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Introduction: While it is well-known that TCP performance degrades significantly on
experiencing packet losses, not much is known about the way in which TCP losses oc-
cur within the current Internet and how effectively does TCP’s loss detection-recovery
mechanisms deal with them. As a first crucial step in filling this gap, we address the
issue of: how to reliably obtain the loss process that real-world TCP connections ex-
perience. We developed a passive analysis methodology for reliably inferring the loss
processes from real-world TCP connection traces. We instantiate our methodology in
analysis tools that emulate detailed sender-side state machines for several prominent
TCP stacks (Windows, Linux, BSD (MacOS), and Solaris) and augment these with
extra logic to correctly track TCP sender state as well as actual segment losses. Us-
ing these tools we analyze traces of more than 25 million TCP connections, collected
from 4 different networks: Abilene, UNC, MAWI working group (Japan), and Univ of
Leipzig.
Basic Approach: Our basic approach for passive inference of TCP losses is to: (i) em-
ulate the state-machine of a TCP sender using the ACK stream to track the triggering of
loss detection/recovery mechanisms, and (ii) augment the state machine with extra state
and logic about the transmission order and timing of all previously-transmitted packets
in order to classify retransmissions as necessary or not. Using this basic approach, we
can classify segment retransmissions as triggered by: (i) RTOs, (ii) Triple Duplicate
Acks (TDAs), (iii) Partial Acks (PAs), (iv) SACK, and (v) implicit (e.g. in response to
ACK after a RTO retransmission). For any retransmission, our analysis also attempts
to find out if the retransmission was unnecessary (i.e., the original transmission had
successfully reached the receiver).
Practical Challenges: Three concerns complicate implementation of the above.

Diverse and Non-documented TCP Stacks: TCP implementations written by dif-
ferent operating system vendors may differ (sometimes significantly) in either their
interpretations or their conformance to TCP specification/standards. We extract suffi-
cient details about the implementation of loss detection/recovery in several prominent
stacks by using an approach similar to the t-bit approach described in [1]. Details of the
extracted characteristics can be found in [2].

Delays and Losses between a Monitor and the Sender: The data and ACK stream
observed at a trace-collecting monitor may differ from the one seen at the TCP sender
due to delays, losses or reordering between the sender and the monitor. We deal with
this by using loss indications in the ACK stream to trigger only tentative state changes;
these are confirmed only by subsequent retransmission behavior by the sender. We in-
fer network reordering by detecting (i) reordering in the packet’s IP-id field, and (ii)
whether an out-of-sequence segment appears within a fraction of the connection’s min-
imum RTT relative to the next higher sequence number segment.

Non-availability of SACK Options: A large number of traces do not capture SACK
blocks present in the TCP option field. In absence of this information we classify a
segment retransmission as SACK-triggered using the following heuristics: (i) the con-
nection is in fast retransmit/recovery (FR/R), (ii) the retransmission is not explained by



# # # % No % Network Retransmissions
Trace Conn. Packets OOS Cause Reorder Total % RTO % TDA % PA % SACK % Implicit % Unexp

Abilene-OC48-2002 7.1M 160.1M 410K 9.6 18 296K 32.5 11.5 2.0 4.5 18.3 3.5
Liepzig-1Gbps-2003 2.4M 17.3M 51K 1.7 0.47 50K 46.3 5.9 1.9 4.9 27.7 11.1
Japan-155Mbps-2004 0.3M 3.7M 52K 0.4 2.9 50K 47.5 11.9 2.6 1.7 31.4 1.6

UNC-1Gbps-2005 14.5M 151M 698K 6.69 29 446K 34.2 6.1 2.8 1.5 13.2 6.0
Ibiblio-1Gbps-2005 0.9M 158.9M 504K 0.7 0.2 500K 33.1 14.0 4.8 0.0 44.1 3.0

Table 1. Classification of OOS

either RTO or a PA, and (iii) the sequence number of the retransmitted segment is less
than the highest sequence number that was in flight when the connection entered FR/R.
Validations: We validate our analysis tools against TCP connections for which the
“ground truth” about each Out of Order Segment (OOS) is known. We modify tbit to
simulate different packet loss scenarios that would trigger sender responses by with-
holding ACKs, sending duplicate ACKs, and providing SACK blocks reflecting gaps in
received sequence numbers. We also implemented the ability to generate desired vari-
ability in RTT by delaying the ACKs. The procedures we used have two parts (1) to
verify that each TCP implementation responds in real operation as we expected, and
(2) to verify that the state machine analysis tools correctly emulate each implementa-
tion’s responses. For the first part we processed the tcpdump traces with tcptrace and
other tools to verify the implementations’ responses. For the second part, we used tcp-
dump traces as input to the state machine analysis programs and recorded their outputs.
Comparing the results from the state machine analysis with the known implementation
responses, we could validate state machines inferences about sender states.
Analysis of TCP Connections: Table 1 lists the traces used in our analysis. These
traces are collected from links with transmission capacity ranging from 155 Mbps to
OC-48. For our analysis, we use only those connections that transmit at least 10 seg-
ments and had at least one OOS. Table 1 also shows the classification for OOS events
in the five traces. We find that

– Our tools were able to infer the cause for more than 90% of the OOS events.
– In 4 out of the 5 traces more than 50% of the retransmissions were due to timeouts.

Only 10-15% of retransmissions are triggered by TDA.
– 20-45% of retransmissions are implicit and are caused by TCP’s Go-Back-N style

retransmissions after RTO. 24-42% of these are unnecessary.
The fraction of unnecessary retransmissions can range from 18-38%. The results are
quite consistent with those reported by Allman for three of the traces but are higher for
two. This may be because Allman does not track RTO or TDA triggered unnecessary
retransmissions. We find that while a majority of connections (80%) send less than 2
unnecessary retransmissions, a non-negligible fraction (7%) send more than 5.
Implications of Our Analysis: Our analysis of real-world TCP connections suggests
important implications for TCP performance (especially for development of analytic
models of TCP throughput as a function of loss rates). Understanding prevalence of
RTO and duplicate-ACK triggered retransmissions are important for modeling TCP
throughput. Finally, the stateful analysis capability of the tool facilitates identifying
not only the TCP mechanism causing the performance limitation (e.g. TDA triggered
retransmission) but also the underlying cause for this ( for e.g. network reordering vs.
actual loss).
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