
Empirical Study of the Impact of Sampling Timescales and
Strategies on Measurement of Available Bandwidth

�
Alok Shriram and Jasleen Kaur

University of North Carolina at Chapel Hill
Abstract - Several tools have been designed for measuring end-to-end available bandwidth
(AB) of a path by injecting probe traffic on the path and inferring AB based on the end-to-end
delays observed. While the algorithmic aspects of designing probe streams and inferring AB have
received considerable attention, most tool designs have ignored an important aspect of measuring
AB—that of the sampling timescales and strategies used. In this paper, we address this issue by
studying the impact of the measurement time-scale, tool run-time, sampling strategy, and sam-
pling intensity, on the accuracy, variability, and predictability of the estimated AB. We passively
analyze link-level packet traces collected from 15 Internet links (8 different locations). Our anal-
ysis intentionally ignores the tool-specific algorithmic aspects of designing probe streams and in-
ferring AB—our conclusions, therefore, are applicable to a wide variety of AB estimation tools.
We use our analysis to derive several guidelines for tool design.

1 Introduction
Several applications—including media streaming, overlay routing, and bulk-transfers
of large datasets—can benefit from the knowledge of the end-to-end available band-
width (AB) on a network path. Several tools—henceforth, referred to as AB estimation
tools (ABETs)—that measure the end-to-end AB on a given network path have been
designed in the recent past [6, 5, 12, 14, 16]. These tools typically operate by first in-
jecting probe traffic into the network path, and then by observing the one-way delays
experienced by the probe packets. These delay estimates are then used to infer the end-
to-end AB. Existing ABET designs focus primarily on, and differ most significantly in,
the construction of probe streams and in the logic used to estimate AB from the ob-
served delays. For instance, Pathload [5] uses the notion of a stream, which is a set of
packets sent at a constant rate, while Pathchirp [14] uses the notion of chirps, which
are exponentially-spaced trains of packets. Most tool designs, however, seem to ignore
three central temporal quantities related to measurement of the AB process—that of the
tool run-time, the measurement time-scale, and the sampling intensity and strategies.
In particular, not much is known about the impact of these quantities on the accuracy,
variability, and predictability of the measured AB.

In this paper, we address this issue by investigating three key questions: (i) how do
the sampling strategy, intensity, and timescales affect the accuracy of the AB estimates?
(ii) how do tool run-times and measurement-timescales impact the variability of the
measured AB? And (iii) how stable is the available bandwidth in the post-measurement
period? In order to answer these questions, we passively analyze link-level packet traces
collected from

���
different Internet links and derive several guidelines for ABET de-

sign. Our analysis is independent of the design parameters of existing ABETs—our
findings are, therefore, applicable to most tools.

In what follows, we outline our objectives and approach in Section 2. Sections 3, 4,
and 5 present our analysis results. We summarize our conclusions in Section 6.

2 Formulation

AB on a link is defined as [5]:
����� 	�
��	���������� ����	 
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where  "!�# $�%'&($�)+* is the AB of the link over a given time interval # $%,&($�)+* , - is the
transmission capacity of the link, and !/.0$ % &�$ )21 is the amount of traffic transmitted on
the link during # $ % &�$ ) * .1 The end-to-end AB of a path is defined as the minimum of the
AB of its constituent links [5].
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Fig. 1. AB Observed at Different Time-scales
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Fig. 2. Sampling Strategies
Several tools (ABETs) have been proposed recently for actively probing for the end-

to-end AB on a given network path [6, 5, 9, 12, 14, 16]. These tools operate by injecting
specially-designed streams of probe packets onto the path, observing the end-to-end
delays experienced by the probe packets, and estimating the end-to-end AB from the
observations. Each tool typically injects and observes several such probe streams before
converging to an AB estimate. Fig 2 illustrates this approach—the length of individual
probe streams determines the timescale at which the AB process is observed; arrows
depict the times at which an ABET sends a probe stream.

