
Interposed Proportional Sharing
for a Storage Service Utility �

Wei Jin
Department of Computer

Science
�

Duke University
Durham, NC 27708
jin@cs.duke.edu

Jeffrey S. Chase
Department of Computer

Science
Duke University

Durham, NC 27708
chase@cs.duke.edu

Jasleen Kaur
Department of Computer

Science
University of North Carolina at

Chapel Hill
Chapel Hill, NC 27599

jasleen@cs.unc.edu

ABSTRACT
This paper develops and evaluates new share-based scheduling al-
gorithms for differentiated service quality in network services, such
as network storage servers. This form of resource control makes it
possible to share a server among multiple request flows with proba-
bilistic assurance that each flow receives a specified minimum share
of a server’s capacity to serve requests. This assurance is important
for safe outsourcing of services to shared utilities such as Storage
Service Providers.

Our approach interposes share-based request dispatching on the
network path between the server and its clients. Two new schedul-
ing algorithms are designed to run within an intermediary (e.g., a
network switch), where they enforce fair sharing by throttling re-
quest flows and reordering requests; these algorithms are adapta-
tions of Start-time Fair Queuing (SFQ) for servers with a config-
urable degree of internal concurrency. A third algorithm, Request
Windows (RW), bounds the outstanding requests for each flow in-
dependently; it is amenable to a decentralized implementation, but
may restrict concurrency under light load. The analysis and exper-
imental results show that these new algorithms can enforce shares
effectively when the shares are not saturated, and that they provide
acceptable performance isolation under saturation. Although the
evaluation uses a storage service as an example, interposed request
scheduling is non-intrusive and views the server as a black box, so
it is useful for complex services with no internal support for differ-
entiated service quality.

Categories and Subject Descriptors
D.4 [Operating Systems]: Miscellaneous; C.3 [Special-purpose
and Application-based Systems]: real-time and embedded sys-
tems; C.5 [Computer System Implementation]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—performance measures

General Terms
Algorithms, performance

�
This is a revised version of a paper appearing in SIGMETRICS

’04. It clarifies several points, corrects a notational error in the
proof of Theorem 3, and includes an improved and expanded dis-
cussion of the experimental results and conclusions. This version
was released on 5/3/04. This research is supported by the Na-
tional Science Foundation (EIA-99772879 and ANI-0126231), and
by Hewlett-Packard, Network Appliance, and IBM.�

Wei Jin’s present address: Department of Computer Information
Science, Shaw University, Raleigh, NC 27601, wjin@shawu.edu.

Keywords
Performance isolation, differentiated service, proportional sharing,
fair sharing, weighted fair queuing, multiprocessor scheduling, qual-
ity of service, storage services, utility computing

1. INTRODUCTION
Service providers and enterprises are increasingly mapping ap-

plication workloads onto shared pools of computing and storage
resources, such as utility computing environments in data centers.
Multiplexing workloads onto shared infrastructure can help to im-
prove resource efficiency and flexibility to adapt to changes in de-
mand and resource status over time.

Resource sharing and consolidation create a need to control how
competing customers consume the resources of the service. In these
settings, negotiated Service Level Agreements may specify perfor-
mance targets—such as response time bounds—for specific request
classes. The workloads generate streams or flows of requests for
each request class. The service handles the requests of all flows
using shared physical resources, such as CPUs, memory, and disks.
Thus, shared service infrastructures need effective support for per-
formance isolation and differentiated application service quality:
without proper scheduling and resource management, a load surge
in one flow may unacceptably degrade the performance of another.

One approach to meeting these needs is to control and schedule
the individual resources used to serve each flow. However, this
approach has a number of limitations as described in Section 2;
most importantly it requires support in the server software and/or
the hosting platform.

The goal of our work is to support non-intrusive resource con-
trol externally to a service, without interfering with its operation in
any way. In particular, our solutions are designed for existing ser-
vices that have no internal support for differentiated service quality,
such as commercial storage servers. Our approach is based on in-
terposed request scheduling, as depicted in Figure 1. A request
scheduler or controller is interposed on the network path between
the service and its clients; the scheduler intercepts requests and for-
wards them to the server, delaying some requests and/or reordering
requests from different flows according to some policy. This in-
terposed approach views the server as a black box: in principle, it
applies to a wide range of services.

