
End-to-end Fairness Analysis of Fair Queuing Networks
���

Jasleen Kaur and Harrick M. Vin

Laboratory for Advanced Systems Research
Department of Computer Sciences

University of Texas at Austin
E-mail: � jks, vin � @cs.utexas.edu; Phone: (512) 232-7887

URL: http://www.cs.utexas.edu/users/lasr

Abstract

In this paper, we present the first end-to-end fairness analysis
of a network of fair servers. We argue that it is difficult to
extend existing single-node fairness analysis to an end-to-end
analysis of a network where each node may employ a dif-
ferent fair scheduling algorithm. We then present a two-step
approach for end-to-end fairness analysis of heterogeneous
networks. First, we define a class of scheduling algorithms,
referred to as the Fair Throughput (FT) class, and prove that
most known fair scheduling algorithms belong to this class.
Second, we develop an analysis methodology for deriving the
end-to-end fairness bounds for a network of FT servers. Our
analysis is general and can be applied to heterogeneous net-
works where different nodes employ different scheduling al-
gorithms from the FT class.

1 Introduction

With the commercialization of the Internet and the advent
of real-time and mission-critical Internet applications, it has
become important for network service providers to export
rich service semantics to users. Over the past decade, sev-
eral packet scheduling algorithms that allow networks to of-
fer such rich service semantics have been proposed [4, 5, 9,
10, 14, 19, 23, 24]. These scheduling algorithms arbitrate ac-
cess to the shared link bandwidth available at routers among
flows.

Why Fair Scheduling? Fairness of bandwidth allo-
cation among competing flows is an important property of
packet scheduling algorithms. A fair scheduling algorithm
allows routers (1) to provide throughput guarantees to back-
logged flows at short time-scales, independent of past usage
of the link bandwidth by the flows; and (2) to allocate idle link
capacity to competing flows in proportion to their weights (or
reserved rates).
�
This work appeared at the 23rd IEEE International Real-Time Systems

Symposium (RTSS’02), Austin, TX, December 2002.�
This research was supported in part by grants from NSF (award ANI-

0082294), Intel, IBM, and Cisco.

The property of providing throughput guarantees at short
time-scales independent of the past bandwidth usage by the
flow is important for two reasons.

1. In many applications, sources may not be able to predict
precisely their bandwidth requirements at short time-
scales (consider, for instance, the problem of transmit-
ting variable bit-rate encoded live video stream). To
support these applications effectively, a network should
allow flows to utilize occasionally more than their re-
served bandwidth if such over-usage does not come at
the expense of violating the bandwidth guarantees pro-
vided to other flows. Further, when a network allows a
flow to utilize such idle bandwidth, it should not penalize
the flow in the future. In networks that penalize sources
for using idle bandwidth, applications may prefer to use
constant bit-rate flows (with possibly fluctuating qual-
ity), instead of allowing the network to enforce arbitrary
penalties. Hence, to support applications with unpre-
dictable fluctuations in bandwidth requirements, it is es-
sential that networks utilize fair scheduling algorithms.

2. It is in the best interest of a network to allow sources to
transmit data in bursts; bursty transmissions allow a net-
work to benefit from statistical multiplexing of the avail-
able network bandwidth among competing traffic. Once
again, if a network were to penalize a flow for using idle
bandwidth, then the source would have no incentive to
transmit bursts into the network; this, in turn, would re-
duce the statistical multiplexing gains and thereby re-
duce the overall utilization of network resources. Thus,
fair scheduling algorithms allow networks to achieve
higher gains due to statistical multiplexing.

The property of fair scheduling algorithms of allocating
available bandwidth to flows in proportion to their reserved
rates is desirable from an economic perspective. Consider,
for instance, the case when a network provider charges its
customers based on their reserved bandwidth. In such a net-
work, if a user � pays twice as much as user � , then � ex-
pects the network to allocate bandwidth in the ratio 2:1 to

1

users � and � ; any other allocation would be considered un-
fair. Fair scheduling algorithms allow a network to ensure this
proportionate allocation property independent of the amount
of available bandwidth.

Why End-to-end Fairness Guarantees? Over the
last decade, many fair scheduling algorithms have been pro-
posed [4, 5, 10, 14]; the literature contains analyses that de-
rive single-server fairness guarantees for these fair schedul-
ing algorithms. From an end-user perspective, though, the
notion of end-to-end fairness is more meaningful. Addition-
ally, from a network provider’s perspective, quantification of
end-to-end fairness guarantees is necessary for offering ser-
vice level agreements (SLAs) to customers.

Deriving end-to-end fairness guarantees of fair queuing
networks is also important for evaluating the effectiveness
of core-stateless networks in providing fairness guarantees.
Over the past few years, core-stateless networks have been
designed to provide end-to-end service guarantees without
maintaining or using any per-flow state at the core routers
of a network [21]; this property improves the scalability of
the core routers to large number of flows and high-speed
links. Existing proposals for providing fairness in core-
stateless networks only provide approximate fairness in the
end-to-end throughput achieved by flows over large time-
scales [6, 8, 18, 21]. To design and evaluate core-stateless
networks that provide deterministic end-to-end fairness guar-
antees at short time-scales, it is important to first understand
and determine the end-to-end fairness guarantees that can be
provided by core-stateful networks that employ fair schedul-
ing algorithms.