Existing tools focus primarily on, and differ in the design choices they make along
two dimensions: (i) the structure of a probe stream—for instance, while Abing [12] and
Spruce [16] rely on using a packet-pair as a probe stream, Pathload [5] and PathChirp [14]
rely on sending a packet train (uniformly and exponentially-spaced, respectively) in
each probe stream—and (ii) the inference logic used for estimating AB from the end-
to-end delays observed by the probe stream. Unfortunately, most existing tool designs
ignore the following additional, yet fundamental, aspects of measuring AB:2

Measurement Timescale: A critical parameter in the definition of AB in Eq (1) is
the length, .3$�)�45$�% 1 , of the time interval over which it is observed—we refer to
this quantity as the measurement timescale (MT). Note that the MT of an ABET is
given by the probe-stream length used by it. In Fig 1, we plot the time-series of AB,
observed at three different timescales of
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, and
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, during the same < 6=8
observation period on the Abilene-IC0 link (described in Fig 3). Not surprisingly,
we observe that the AB process and its variability can be quite different at different
timescales. Consequently, any application that relies on an ABET would want the
tool to measure AB at an MT relevant to the application domain. For instance,
while a large-file-transfer application is likely to be interested in only the average
AB obtainable at super-second timescales, a media-streaming application is likely
to also be interested in knowing the small-timescale variations in AB. The MT is
also likely to impact the AB estimation accuracy of an ABET [11].
Unfortunately, most existing ABETs do not explicitly select (or report) the MT used
in AB estimation. Furthermore, the implicit choices of MT made by these tools can

1 Note that the availability of a link-level packet trace allows easy computation of
����	
�>	�� �

. If�
is known, Eq (1) can be used to compute the exact value of

�?��� 	 
 �>	 � �
from the packet trace.

2 The importance of considering measurement timescales and durations has also been mentioned
in [7]. However, the impact of these parameters on AB measurement has not been quantified.



only be roughly estimated, and are a function of the path transmission capacity
and tool configuration parameters. Tools such as Spruce [16] and Abing [12], that
rely on using a packet-pair as a probe stream, have a MT on the order of
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,

on a
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path—this corresponds to the separation between two back-to-back���:6:6 ! packets.3 Tools such as Cprobe [3], PathChirp [14], and Pathload [5], that
instead rely on using longer packet trains as probe streams, have a much larger
MT—ranging from

�26'798
to several hundreds of

7;8
on a
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path. The ex-

act value of the MT for a probe stream depends on the size of the packet train
and the rate at which it is sent—both of these factors are adaptive in Pathload and
PathChirp. Iperf [13], which is a tool used primarily for diagnostic purposes, mea-
sures the maximum throughput that a TCP connection can attain4—the MT is the
same as the total tool run-time.
In this paper, we study how the choice of MT by a tool impacts the accuracy, vari-
ability, and stability of the measured AB. We use four different values of MT, rep-
resentative of existing tools, that differ by more than an order of magnitude:
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.
Sampling Strategy and Intensity: Given an observation timescale, the AB process

consists of a series of back-to-back readings of AB observed within a given time
interval. ABETs essentially only sub-sample this AB process—the sampling strat-
egy and the fraction of the AB process sampled are likely to impact the accuracy
of estimating the mean AB in a given time interval. For instance, a larger sampling
rate is likely to result in better AB estimation accuracy; however, it would also incur
greater network overhead.
Existing tools differ in the fraction of the AB process—henceforth, referred to as
the sampling intensity (SI)—that they sample during the tool run-time. In our analy-
sis, we vary this fraction from

6IHJ�
to
6KH L

(
��6 4 L=6NM of the AB process gets sampled).

We vary SI by simultaneously controlling the MT and the sampling rate (number
of AB samples collected per second). SI is given by the product of MT and the
sampling rate.
Given a sampling rate, existing tools also differ in their sampling strategy—the
manner in which AB samples are selected from within a given time interval. We
use the framework described in [4] to study three kinds of sampling strategies (see
Fig 2): (i) Simple sampling, in which AB samples are selected randomly from
within the given time interval; (ii) Stratified sampling, in which the time interval
is divide into equi-sized units, and one sample is selected randomly from each unit;
and (iii) Systematic sampling, in which the time interval is divided into equi-sized
units and the first AB reading from each unit is used as a sample. Spruce uses
simple sampling, while Pathchirp, Pathload, and Abing use systematic sampling.