This paper addresses two key questions pertaining to interposed
request scheduling. First, how effectively can an interposed request
scheduler support proportional sharing of server resources? With
proportional sharing, the system reserves for each flow some spec-
ified minimum share of the server’s capacity to handle requests,
encoded as a weight or service rate. Surplus resources are shared
among active flows—flows with outstanding requests—in propor-

1

tion to their shares. Interposed request scheduling for storage has
also appeared in Facade [24], which uses Earliest Deadline First
(EDF) scheduling, and SLEDS [11], which uses a leaky bucket fil-
ter to shape and throttle I/O flows. Proportional sharing combines
the advantages of these approaches: like leaky bucket it provides
strong isolation under constraint independent of admission control,
and like EDF it can use surplus resources to improve service qual-
ity for active flows. Section 2.4 discusses these systems and other
related work.

Extensive research in scheduling for packet switching networks
has yielded a group of algorithms for proportional sharing of net-
work links [18, 21, 7, 8] based on Weighted Fair Queuing and
Generalized Processor Sharing [15, 26]. Fair queuing has been
adapted to other contexts such as disk scheduling [27], Web server
resource management [23], and CPU scheduling [29]. Most fair
queuing schedulers are bound tightly to a specific resource, such
as a router’s outbound link, a disk, or a CPU. This paper proposes
two efficient fair queuing variants for interposed request scheduling
with a configurable degree of concurrency within the server: depth-
controlled SFQ(�) and a refinement called Four-tag Start-time Fair
Queuing or FSFQ(�). These new algorithms extend Start-time Fair
Queuing or SFQ [21] to approximate proportional sharing of an
aggregate resource such as a complex server or even a distributed
service. Like Facade, SFQ(�) and FSFQ(�) dispatch at most �
outstanding requests to the server at any given time; the depth pa-
rameter � is a tradeoff between tight resource control and server
resource utilization.

The second question addressed in this paper is: can interposed
proportional sharing be effective in a decentralized system with no
central point of control for request scheduling? Proportional shar-
ing is attractive in a decentralized environment because shares may
be partitioned across multiple request sources, with less coordina-
tion than would be required for distributed deadline scheduling. We
propose and evaluate a distributed request throttling scheme called
Request Windows (RW(�)) that bounds the outstanding requests
for each flow independently. This idea is similar to the window
concept used in TCP rate control.

... ...
Server

Scheduler

Client 1

Client 2

Client n

info of requests in server

Figure 1: System model. A request scheduler is interposed on
the network path between a black-box server and its clients.
The scheduler controls server resource usage by intercepting
and reordering requests as they flow to the server. The sched-
uler may reside in a virtualizing server switch.

We evaluate the effectiveness and fairness of SFQ(�), FSFQ(�)
and RW(�) both analytically and experimentally using simulations
validated by a prototype interposed request scheduler for the Net-
work File Service (NFSv3). The results demonstrate the behavior
of the algorithms, and show that they share resources fairly under
appropriate values of � and provide acceptable performance iso-
lation under constraint. The experiments are based on a simple
storage service configuration and workload; the approach and re-

sults can generalize to a wider class of services, but we leave a full
sensitivity analysis to future work.

This paper is organized as follows. Section 2 introduces in-
troduces and motivates fair queuing and proportional sharing, and
summarizes previous work including Start-time Fair Queuing, the
starting point for our approach [21]. Section 3 defines variants
of SFQ for interposed request scheduling, and Section 4 outlines
the decentralized Request Windows approach. After evaluating
the fairness properties of these algorithms analytically, Section 5
presents experimental results. Section 6 concludes.

2. OVERVIEW AND RELATED WORK
Consider any service that is shared by multiple clients: a storage

service, an application server, or even a server cluster. Clients gen-
erate requests that may use server resources—disk arms, processor
capacity, I/O bandwidth—in widely varying ways. Requests are
grouped into service classes called flows, with service level objec-
tives defined for each flow. (Without loss of generality we speak as
if each flow is issued by a separate client, although requests from
multiple clients may combine into a single flow, or the requests
from a given client may be classified into multiple flows.) In this
paper we consider the question: how can a system control access to
the server resources so as to provide predictable and controllable
performance across the request flows?