Research Contributions In this paper, we present an
end-to-end fairness analysis of a network of routers, each
employing a fair scheduling algorithm. To the best of our
knowledge, this is the first such analysis in the literature. We
argue that it is difficult to extend existing single-node fair-
ness analysis to an end-to-end analysis of a network where
each node may employ a different fair scheduling algorithm.
We then present a two-step approach for end-to-end fairness
analysis of heterogeneous networks. First, we define a class
of scheduling algorithms, referred to as the Fair Throughput
(FT) class, and show that most known fair scheduling algo-
rithms belong to this class. Second, we develop an analysis
methodology for deriving the end-to-end fairness bounds for
a network of FT servers. Our analysis is general and can be
applied to heterogeneous networks where different nodes em-
ploy different scheduling algorithms from the FT class.

The rest of this paper is organized as follows. In Sec-
tion 2, we formulate the problem of end-to-end fairness. In
Section 3, we discuss the challenges involved in extending
existing single-node fairness analyses to an end-to-end anal-
ysis. In Section 4, we define the class of FT algorithms. We
present an end-to-end fairness analysis for a network of FT
servers in Section 5. We discuss related work in Section 6

and summarize our conclusions in Section 7.

2 Problem Formulation
Consider a flow � that traverses a network path of length � .
Let ��� be the rate reserved for the flow on all nodes. The
throughput received by flow � at server � during a time inter-
val � �	��
	���� , denoted by ����� �����	��
����� , is defined as the number
of bits of flow � that depart server � during the time interval
� � �
	� � � . Also, a flow � is said to be continuously backlogged
at server � in a time interval � � �
�� � � if, at all instances within
this interval, there is at least one packet belonging to flow �
in the server queue. Throughout this paper, we use the terms
node, server, and hop interchangeably.

In any time interval during which flows are backlogged1,
an ideal fair server provides throughput to flows exactly in
proportion to their reserved rates. This idealized notion of
fairness, however, is infeasible to realize in a packetized sys-
tem. Fair algorithms for packet scheduling, instead, guar-
antee an upper bound on the difference in the normalized
throughput (weighted by the reserved rate) received by flows
at a server in intervals during which they are continuously
backlogged [10]. This notion of a fairness guarantee 2 is for-
mally defined as follows:

Definition 1 The scheduling algorithm at node � is said to
provide a fairness guarantee if in any time interval � ����
�����
during which two flows � and � are continuously back-
logged, the number of bits of flows � and � transmitted by the
server, ����� �����	��
����� and �! "� �����	��
����� respectively, satisfy:####

� ��� � ��� �
�� � �
��� $

� "� � ��� �
�� � �
��

####&% ' �	� ()��� +* (1)

where � � and � are the rates reserved for flows � and �
respectively, and ' �)� ()��� ,* is the unfairness measure—a con-
stant that depends on the scheduling algorithm and traffic
characteristics at server � .

Different fair scheduling algorithms [4, 5, 10, 14, 19] differ in
the value of ' �	� ()��� +* , the unfairness measure. Table 1 lists the

' �	� ()��� +* values for several known fair scheduling algorithms.
In Definition 2, we generalize the above definition to that

of end-to-end fairness guarantee. Observe that the fairness
property is meaningful only across flows that share a re-
source; thus, the notion of end-to-end fairness is defined only
across flows that share the same end-to-end network path.

1Fairness in throughput allocation is usually defined only with respect
to flows that are backlogged. This is because the throughput of a non-
backlogged flow may be constrained by the source traffic rather than by the
allocation of link capacity.

2The literature also contains a different notion of fairness—namely,
worst-case fairness—in which a flow is guaranteed a minimum throughput
at its reserved rate, irrespective of traffic arrival in other flows [4]. This kind
of guarantee has also been referred to as a throughput guarantee [11]. It can
be shown that a server that provides a fairness guarantee as given by Def-
inition 1, when used in conjunction with admission control, also provides
a throughput guarantee. In this paper, we focus on the (stronger) notion of
fairness provided by Definition 1.

2

Definition 2 A network is said to provide an end-to-end
fairness guarantee if in any time interval � � �
�� � � during which
two flows, � and � , that traverse the same network path
of length � hops, are continuously backlogged at the first
server, the number of bits of flows � and � that depart the net-
work, � ��� � ��� �
�� � � and � "� � � � �
	� � � respectively, satisfy:

####
�!��� � � �	��
�����

� � $
� "� � ���	��
�����

�
####&% '

�����
� � ()��� ,* (2)

where '
�����
� � ()��� ,* is a constant that depends on the server and

traffic characteristics at the different hops in the end-to-end
network path.

In this paper, our objective is to compute an upper bound on
the network unfairness measure, '

�����
� � ()��� +* .

It may seem tempting to reason that, since the throughput
of a flow is determined by the rate allocated at a “bottleneck”
server along its path, the end-to-end fairness guarantee for
two flows would be the same as the fairness guarantee pro-
vided by the bottleneck server. Unfortunately, such a reason-
ing is incorrect. This is because, end-to-end throughput re-
ceived by a flow at short time-scales depends on the queuing
delay suffered by its packets. At short time-scales, individ-
ual packets of flows may encounter queuing delay at several
servers, even when at large time-scales, a single bottleneck
server may determine the average bandwidth allocated to a
flow. Therefore, the end-to-end fairness guarantee is not the
same as the fairness guarantee provided by any single server.

Note that we have assumed that � � , the rate reserved for
flow � , is the same at all routers on its path. There are many
ways to compute � � . For instance, � � could be the minimum
rate acceptable to the end-user, or it could be the rate deter-
mined according to the max-min fair rate allocation scheme—
such a scheme allocates to a flow a rate at each router that is
no more than the fair rate allocated to that flow at its bottle-
neck router. The problem of determining the rate ��� is or-
thogonal to the problem of end-to-end fairness analysis, and
is outside the scope of this paper.

