence. The power of exploiting that spatial coherence is
format asspfinalize. Triangle, based on a divide-and-conquer perhaps best illustrated by two facts: it takes Agarwal et al. [2005]
algorithm, is the fastest sequential 2D implementation. Pyramid three hours to Hilbert sort the same point set we triangulate in 48
uses an incremental algorithm. minutes, and our triangulator runs as quickly on the original Neuse
We used two laptops for our timings to get a sense of when the point data as on the Hilbert-sorted Neuse points (both kindly pro-
in-core triangulators start to thrash: a newer laptop described in vided by Agarwal et al.)
Section 4.4, with 1 GB of memory, and an older laptop with a 1.1 We realize the benefits of sorting, at much less cost, by docu-
GHz mobile Pentium Il processor and 512 MB of memory. menting the existing spatial coherence vsftatial finalizationand

Figure 7:Streaming Delaunay tetrahedralization of the 16 point set. Sprinkle points
are turned off for clarity. Most of this model’s points are clustered near its center.
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