One way to provide performance isolation is to schedule access
to each of the shared resources inside the server in a coordinated
way. Many mechanisms and abstractions to provide this resource
control (e.g., [6, 30, 17]) are just beginning to appear in general-
purpose operating systems, and a new generation of virtual machine
monitors supports resource control at a level below the operating
system. These systems are designed to allow a service provider
to control the resources allocated to each service and each flow or
request class, with support from the low-level schedulers for each
resource [27, 19, 29, 31]. However, they assume that each request
class is served by a separate instance of the service running in a
separate virtual machine or resource slice, which inhibits data shar-
ing, or else they require modifications to add support for differen-
tiated service quality into the application. Most importantly, this
approach cannot be used for server appliances such as commercial
storage servers without quality-of-service features, making perfor-
mance isolation difficult to achieve for service providers (e.g., Stor-
age Service Providers or SSPs) using these appliances.

2.1 Interposed Request Scheduling
In this paper, we consider a service model illustrated in Figure 1.

We treat the service as a black box that is shared by multiple clients,
and implement the resource control policy in an interposed request
scheduler with no a priori knowledge of the server’s internal struc-
ture. The scheduler intercepts requests and dispatches them to the
server according to its internal policies to share resources fairly
among the flows according to their assigned shares. To avoid over-
loading the server, the scheduler limits the maximum number or
aggregate cost of simultaneous outstanding requests to � . It main-
tains a separate request queue for each flow, and selects the next
request to dispatch whenever a request issue slot is open and one or
more requests are queued. The scheduler dispatches requests from
each flow in FIFO order, but in general we assume that the server
may execute requests concurrently and may complete dispatched
requests in any order.

The performance received by a client depends on the volume of
requests, utilization of the shares, variability of resources within
the system, variability of resource demands among the requests,
and the effectiveness of the scheduler. Due to the complexity of
the systems and the volatility of the workloads, the performance
assurances for each flow can be probabilisitic at best [32]. This
paper proposes novel algorithms for interposed request scheduling

2

that provide probabilistic assurance that each client receives its fair
share of the server resources, according to the estimated cost of
each request. More precise cost estimates enable more precise re-
source control.

2.2 Fair Queuing
The proposed algorithms are variants of fair queuing [15], a class

of algorithms to schedule a shared resource such as a network link
or processor among competing flows. Many variants of fair queu-
ing exist for different contexts [18, 21, 7, 8].

Each flow � consists of a sequence of requests or packets ���� ...�	��
arriving at the router or server. Each request ��
� has an associ-
ated cost ��
� . For example, the requests may be packets of varying
lengths, or requests for CPU service by threads. Fair queuing allo-
cates the capacity of the resource in proportion to weights assigned
to the competing flows according to some policy that is outside the
scope of this paper. The weights may represent service rates, such
as bits or cycles or requests per second. Only the relative values of
the weights are significant, but it is convenient to assume that the
weights � for each flow � sum to the service capacity, or equiva-
lently that they represent percentage shares of service capacity and
request costs are normalized to a service capacity of one unit of
cost per unit of time.

A flow is active if it has one or more outstanding requests, and
backlogged if it has outstanding requests that have not yet been dis-
patched. Fair queuing algorithms are work-conserving: they sched-
ule requests of active flows to consume surplus resources in propor-
tion to the weights of the active flows. A flow whose requests arrive
too slowly to maintain a backlog may forfeit the unconsumed por-
tion of its share, and receive a slower service rate.

Formally, if � ��������������� is the aggregate cost of the requests from
flow � served in the time interval � � � ��� ��� , then a fair scheduling
algorithm guarantees that:

� � � �������������
 � �

�! ���"���������

�$# % ��& (1)

where � and ' are any two flows continuously backlogged with
requests during � ���(����� � , and

% �(& is a constant that depends on the
flow and system characteristics. Smaller values of

% ��& indicate
tighter lag bounds and better fairness for the scheduling algorithm.