3 End-to-end Fairness Analysis: Chal-
lenges

As mentioned earlier, designers of individual fair scheduling
algorithms generally prove fairness bounds (' �	� ()��� +*) with
respect to throughput achieved by different flows only at a
single server [4, 14]; the literature, however, does not con-
tain analyses that prove fairness bounds ('

�����
� � ()��� +*) for the

end-to-end throughput achieved by flows in a network of fair
servers. There are two inherent difficulties in extending ex-
isting single-server analyses to end-to-end network analysis.

1. The literature contains single-server fairness analyses
only for specific scheduling algorithms [4, 5, 14]. In
a wide area network, however, each router may employ
a different scheduling algorithm. Hence, an end-to-end

fairness analysis should be applicable to such heteroge-
neous networks.

2. Most single-server analyses of fair scheduling algo-
rithms presented in the literature derive fairness bounds
only over intervals during which the concerned flows are
simultaneously and continuously backlogged. Due to
the variability in the delay experienced by packets at a
server, traffic gets distorted as it traverses through the
network. Therefore, flows may not be simultaneously or
continuously backlogged at all the servers along the path
and during all time intervals, even if they are at the first
server. Hence, it is not straightforward to apply existing
single-server analyses to determine bounds on end-to-
end network fairness.

We address these limitations in two steps. First, we define a
general class of Fair Throughput (FT) servers; we show that
most of the known fair scheduling algorithms belong to this
class (Section 4). Second, we develop an analysis method-
ology for deriving end-to-end fairness bounds for a network
of FT servers, where different nodes may employ different
scheduling algorithms from the FT class (Section 5).

4 The Class of Fair Throughput
Servers

Recall that the fairness guarantee in Definition 1 is applica-
ble only to time intervals during which both flows are con-
tinuously backlogged. As discussed in Section 3, there may
be time intervals during which one or both of the flows may
not be continuously backlogged at subsequent servers. To fa-
cilitate fairness analysis during such time intervals at subse-
quent servers, we define the class of Fair Throughput (FT)
scheduling algorithms. An algorithm in the FT class pro-
vides a stronger notion of the per-node fairness guarantee—
if a flow � is continuously backlogged during an interval,
then the normalized throughput received by any other flow �
(whether continuously backlogged or not during the interval)
does not exceed the normalized throughput received by flow
� by more than a bounded quantity. We formalize this notion
below.

Definition 3 The scheduling algorithm at node � belongs
to the class of Fair Throughput servers if in any time interval
� �	��
	���� during which a flow � is continuously backlogged, the
number of bits transmitted by the server for any flow � and
flow � , ����� �����	��
	���� and �! � ��� �	��
	���� respectively, satisfy:

� ��� � � � �
	� � �
��� %

� "� � � � �
�� � �
��

��� �	� "� �

where
� �	� "� � is a constant that depends on the server and

traffic characteristics at node � .

From Definition 1 and Definition 3, it is easy to observe
that all FT algorithms also provide fairness guarantees with

' �	� ()��� +*
	����� � � �	� "� �
 � �	� ��� � .

3

The definition of the class of FT scheduling algo-
rithms is fairly general, and most well-known fair schedul-
ing algorithms—such as Generalized Processor Sharing
(GPS) [19], Self-clocked Fair Queuing (SCFQ) [10], Start-
time Fair Queuing (SFQ) [14], Worst-case Fair Weighted Fair
Queuing (WF � Q) [4]— belong to this class. We derive the
� �)� "� � values for these algorithms in Appendix A, and sum-
marize them in Table 1.

We expect that any fair scheduling algorithm that provides
per-node fairness guarantee (Definition 1) can be shown to
belong to the FT class. This is because, during sub-intervals
in which � is also backlogged, the difference in normalized
throughput received by flows � and � is bounded (due to
the fairness guarantee provided by the fair scheduling algo-
rithm). On the other hand, during sub-intervals in which � is
not backlogged, its throughput is zero, which can not exceed
the throughput received by flow � . A formal proof for this
assertion, however, is beyond the scope of this paper.

5 End-to-end Analysis of FT Networks
Given a network of FT servers, our objective is to derive

an upper-bound on
###
����� ��� �	� � ��
�� � $

��� � � � � � � �
 � �
, the differ-

ence in normalized throughput received during any time in-
terval � � �
	� � � by flows � and � that traverse the same end-
to-end path of � servers, assuming only that the flows are
continuously-backlogged at the first server. In the following,
we first present the methodology for conducting the end-to-
end fairness analysis (Section 5.1), and then present the for-
mal lemmas, theorem, and their proofs (Section 5.2).