Measurement Duration (Run-time): Run-time (RT) refers to the length of the time
interval over which several samples of the AB process are collected, and used to
infer properties of the AB process. In practical terms, the run-time is the total time
taken by a tool from invocation to reporting an AB estimate. This includes the time
taken to send several probe streams (each of which potentially returns one sample
of AB), and converge on an AB estimate.
The most significant impact of run-time on AB measurement is in terms of its
variability. For a given MT and SI, the longer is the tool run-time, the more variable

3 Tools that rely on packet-pairs have been shown to be inaccurate, especially on high-speed
paths [15]. This is conjectured to be so primarily because of the small MT—at such timescales,
the AB process appears quite bursty. As a result, it is difficult to get reliable and stable AB
estimates. We exclude such timescales from our analysis in this paper.

4 It has been shown in [5] that TCP throughput is not an accurate measure of AB.



are likely to be the different AB samples collected. On the other hand, longer run-
times are more likely to yield a sufficient number of samples for reliably estimating
the mean as well as variability in the AB process.
RT (as well as MT) is also likely to affect the stability of the measured AB in
the post-measurement periods. A longer run-time is likely to yield more reliable
AB estimates, that are not subject to short-term traffic-load fluctuations, and are
indicative of the AB that can be expected for some time.
Existing AB tools vary widely in their typical run-times—an recent evaluation
study of AB tools reports the typical run-times of Abing, Spruce, Pathchirp, Iperf,
and Pathload to be:
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seconds, respectively [15]. We use these
values to study the impact of tool run-time on the variability as well as stability of
the AB process during measurement and post-measurement periods, respectively.

We organize the issues raised above in the form of three main questions that are ad-
dressed in the rest of this paper: (i) How does the choice of sampling strategy, sampling
intensity, MT and RT impact the accuracy of the estimated AB? (ii) How does the
choice of MT and RT affect the variability of the measured AB? (iii) How stable is AB
in the post-measurement periods? Our work represents, to the best of our knowledge,
the first investigation of AB measurement along these dimensions.

2.1 Analysis Methodology
Link 0 Link 1

Average Average
Trace Load Load

(Mbps) (Mbps)
1 Gbps Links

UNC 328.8 88.2
Leip 13.07 35.813

Cesca 228.2 245.9
SanDiego 68.01 39.3

2.5 Gbps Links
Abilene IC 421.6 518.4
Abilene IK 320.7 585.8

MFN 349.1 608.1
Paix 107.2 n/a

Fig. 3. Data Sets

As mentioned before, existing ABETs focus primarily on
the design of probe streams and an inference logic. In or-
der to answer the above questions in a tool-independent
manner, hence, we assume the existence of a perfect
probing stream—referred to as an Istream—and a corre-
sponding perfect inference logic, that can infer the sam-
pled AB perfectly by analyzing the performance of an
Istream. This assumption lets us study the impact of (cur-
rently) design-agnostic quantities—namely, run-time, mea-
surement timescale, and sampling intensity and strategies—while isolating the analysis
from the impact of design-dependent parameters. It also lets us adopt a passive trace-
analysis based approach for answering the above questions, in which it is possible for us
to compute the ground truth—as described before, the availability of a link-level packet
trace gives us the ability to compute perfectly the AB process on the corresponding link
at different timescales. We use the Coralreef [10] package for this processing.

Note that the use of link-level packet traces gives us access to the AB process of
only a single link, and not the end-to-end AB process of a network path. Computing the
latter passively would require access to the link-level packet traces of all the constituent
links of a path—given the limited number of publicly-available packet traces, that is
currently infeasible. Note, however, that in practice, analyzing just the link-level AB
process may not be a significant limitation. This is because most end-to-end paths are
expected to have at most a single bottleneck link, which is not likely to change during a
tool run [5, 7, 12, 14, 16]—the AB process on such a bottleneck governs the end-to-end
AB process [15].