5.1 Analysis Methodology
As mentioned in Section 3, one of the main challenges in ex-
tending single-server fairness analysis to an end-to-end anal-
ysis is that flows may not remain continuously or even simul-
taneously backlogged at subsequent servers. The question we
would like to answer is: given that the first server provides a
fairness guarantee to the two backlogged flows, can we say
something similar about the throughput received at the sec-
ond, third, fourth, and so on, servers? If we can relate the
fairness guarantee provided at a server to the fairness guaran-
tee provided at the previous server, then by using a recursive
argument, we would be able to answer the above question in
the affirmative. In particular, we need to answer the trans-
formed question: given '

������	� ()��� +* , the bound on difference in

normalized throughput achieved at � ��� server by flows � and
� , can we compute '

�������� ��� (��� +* , the bound on difference in

their normalized throughput at the � � ��� � ��� server?
For simplicity of exposition, while discussing the method-

ology in this section, we assume zero propagation latencies
on the links connecting servers. For any time interval � ����
�����
at the � � ��� � ��� server, we consider the following two cases:

� If none of the flows are backlogged at the time instants

�	� and �� , then the throughput received by the two flows
in the interval � � �
	� � � is the same as the throughput they
receive at the previous server in this time interval (as-
suming zero propagation latencies). This is because, no
packets that were received before � � get served in � � �
�� � �
(since there is no backlog at � �), and no packets received
during � � �
�� � � get served after � � (no backlog at � � ei-
ther).

Therefore, for such time intervals, the difference in nor-
malized throughput of the two flows at server � ��� has
the same upper bound as that for server � .

� If either one of the flows is backlogged at server � ��� at
� � or � � , then the number of packets of that flow served
during � � �
	� � � at server � ��� may be different from those
served at server � . This is because, some packets that
are backlogged at � � may get served in � � �
�� � � , and some
packets that arrive from server � in � � �
�� � � may not get
served and may remain backlogged at � � . The through-
put of the flow during � � �
�� � � at server � ��� is there-
fore determined not only by its throughput at server � ,
but also the backlogs at server � ��� at times ��� and ��� .
It follows that to derive the fairness guarantee of server
� ��� during such time intervals, we additionally need to
bound the difference in the normalized backlogs of the
two flows, at both � � and � � .
Let us consider a time instant ��� , smaller than � � , at
which none of the flows are backlogged at server � ��� .
The backlog of either flow at � � (or � �) can be computed
as the number of packets that arrive in � ���
	� � � (or � ���
	� � �)
minus the number of packets that are served in the same
time interval. From the fairness guarantee of server � ,
we know that the difference in (normalized) number of
packets that arrive at server � � � in � � �
	�	��� (or � � �
	����)
for the two flows is bounded. It follows that to bound the
difference in normalized backlogs at �)� (or ���) at server
� �!� , we need to bound the difference in normalized
throughput during � �"�
�� � � (or � �"��
	� � �).
To compute the difference in normalized throughput of
flows � and � at server � �#� during � ����
	� � � (or � �"�
�� � �),
we consider the following two scenarios:

– Both flows are backlogged at �)� (or ��).
Lemma 1 establishes a lower bound on the nor-
malized throughput during � � �
��	��� of either flow
(say, �) in terms of the normalized throughput of
the other (flow �). The proof methodology for
this lemma is based on the following two obser-
vations. Let �"$&% � ����
	� � � be the last time instant
before which � is non-backlogged (see Figure 1).

1. The throughput of flow � in � �"��
�� $ � at server
� �'� is the same as its throughput in the same
time interval at server � (since no backlogs

4

FT algorithm ' �)� (��� +* � �	� "� �
GPS 0 0

SCFQ
� ������
 � � � ������

 �
� ������
 � � � ������

 �
SFQ

� ������
 � � � ������

 �
� ������
 � � � ������

 �
WF � Q � 	��
� � � � � � $

���� � �����
 � � � ���
� � � � $ ����

Table 1: Unfairness measures for some FT algorithms

t1 t2t0 t’

f backlogged

atleast one of the flows backlogged

Figure 1: Reference for Lemma 1

at either ��� or ��$). At server � , the through-
put of flow � is lower bounded in terms of
the throughput of flow � (due to the fairness
guarantee of server �). Further, the through-
put of flow � at server � � � during � � �
��"$ � (no
backlog at � �) cannot exceed the correspond-
ing throughput at server � .

2. Flow � is continuously backlogged in � ��$
�� � �
and Definition 3 can be applied to this interval
to establish a lower bound on throughput of
flow � in terms of throughput of flow � .

– Only one of the flows is backlogged at � � (or � �).
As described above, Lemma 1 can derive a lower
bound on the normalized throughput during � � �
��	���
of the backlogged flow (say, �) in terms of the
throughput of the other (flow �).
To compute the reverse relation, that is, a lower
bound on throughput of flow � , first observe that
during � ���
	� � � , the throughput of flow � at server
� � � is the same as its throughput at server � (since
no backlogs at either � � or �	�). At server � , the
throughput of flow � is lower bounded in terms of
the throughput of flow � (due to the fairness guar-
antee of server �). Further, the throughput of flow
� at server � ��� during � � �
��	��� (no backlog at � �)
cannot exceed its throughput at server � . These ob-
servations are used in Lemma 2 to compute a lower
bound on the throughput of flow � in terms of that
of flow � .

Therefore, by using Lemma 1 and Lemma 2, we can
compute upper bounds on the difference in normalized
throughput of the two flows during both � ����
�� � � and
� ���
	� � � . The sum of these two bounds then gives a candi-

date value of '
�������� ��� ()��� +* , the upper bound on the differ-

ence in normalized throughput during � � �
�� � � . Lemma 3
helps tighten this value, based on the fairness guarantee
of the FT algorithm at server � .