We use link-level packet traces collected from 8 different locations (15 different bi-
directional links). Fig 3 lists these traces. All links have gigabit or higher capacities—
our results are, therefore, applicable to high-speed networks on which ABETs are ex-
pected to be increasingly deployed [17, 18]. Our traces are diverse in the link-locations,
traffic loads, and user-communities represented. The UNC and Leip traces were col-
lected, respectively, at the edges of the University of North Carolina and the University
of Liepzig. The Abilene, MFN, Cesca, Paix, and San Diego traces were obtained from



CAIDA [1] and NLANR [2]. Due to space constraints, we present most of our analysis
results for the UNC-0 and AbileneIC-1 traces, which capture the diversity of our ob-
servations. Most of the observations yielded by the other traces are similar to the UNC
traces—we include results from other traces when this is not the case.

3 How does the way AB is sampled affect accuracy?
AB estimation tools necessarily sub-sample the AB process during their run-time. In
what follows, we evaluate the impact of sampling strategies, intensity, timescale, and
duration on the accuracy of the sampled AB. It is worth noting that a recent experi-
mental study has shown that the accuracy of existing ABETs is no better than

�26�M
on

high-speed paths [15]. In this section, consequently, we consider any inaccuracy smaller
than this value as insignificant.
3.1 Does the choice of sampling strategy impact accuracy of the sampled AB?
We consider the three kinds of sampling strategies—simple, stratified, and systematic—
described in Section 2. For a given choice of MT, SI, and RT, we analyze each packet-
trace as follows: (i) we translate the trace into a corresponding AB process observed at
the timescale MT; (ii) we divide the AB process into segments of time-length RT each
(Fig 2 depicts one such segment); (iii) for each segment O : (a) we compute the average, P!�QRTSU , of the AB process observed within that segment; (b) we sub-sample the AB
process according to the three sampling strategies—simple, stratified, and systematic
(see Fig 2)—and compute the averages of the samples as:  "!VQW QYX ,  "!�QW�Z0[�R , and  P!\QW�]2W ,
respectively; (c) we compute the sampling inaccuracies for the segment as: ^  "!_QRTSU 4
 P! QW QJX ^ , ^  P! QRTSU 4; "! QW�Z0[�R ^ , and ^  "! QRTSU 4` P! QW�]aW ^ , respectively; and (iv) we compute
the cumulative distribution (CDF) of these three inaccuracy metrics, over all segments
in the trace. Strategy UNC-0 Abilene-IC1 Abilene-IK1

5 % 50 % 95 % 5 % 50 % 95 % 5 % 50 % 95 %
Simple 0.04 0.38 1.10 0.12 1.3 3.91 0.13 1.45 4.64

Systematic 0.08 0.9 3.14 0.62 6.21 19.0 0.64 6.84 29.38
Stratified 0.79 3.12 5.57 0.59 6.74 19.23 0.72 7.49 29.78

Fig. 4. Sampling Strategy vs. Inaccuracy (Mbps)

Fig 4 lists the 5%, 50%, and
95% of the inaccuracies for the
three sampling strategies, observed
within the UNC-0, Abilene-IC1,
and Abilene-IK1 traces, with MT = 10 ms, SI = 0.7, and RT = 10s. We observe that the
median inaccuracy in measuring AB is smaller with simple sampling (within 1.5 Mbps
and 0.4 Mbps for the Abilene and UNC traces, respectively) than with systematic or
stratified sampling (7 Mbps and 3 Mbps for the Abilene and UNC traces, respectively).
A similar trend is visible for the

L=�NM
values of the computed inaccuracies. However,

for all traces analyzed, we find that even the 95% values of the inaccuracies lie within�26NM
of the link AB—this is close to the resolution accuracy of existing ABETs. Thus,

it may be fair to conclude that although simple strategy is likely to yield better sampling
accuracy, the inaccuracies of systematic and stratified sampling are not significant for
current tools. Since most existing ABETs rely on systematic sampling, we use it in all
of our subsequent analysis.
3.2 How does probe-stream duration impact the accuracy of estimated AB?

The duration of individual probe streams transmitted within the run-time of a tool de-
termine its MT—indeed, each probe stream samples the AB process for this amount of
time. In order to assess the impact of MT on a tool’s accuracy, we analyze each trace as
follows. Using systematic sampling, for a given RT, SI, and MT , we compute the CDF
of the sampling inaccuracy ^  "!\QRTSU 4b P!\QW�]aW ^ observed over all segments O within the
trace, exactly as described in Section 3.1. Using an RT of 10s, we compute the above
CDFs for MT of 10 ms and 100 ms, and SI of

6IHJ�
,
6KHc�

, and
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. Figs 5 and 6 plot these
CDFs for the Abilene-IC1 and UNC-0 traces, respectively. As expected, we observe
that for a given MT, increasing the SI improves the accuracy of the sampled AB. We



also observe that for a given SI, MTs that differ by even an order of magnitude have a
negligible impact on the sampling accuracy. Thus, while SI impacts the measurement
accuracy significantly, MT does not.
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The above observations have the following implications for ABET design: (i) The
same sampling accuracy may be attained by a tool by either using a few long probe-
streams, or several short probe-streams (as long as both result in the same SI). The
latter may be useful for applications that benefit from the timely-availability of an ini-
tial AB estimate, even if its only roughly accurate. The first few probe streams are likely
to yield such a rough estimate quickly, while the later probes make the estimate robust.
This flexibility may not be available if longer, fewer probe streams are used. (ii) Any
application-specific MT may be used for sampling, without impacting the measurement
accuracy significantly, as long as an inversely proportional number of samples are col-
lected at that timescale (thus, maintaining the same SI).5
3.3 What is the marginal gain in increasing sampling intensity?
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The observations made above indicate
that the sampling intensity has a sig-
nificant impact on the accuracy of the
sampled AB; we next examine this im-
pact quantitatively. For this, for each
trace, we compute the CDF of the sam-
pling inaccuracy, ^  P!dQRTSU 4; P!\QW�]aW ^ for
a given choice of MT, SI, and RT, as
described before. Fig 7 plots the 95%
of sampling inaccuracy observed with
different values of SI, with an MT of 10
ms and an RT of 10 s, for several traces.
As expected, we find that increasing the
SI decreases the sampling inaccuracy—however, the marginal improvement in sam-
pling accuracy decreases with increasing SI. In particular, an ABET is unlikely to
improve its sampling accuracy significantly beyond a sampling intensity of < 6NM —
maintaining a low SI can help the ABET reduce the network overhead of AB estimation.
3.4 How does RT impact accuracy?
Finally, we evaluate the impact of the tool run-time on its sampling accuracy. For each
trace, we compute CDFs of the sampling inaccuracy ^  "!dQRTSU 4e "!�QW�]2W ^ as described

5 It is important to note that our analysis assumes a perfect probe stream and inference logic. In
practice, it has been shown that due to the interaction between probe packets and cross-traffic,
the use of smaller MTs results in high estimation bias [11]. However, in high-speed networks
and at MTs of fg2h_i or higher, as is considered in this paper, the bias is negligible.



before. For MT = 10 ms and SI = 0.5, Fig 9 plots the 95% value from the CDFs, as a
function of RT. We find that as RT increases, the sampling inaccuracy decreases. This
is to be expected, as a larger RT yields a larger number of AB samples for a given
SI—we find, however, that the marginal improvement in sampling accuracy reduces
with increasing RT. In particular, an ABET is unlikely to improve its sampling accuracy
significantly beyond an RT of 5 s.