5.2 Formal Analysis and Proofs
Using the methodology described above, we derive the end-
to-end fairness guarantee of a network of FT servers in The-
orem 1. For the remainder of the analysis, we remove the
simplistic assumption (made in Section 5.1) of non-zero link
propagation latencies. We use � � ����� to denote the propaga-
tion latency experienced—on the link connecting server � and
� � � —by the last packet of either flow received at server � � �
by time � .
Lemma 1 If flow � is backlogged at server � ��� at time �
and if ��� is a time instant smaller than � such that neither �
nor � is backlogged at ���� , and at least one is backlogged at
��� , then:

� ��� ��� � �����
����
��� � � "� ��� � �����
����

��
��� $ $ � ��� ��� ���

where
� $ 	 � ��� � ����� $ � � ��������
	�"$ $ � � ���"$ ������� � $ � � � � ��� $� � ��������
�� $ $ � � ��� $ ������� , and � $ % � ���
	� � is the latest time in-

stant at which � becomes backlogged.

Proof: Since packets arrive at server � � � in the same order
they are transmitted at server � , it follows that the packets re-
ceived at server � � � during � ����
	�"$ � are the packets transmitted
from server � during � �"� $ � � � ������
��"$ $ � � ���"$ � � .

Since � is not backlogged at ��$ � and ���� , we have:
� ��� ��� � �����
�� $ � 	 � ��� � ����� $ � � � ������
�� $ $ � � � � $ �	� . Further, since
flow � is not backlogged at � �� , we have: � "� ��� � ������
��"$ � %� "� � ����� $ � � � ������
��"$ $ � � � �"$ ��� .

5

Since
� $ 	 ����� � ��� � $ � ��� � � ��
	�"$ $ � �����"$ ��������� $ �! "� ��� � � $� � ��������
��"$ $ � � ���"$ ������� . Then, we have:

� ��� ��� � �����
��"$ �
� � � � "� ��� � ������
��"$ �

�
� � $ (3)

Since flow � is continuously backlogged during � ��$
	� � , and
server � � � belongs to the FT class, we have from Defini-
tion 3:

� "� ��� � ���"$
	���
� %

����� ��� �����"$
����
� �

��� ��� ��� ��� (4)

From (3) and (4), we get:

����� ��� � ��� �
����
� � � �! "� ��� � ��� �
����

�
��� $ $ � ��� ��� ���

Lemma 2 If flow � is not backlogged at server � � � at time
� and if ��� is a time instant smaller than � such that neither �
nor � is backlogged at � �� , and at least one is backlogged at
��� , then:

� "� ��� � ������
����
� � � ��� ��� � �����
����

� � $
�

where
�
	 � ��� � ����� $ � � ��������
	� $ � � � ��������� � $ � � � � ��� $� ����� � ��
�� $ � � � ���������� .

Proof: Since packets arrive at server � � � in the same order
they are transmitted at server � , it follows that the packets re-
ceived at server � � � during � �"��
�� � are the packets transmitted
from server � during � � � $ � �
�� $ � � .

Since � is not backlogged at � and � �� , we have:
� "� ��� � � ����
	��� 	 � � � � ��� $ � �
�� $ � � . Further, since �
is not backlogged at ���� , we have: � ��� ��� � �����
���� % � ��� � � ��� $� ��
	� $ � � .

Since
�
	 �!��� � ��� � $ � �
�� $ � ������� $ �! "� ����� � $ � �
�� $� ������ , we have:

� "� ��� � ������
����
��� � � ��� ��� � �����
����

�� $
�

Lemma 3 If during a time interval � �"��
�� � , the num-
bers of bits transmitted by a server for flow � and
� satisfy (1) with unfairness measure � $, and if� � 	 � ��� � �����
	� � ����� � $ � "� � ������
�� � ����� , and

� � 	
� ��� � �����
�� � ����� � $ � "� � �����
�� � ����� , where ��� % � � % � � % � ,
then

$ � $ %
� � $ � � % � $

Proof:
� ��� � ��� �
�� � �

� � 	
� ��� � �����
�� � �

� � $
� ��� � ������
�� � �

� �
	

�! � ��� � �
	����
�

� � � $ �! "� ����� �
��	���
� $

� �
	

� � � � � �
	� � �
��

� � � $ � �
Since the number of bits transmitted during the interval
� � �
	� � � should satisfy (1) with unfairness measure � $, it fol-
lows that: $ � $ %

� � $ � � % � $.
Theorem 1 If the throughput obtained by two flows, � and
� , at the first node in a network of FT servers satisfies (1),
and if they share the same end-to-end path of � hops, then
during any time interval � � �
�� � � , the end-to-end throughput of
the flows are related as:####

� ��� � ��� �
�� � �
� � $

� "� � � � �
	� � �
�

####

% ' ��� ()��� +* �
��
��� �

� � � � ��� ��� � � "� ��� (5)

Proof: The proof is by induction on � , the number of hops.

Base Case: � 	 � . By assumption, the throughput of the two
flows at the first node satisfies (1), which is the same as
(5) for the base case (� 	

�
).

Induction Hypothesis: Assume (5) is true for all servers�
�������
 � .

Induction Step: We need to show that (5) holds at server
� � �

. Without loss of generality, assume that� ��� �	� � � � � � �
 � � �
��� � �	� � � � � � �
 � � . It follows that to prove

(5), we only need to show that:

����� ��� �����	��
�����
� � %

�! "� ��� �����	��
	����
�

� ' ��� ()��� +*

�
��� ��
��� �

� � � � ��� ��� � � "� ��� (6)

Let � � % �	� be the largest time instant such that none of
the two flows are backlogged at server � � � at � �� (see
Figure 2).