RT SI 5 % 50 % 95 % 5 % 50 % 95 % 5 % 50 % 95 %
(s) UNC-0 Abilene-IC1 Cesca-0
1 0.5 0.154 1.660 4.7 0.321 3.4 10.29 0.159 1.725 5.06
2 0.4 0.1457 1.579 4.62 0.291 3.16 9.50 0.144 1.57 4.613

10 0.2 0.155 1.66 4.91 0.25 2.714 9.215 0.133 1.467 4.18
20 0.1 0.186 1.895 8.2 0.291 3.12 9.97 0.148 1.64 4.7

Fig. 8. RT vs. Inaccuracy (Mbps)

Observe that increasing RT or
SI has a positive impact on the sam-
pling accuracy. However, increas-
ing either of these also results in
a proportional increase in the to-
tal probe traffic introduced into the
network. We next ask: does any one of these two parameters represent a better trade-off
between the sampling accuracy and network overhead? Fig 8 lists the

�=M
,
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, andL=�=M
values of the inaccuracy CDFs, computed with an MT of 10 ms, for several com-

binations of (RT, SI): (20s, 0.1), (10s, 0.2), (2s, 0.4), and (1s, 0.5). We find that for a
given trace, the sampling inaccuracies are similar for the combinations of: (1s, 0.5) and
(20s, 0.1), as well as for: (2s, 0.4) and (10s, 0.2). This observation has two implications.
First, it suggests that an ABET can achieve similar AB estimation accuracy by sam-
pling more intensely within a shorter run-time. In particular, this cautions against an
unqualified claim made in [7] that a tool with a longer run-time is likely to yield more
accurate AB estimates—our analysis indicates that this is true only if the sampling in-
tensity is held constant. In reality, it is thus possible to design a faster tool without
sacrificing estimation accuracy, by simply increasing the sampling intensity of the tool.
Second, note that in order to maintain the same accuracy, the relative increase in SI is
larger than the relative reduction in run-time. Thus, a single invocation of a faster tool
that achieves similar accuracy, is likely to insert more probe-traffic into the network.
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Fig. 9. Run-Time vs. Accuracy

In the next two sections, we eval-
uate the impact of MT and RT on the
variability and stability of the AB pro-
cess. For the analysis in the rest of this
paper, we assume a sampling intensity
of 1 (the AB process is observed com-
pletely by an ABET).

4 How does duration of
measurement affect AB
variability?
Recall from Fig 1 that the AB process
can exhibit low-to-high variability, de-
pending on the timescale at which it is observed. Furthermore, the longer is the tool
run-time, the greater is the opportunity to witness variability in the corresponding AB
process. To quantify these effects, we next evaluate the impact of MT and RT on AB
variability. Our objective is to find the set of timescales and durations that characterize
an AB process with low variability.
What is a predictable measure of variability? The importance of reporting the vari-
ability in AB, in addition to its average, has been recognized recently—a new variant
of Pathload reports variability in the form of the maximum and minimum AB observed
during the tool’s run [8]. In this section, we first address the issue of what metric is ap-
propriate for characterizing AB variability as a function of MT and RT? In particular,
we investigate whether for a given value of MT and RT, the standard-deviation—which



is likely to be more robust to outliers—is a more predictable metric than the range
metric described above.

RT MT jlklm�n�o2p�q (Mbps) jlkBr3s�t (Mbps)
(s) (ms) 5 % 50 % 95 % 5 % 50 % 95 %

10 215.01 288.7 390.1 44.6 56.9 73.8
1 50 54.4 81.3 126.6 14.4 20.7 31.3

100 31.6 56.7 96.8 9.5 16.9 28.8
10 293.5 367.2 479.4 47.7 58.7 73.1

5 50 88.5 117.6 176.8 17.1 22 32.6
100 69.7 103.5 154.3 13.7 21.2 33.3
10 355.5 436.7 571.4 51.1 60.4 73

20 50 117.5 153.4 238.8 19.1 23.6 37.4
100 107 144.5 212.9 17.8 25.2 36.7
Table 1. Abilene: AB variability metrics