Difference in normalized throughput during � � �
��	�)� :
Consider the following two cases at � � :
� If flow � is backlogged at �)� (see Figure 2), then

from Lemma 1, there exists ��
 %�� � �
��	��� , such that:

� ��� ��� � � ����
	� � �
��� � � "� ��� � ������
�� � �

��
� �
 $ � ��� ��� ���

where
�
 	 � ��� � ����� $ � � � ������
��
 $ � � ���
 ������� � $� � � � ��� $ � � ��������
	�
 $ � � ���
 ������� .

6

t1 t2t3 t4t0

f backlogged m backlogged

Figure 2: Reference for proof of Theorem 1

� If flow � is not backlogged at � � , then from
Lemma 2, we have:

����� ��� ��� � �
	�	���
� � � � "� ��� � ��� �
��	� �

�
� � �

� � "� ��� � ������
�� � �
��

� � � $ � ��� ��� ���
where

� � 	 � ��� � ����� $ � � � ������
�� � $ � � ��� � ������� � $� � � � ��� $ � � ��������
	� � $ � � ��� � ������� .

Therefore, in either case, there exists some ��$ % � � �
��	�)� ,
such that:

� ��� ��� � �����
�� � �
��� � � "� ��� � � ����
	� � �

��
� � $ $ � ��� ��� ��� (7)

where
� $ 	 ����� ����� � $ � ����� � ��
	�"$ $ � �����"$ ��������� $� "� � ����� $ � � � ������
��"$ $ � � ���"$ ������� .

Difference in normalized throughput during � �"��
�� � � :
Consider the following two cases at ��� :
� If flow � is backlogged at ��� (see Figure 2), then

from Lemma 1, there exists ��� %�� � �
����� , such that:

� � ��� � � ���
�� � �
�� � � ��� ��� � ������
�� � �

��� $
� � $ � ��� ��� "� �

where
� � 	 ����� � ��� � $ � � � � � ��
���� $ � ����������������� $�! � ��� � � $ � ����� � ��
	��� $ � � �������������� .

� If flow � is not backlogged at � � , then from
Lemma 2, we have:

�! � ��� ��� � �
�����
� � ����� ��� ����� �
�����

� � $
� �

� � ��� ��� � ������
�� � �
��� $

� � $ � ��� ��� � �
where

� � 	 � ��� � ����� $ � � � ������
�� � $ � � ��� � ������� � $� � � � ��� $ � � ��������
	� � $ � � ��� � ������� .

Therefore, in either case, there exists some ��$ $ % � � �
����� ,
such that:

�! "� ��� � ��� �
�����
�� � ����� ��� ��� � �
	����

��� $
� $ $ $ � ��� ��� "� � (8)

where
� $ $ 	 � ��� � � ��� $ � � � ������
��"$ $ $ � � ���"$ $ ������� � $� "� � ����� $ � � � ������
��"$ $ $ � � � �"$ $ �	����� .

Difference in normalized throughput during � � �
�� � � :
From (7) and (8), we get:

� ��� ��� � ��� �
�� � �
� � 	

� ��� ��� � �����
�� � �
� � $

� ��� ��� � �����
�� � �
� �

%
�! "� ��� ��� � �
	����

�
� � $ $ � � ��� ��� "� �

$
� "� ��� � � ���
	� � �

�� $
� $ ��� ��� ��� ���

From the induction hypothesis and Lemma 3, we know
that: $ � ' ��� ()��� +*

��� � ��� � � � � � ��� � � � � "� � �	� % � $ $ $ � $ %
' ��� ()��� +* ��� � ��� � � � � � ��� � � � � "� � � . Therefore, we get:

� ��� ��� � ��� �
�� � �
��� %

� "� ��� � ��� �
	� � �
��

� ' ��� ()��� +*

�
��� ��
��� �

� � � � ��� ��� � � "� � �

Thus, the induction step is proved for server � ��� .
Hence, the theorem follows by mathematical induction.
The following corollary follows from Definitions 1, 2, 3, and
Theorem 1.

Corollary 1 A network of FT servers provides an end-
to-end fairness guarantee with '

�����
� � ()��� +* 	 ' ��� ()��� +* �

� � ��� � � � � � ��� ��� � � � � � .
Corollary 1 states that the unfairness measure for a net-

work of servers is a linear function of the unfairness mea-
sures of the individual servers. An interesting property of the
guarantee is that unlike end-to-end guarantees on delay [13]
and throughput [15], which in addition, are linear functions of
link propagation latencies, the bound on end-to-end fairness
in (5) is independent of link propagation latencies. It follows
that if the number and types of servers on a typical path in a
wide-area network is similar to those in a local-area network,
then the end-to-end fairness guarantees of the two networks
would also be similar.

It is important to observe that the analysis of Theorem 1
can be used to derive end-to-end fairness guarantees even for

7

flows that are not continuously backlogged at the first servers.
The only condition that needs to be satisfied at the first server
is that the difference in normalized throughput of flow � and
� at the first server is bounded. This may be true even if
the flows are not continuously backlogged, for instance in
the case when the difference in (normalized) number of bits
that arrive from the respective sources is bounded. To obtain
the end-to-end fairness guarantee for such cases, ' ��� ()��� +*
is replaced in (5) by the bound on difference in normalized
throughput at the first server.

6 Related Work

A large number of fair scheduling algorithms have been pro-
posed over the last decade, and the literature is abundant in
analyses that establish the fairness properties of these algo-
rithms at a single server [4, 5, 10, 12, 14, 19, 22]. However,
the literature does not contain any end-to-end fairness analy-
ses for a network of fair servers.

A large number of powerful and general techniques have
also been developed in the recent past for conducting end-
to-end analyses of the network properties exported by large
classes of scheduling algorithms [1, 2, 3, 7, 13, 17, 20]. Un-
fortunately, most of these end-to-end analyses are restricted
to deriving guarantees on absolute metrics—such as delay,
throughput, jitter—that are defined for a single flow. Fair-
ness is a relative metric, which is defined in relation to the
service received by other flows. End-to-end analysis tech-
niques of the past—for instance those based on the definition
of service curves—have not been developed for such relative
service guarantees.

7 Concluding Remarks

Fairness of bandwidth allocation among competing flows is
an important property of packet scheduling algorithms. A fair
scheduling algorithm allows routers (1) to provide through-
put guarantees to backlogged flows at short time-scales, in-
dependent of past usage of the link bandwidth by the flows;
and (2) to allocate idle link capacity to competing flows in
proportion to their weights (or reserved rates). Although the
single-server fairness properties of several fair scheduling al-
gorithms are well-understood, the literature does not contain
any end-to-end fairness analysis of a network of such fair
servers.

In this paper, we present the first end-to-end fairness anal-
ysis of a network of fair servers. We first argue that it is dif-
ficult to extend existing single-node fairness analysis to an
end-to-end analysis of a network where each node may em-
ploy a different fair scheduling algorithm. We then present
a two-step approach for end-to-end fairness analysis of het-
erogeneous networks. First, we define a class of scheduling
algorithms, referred to as the Fair Throughput (FT) class, and
prove that most known scheduling algorithms belong to this
class. Second, we develop an analysis methodology for de-

riving the end-to-end fairness bounds for a network of FT
servers. Our analysis is general and can be applied to het-
erogeneous networks where different nodes employ different
scheduling algorithms from the FT class.

References
[1] R. Agrawal, R.L. Cruz, C.M. Okino, and R. Rajan. A

Framework for Adaptive Service Guarantees. In Pro-
ceedings of Allerton Conference on Comm., Control,
and Comp., Monticello, IL, September 1998.

[2] R. Agrawal, R.L. Cruz, C.M. Okino, and R. Rajan.
Performance Bounds for Flow Control Protocols. In
IEEE/ACM Transactions on Networking, volume 7,
pages 310–323, June 1999.

[3] J.C.R. Bennett, K. Benson, A. Charny, W.F.Courtney,
and J.Y. LeBoudec. Delay Jitter Bounds and Packet
Scale Rate Guarantee for Expedited Forwarding. to ap-
pear in IEEE/ACM Transactions on Networking.

[4] J.C.R. Bennett and H. Zhang. WF � Q: Worst-case
Fair Weighted Fair Queuing. In Proceedings of INFO-
COM’96, pages 120–127, March 1996.

[5] J.C.R. Bennett and H. Zhang. Hierarchical Packet Fair
Queueing Algorithms. In IEEE/ACM Transactions on
Networking, volume 5, pages 675–689, October 1997.

[6] Z. Cao, Z. Wang, and E. Zegura. Rainbow Fair Queue-
ing: Fair Bandwidth Sharing Without Per-Flow State. In
Proceedings of IEEE INFOCOM, March 2000.

[7] C.S. Chang. Performance Guarantees in Communica-
tion Networks. Spring-Verlag, New York, NY, 2000.

[8] A. Clerget and W. Dabbous. TUF: Tag-based Unified
Fairness. In Proceedings of IEEE INFOCOM, April
2001.

[9] A. Demers, S. Keshav, and S. Shenker. Analysis and
Simulation of a Fair Queueing Algorithm. In Proceed-
ings of ACM SIGCOMM, pages 1–12, September 1989.

[10] S.J. Golestani. A Self-Clocked Fair Queueing Scheme
for High Speed Applications. In Proceedings of INFO-
COM’94, 1994.

[11] P. Goyal. Packet Scheduling Algorithms for Integrated
Services Networks. PhD thesis, University of Texas at
Austin, Austin, TX, August 1997.

[12] P. Goyal and H. Vin. Fair Airport Scheduling Algo-
rithms. In Proceedings of International Workshop on
Network and Operating System Support for Digital Au-
dio and Video (NOSSDAV’97), pages 273–282, May
1997.

8

[13] P. Goyal and H. Vin. Generalized Guaranteed Rate
Scheduling Algorithms: A Framework. In IEEE/ACM
Transactions on Networking, volume 5, pages 561–571,
August 1997. Also available as technical report TR95-
30, Department of Computer Sciences, The University
of Texas at Austin.

[14] P. Goyal, H. Vin, and H. Cheng. Start-time Fair Queu-
ing: A Scheduling Algorithm for Integrated Services
Packet Switching Networks. In Proceedings of ACM
SIGCOMM’96, pages 157–168, August 1996.

[15] J. Kaur and H. Vin. Core-stateless Guaranteed Through-
put Networks. Technical Report TR-01-47, Department
of Computer Sciences, University of Texas at Austin,
November 2001.

[16] L. Kleinrock. Queueing Systems, Volume 1: Theory.
John Wiley & Sons, New York, NY, 1975.

[17] J.Y. LeBoudec and P. Thiran. Network Calculus.
Spring-Verlag Lecture Notes in Computer Science,
2050, July 2001.

[18] R. Pan, B. Prabhakar, and K. Psounis. CHOKE, A State-
less Active Queue Management Scheme for Approxi-
mating Fair Bandwidth Allocation. In Proceedings of
IEEE INFOCOM, March 2000.