RT MT jlklm�n(o2p�q (Mbps) jlkurvs�t (Mbps)
(s) (ms) 5 % 50 % 95 % 5 % 50 % 95 %

10 118.6 150.9 193.3 22.3 26.5 31.1
1 50 34.5 50.7 71.3 9.1 12.7 17.1

100 17.6 29.2 45.6 5.4 8.8 13.1
10 160.3 188.1 231.7 23.9 26.9 30.0

5 50 57.6 71.3 93.2 11.1 13.4 16.4
100 34.6 45.7 64.5 7.5 9.7 12.8
10 190.5 218.8 267.3 24.8 27.1 29.5

20 50 74.2 87.6 113.9 12.3 13.8 16.3
100 48.4 59 84.8 8.7 10.2 13
Table 2. UNC: AB variability metrics

We analyze each trace as follows: (i) we compute the AB process at MT, and di-
vide it into segments of time-length RT each,as described in Section 3.1; (ii) for each
segment O , we compute the range,  "!dQ[RTwxU+y , and the standard deviation,  P!dQW�Z3z , of the
AB values observed in that segment; (iii) we compute the CDFs of the  P!VQ[�RTw'UTy and
 P!�QW>Z3z , as observed over all segments within the trace. Tables 1 and 2 list the 5%, 50%,
and 95% values of the  "! [RTwxU+y and  "! W�Z3z CDFs, for the Abilene-IC1 and UNC-0
traces, respectively. We observe that for any given MT and RT, the difference between
the 95% and 5% values of  P! [RTwxU+y is much larger than that of  "! W�Z3z . This implies
that for a given combination of MT and RT, the latter is a more predictable metric of
variability.
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Furthermore, we find that the predictability of  "! W�Z3z improves with increase in RT,
whereas the predictability of  P! [RTwxU+y does not. This is illustrated in Figs 10 and 11, that
plot the difference between the 95% and 5% values of these two metrics respectively, as
a function of RT and when MT = 10ms. We observe that the difference decreases with
RT for the  "! W>Z3z metric, but exhibits no such trend for the  "! [RTwxU+y metric. This im-
plies that the standard-deviation is a better choice to use for characterizing AB variabil-
ity. Furthermore, tools with longer run-times are likely to report more robust variability
estimates.
How does RT impact AB variability? From Tables 1 and 2, we also observe that for a
given MT, as the RT increases, the median value (as well as other percentiles) of  "! W>Z3z
also increases. The relative increase in the variability, however, is small. This suggests
that tools with longer run-times are likely to report only slightly higher values of AB
variability.
How does MT impact AB variability? For any given RT, Tables 1 and 2 indicate
that as MT increases,  "! W>Z3z reduces. The reduction in variability is most significant at



smaller timescales. For instance, at an MT of
��6'798

,  P! W>Z3z can be as high as
�26=6={|D>EG8

(maximum observed value) for the Abilene-IC1 trace. At an MT of
�'6:7;8

or higher, P! W>Z3z lies within } 6N{|D>EF8
for all traces (including Abilene-IC1). This latter value cor-

responds to less than
@NM

of the link capacity, which is within the resolution accuracy
of all existing ABETs [15]. This implies that in order to sample an AB process that
does not exhibit significant variability, ABETs should sample it at timescales of

�'6'798
or higher. In particular, the results of ABETs that rely on using packet-pairs instead of
longer packet-trains are likely to be significantly impacted by AB variability.

5 How stable is AB? RT N Abilene (Mbps) UNC (Mbps)
(s) 5 % 50 % 95 % 5 % 50 % 95 %

1 1.3 13.1 41.2 0.3 3.7 11.9
1 5 15.4 36.6 75.4 3.9 9.2 19.3

30 37.4 63.3 128.6 9.8 16.1 33.7
1 0.8 11 39.5 0.3 3 10.2

5 5 10.8 30.6 95.1 3.5 8 18.9
30 37.4 81 162.1 8.9 14.5 47.3
1 1.0 11.6 59.1 0.2 2.6 11.9

20 5 16.1 43.4 120.8 2.3 7.7 22.6
30 56.2 111 204.4 11.1 19.2 55

Fig. 12. Stability in AB

Applications that rely on ABETs necessarily use an
AB estimate only after the measurement has been
made. Thus, they implicitly assume that the AB pro-
cess does not change significantly during post-run
periods. In order to study the validity of this assump-
tion, we next study the stability of the AB process
across several successive runs of an ABET.