[19] A.K. Parekh. A Generalized Processor Sharing Ap-
proach to Flow Control in Integrated Services Net-
works. PhD Thesis, Department of Electrical Engineer-
ing and Computer Science, MIT, 1992.

[20] D. Stiliadis and A. Verma. Latency-Rate Servers: A
General Model for Analysis of Traffic Scheduling Al-
gorithms. In IEEE/ACM Transactions on Networking,
volume 6, pages 611–624, October 1998.

[21] I. Stoica. Stateless Core: A Scalable Approach for Qual-
ity of Service in the Internet. PhD thesis, Carnegie Mel-
lon University, Pittsburgh, PA, December 2000.

[22] I. Stoica, H. Zhang, and T.S.E. Ng. A Hierarchical Fair
Service Curve Algorithm for Link-Sharing, Real-Time
and Priority Services. In Proceedings of ACM SIG-
COMM, Cannes, France, pages 249–262, 1997.

[23] H. Zhang and S. Keshav. Comparison of Rate-Based
Service Disciplines. In Proceedings of ACM SIG-
COMM, pages 113–121, August 1991.

[24] L. Zhang. VirtualClock: A New Traffic Control Algo-
rithm for Packet Switching Networks. In Proceedings
of ACM SIGCOMM’90, pages 19–29, August 1990.

A Algorithms in the FT Class
A.1 SCFQ [10]
Let � ��� �
�� � � be the difference in system virtual times at � �
and � � � � � . Let � � ��� �
�� � � be the difference in virtual time of
flow � at � � and � � .

Since flow � is continuously backlogged throughout
� �	��
	���� , we have from Corollary

�
of [10]:

� ��� �
�� � �
�� � � ���	��
����� $

� ���

�� (9)

Consider flow � . Break � �)��
����� into sub-intervals belonging to
two sets: � , the set of sub-intervals during which � is contin-
uously backlogged, and � � , the set of sub-intervals during
which � is not backlogged. From Definition � , the differential
service lag function for flow � , � � , is defined as:

��� ���	��
����� 	 � ���	��
����� $ � � ���	��
�����
	 � ��� �
�� � � $

�
� ��� � ��� �	��
�

� � � � $
�� $ $ �

$
�

� � � � � � � ��
���
� � ��� $
�� $ $ �

	 � ���	��
����� $
�

� � � � � � � ��
�
�!� ��� $
	� $ $ �

$
�

� � � � � � � ��
���
� ��� $
�� $ $ �

where we use Definition � and
�

of [10]. From Lemma �
of [10], we know that � � ��� is a non-decreasing function of
time. Therefore,

��� ���	��
����� % � ���	��
����� $
�

� ��� � ��� �	��
�
�!� ��� $
	� $ $ �

% � ���	��
����� $ ��� ���	��
����� (10)

From Theorem
�

of [10], we know that � � � � �
	� � � �
� ������
 � .

Therefore, we get:

� � �	��
����� � ��� ���	��
����� $
� ���
�
� � (11)

From (9) and (11) we get:

� � ��� �
	� � �
��� %

� � � �
�� � �
��

�
� 	��

��

�
� 	��
�
���

Therefore, for an SCFQ server, ' �)� (��� +* 	 � �	� "� � 	
� ������
 � �� ������

 � .

A.2 SFQ [14]
Let � � and � � , respectively, be the virtual times at � � and � � .
Since flow � is backlogged throughout � � �
�� � � , we have from
Lemma

�
of [14]:

� ��� �
	� � � � � ��� � $ � � � $
� 	��
 (12)

9

From Lemma � of [14], we have for flow � :

��� ���	��
	���� % ��� ����� $ ����� � � 	��
� (13)

From (12) and(13), we get:

� ��� �
�� � �
��

�
� ���

�� � � � $ � � � � � � � �
	� � �

��� $
� 	��
�
���� �!� ���	��
�����

� � %
� ���	��
�����

�
�
� ���

�

�
� ���
�
� �

Therefore, for an SFQ server, ' �	� ()��� +*�	 � �	� "� � 	
� ������
 � �� ������

 � .

A.3 WF � Q [4]
According to Theorem

�
in [4], the work done for a flow �

at a WF � Q server, � � , is related in the following ways to the
work done for the flow in a corresponding GPS [16] server,
� �����
� :

� �����
� ���	��
����� $ �

���
	�
� ���	��
����� %

� 	��

(14)

�
�
�
��
� ���	��
����� $ � �����

� ���	��
����� % � � $
���� � � 	��
� (15)

Given two flows � and � in a GPS server, of which flow � is
continuously backlogged during a time interval � ����
����� (and
flow � is not necessarily backlogged), we have the following:

� �����
� � �	��
	����

��� %
� �����
 ��� �
�� � �

��
Using (14) and (15), we get:

�
�
�
	�
� � � �
	� � � $ � � $

 �� � � 	��
�
��� %

� �����
� ���	��
�����

���

%
� �����
 ��� �
�� � �

��

%
� �
�
�� ��� �
�� � � � � 	��

��
Therefore,

�
�
�
	�
� � � �
	� � �

� � %
� �
�
	� ��� �
�� � �

�
�
� 	��

�

�
� 	��
�
� � $

� ���
� �
Therefore, for a WF � Q server:

� �)� � � 	

� 	��

�

�
� 	��
�
� � $

� 	��
� �
' �)� ()��� ,* 	 ����

 � ���

� �

� � 	��
 � �� $
����
� 	��

�
� � 	��
� � �� � $

������
%

� 	��
 � �� �
�
� � $

����
10