For a given RT and N, the number of successive tool runs examined, we analyze
each trace as follows: (i) we compute the AB process with MT equal to RT, and divide
it into segments of time-length RT each, as described in Section 3.1; we denote the
single AB reading of the O Z3~ segment by  P!\QRTSU ; (ii) for the O Z3~ segment, we compute
the post-run deviation metric as: �����/Q�����V�'�N�+��� %T� ��� %��v� ^  "!�QRTSU 4� "!�Q � �R+SU ^�� ; (iii)
we compute the CDF of ������Q� observed over all segments within the trace.

Fig 12 lists the 5%, 50%, and 95% of the observed �����/Q� , for RT = � 1s, 5s, 20s �
and N = � 1, 5, 30 � , for the Abilene-IC1 and UNC-0 traces. As expected, we find that
as time elapses (N increases) after an AB measurement is conducted, the AB process
deviates more from the measured value. We also find that, in general, ������Q� increases
with increase in RT, although not significantly.

An interesting data point is that of � � �
. We find that in any pair of neighboring

tool-runs, the AB does not change by more than
��@={|D>EF8

or } 6N{|D>EF8
for the UNC-0 and

Abilene-IC1 traces, respectively. In fact, we find that for all of the traces analyzed, the
AB measured in a pair of back-to-back tool runs does not differ by more than 4%, most
of the time. Since the accuracy of existing ABETs is at best around 10% [15], this value
lies within the resolution accuracy of existing tools. This observation is relevant for the
design of ABETs for applications that need to continuously monitor the AB on a path
by running an ABET repeatedly. In particular, consider the case when such applications
use Pathload-like ABETs, that spent a considerable portion of their run-time in arriving
at a coarse estimate of AB , and then work on fine-tuning that estimate. Such ABETs
could exploit the fact that AB does not change significantly between neighboring tool
runs, and use the result of the last tool-run as the coarse estimate of the current AB
—this should speed-up the next tool-run, while also introducing much less probe traffic
into the network.

6 Conclusions
Our analysis of several link traces yields several implications for design of ABETs.
Sampling-accuracy related: (i) A simple sampling strategy is likely to yield more sam-
pling accuracy, although the gain over systematic and stratifies sampling lies within the
resolution accuracy of current ABETs. (ii) A higher sampling intensity results in better
sampling accuracy, although the gains are insignificant beyond an SI of 30%. (iii) The



choice of MT does not impact sampling accuracy significantly, as long as SI is main-
tained. In particular, the same sampling accuracy may be attained by a tool by either
using a few long probe-streams, or several short probe-streams (both with the same
SI). (iv) Tools with longer run-times are likely to achieve better sampling accuracy, al-
though the gains are insignificant beyond a RT of 5s. Faster tools may, however, achieve
similar accuracy by increasing their sampling intensities—this, however, results in the
introduction of a larger amount of probe traffic into the network.
AB variability related: (v) ABETs should use the standard-deviation, as against the
range, for reporting variability in the sampled AB. Also, tools with longer run-times are
likely to report only slightly higher values of AB variability; however, the variability
estimates are likely to be more robust. (vi) The AB process exhibits significant variabil-
ity at MTs smaller than 50 ms. This corresponds to sending several packets within each
probe stream (unlike ABETs that use packet-pairs).
AB stability related: (vii) The average AB does not change significantly across neigh-
boring back-to-back tool runs. This observations can be exploited for applications that
need to continuously monitor the AB on a path by running an ABET repeatedly.
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