Practical fair queuing algorithms are approximations to Gener-
alized Processor Sharing or GPS [15, 26], an idealized reference
algorithm that assumes fluid flows served in units of bits or cycles.
The practical algorithms consider requests as indivisible, although
the per-request cost for each flow is bounded by some maximum
cost, length, or quantum ��)+*�,� , which affects

% ��& . Several anal-
yses have derived delay and throughput guarantees when practical
scheduling algorithms are used in conjunction with an admission
control policy and shaped workloads [28, 20].

Two main characteristics make a service environment different
from that of a network router. First, the cost of a request may be
influenced by several factors, including cache hits, disk scheduling,
etc., and service rates can fluctuate widely. Second, servers can
handle multiple requests concurrently. Thus the problem is a form
of multiprocessor scheduling, which is significantly more complex
than multiplexing a single shared resource.

2.3 Start-time Fair Queuing and Virtual Time
We chose Start-time Fair Queuing (SFQ) [21] as the basis for

our algorithms in part because it has been shown to be fair even for
links or servers with fluctuating service capacity [21]. Like most
fair queuing algorithms, SFQ assigns a tag to each request when it
arrives, and dispatches requests in increasing order of the tags; ties
are broken arbitrarily. The fairness properties of an algorithm result
from the way in which tags are computed and assigned to requests

of different flows. SFQ assigns two tags for every request: when
the -/.10 request �32 � of flow � arrives, it is assigned a start tag 4 � �52 � �
and a finish tag 6 � �32 � � . The tag values represent the time at which
each request should start and complete according to a system notion
of virtual time 7 ����� . Virtual time always advances monotonically
and is identical to real time under ideal conditions: all flows are
backlogged, the server completes work at a fixed ideal rate, request
costs are accurate, and the weights sum to the service capacity. In
practice, virtual time may diverge arbitrarily from real time with-
out compromising fairness if the scheduler dispatches requests in
virtual time order. For example, 7 ����� advances faster than real time
whenever surplus resources allow the active flows to receive service
at a faster rate than their configured shares would allow.

SFQ assigns tags as follows:

4 � �32 � �98 :<;>=@? 7 �BAC� �32 � ���"� 6 � �D2FE �� ��GD� -IHKJ (2)

6 � �32 � �98 4 � �D2 � �ML � 2 �
 � � -IHKJ (3)

where AC� �32 � � is the actual arrival time of request �52 � , 6 � � � � �N8KO ,
7 �BO/�P8QO , ��2 � is the cost for the server to execute the request, and
 � is the weight or share for flow � . During a busy period, 7 ����� is
defined to be equal to the start tag of the request in service at time � .
When the server is idle, 7 ����� is defined to be equal to the maximum
finish tag of any request that has been serviced by time � . A key
advantage of SFQ is that it determines 7 ����� efficiently.

In [21], the authors derive the fairness guarantee of an SFQ server,
stated as the following theorem:

THEOREM 1. For any interval � ���(�R��� � in which flows � and '
are backlogged during the entire interval:

� � ����� � ��� � �
 � �

� ��� � �R� � �

�3# �)+*(,�
 � L �)+*(,

 (4)

where � �����"�(������� is the aggregate cost of requests from flow �
served in the interval � � � ��� ��� .

SFQ and other fair queuing algorithms are similar to Virtual
Clock [34] in that the request tags for each flow advance accord-
ing to the progress of that flow. The start tag of the flow’s most
recent request may be viewed as the flow’s virtual clock. Flows
with smaller tag values are “behind” and receive priority for ser-
vice; flows with larger tag values are “ahead” and may be penal-
ized. However, unlike Virtual Clock, the tag values of newly active
flows advance to the system-wide virtual clock 7 ����� , so that their
newly arriving requests compete fairly with other active flows. This
avoids unfairly penalizing active flows for consuming surplus re-
sources left idle by inactive flows.

A server with internal concurrency may have multiple requests in
service simultaneously, so 7 ����� is not well-defined for conventional
SFQ in this setting. Moreover, even an active flow may lag behind7 ����� if it generates an insufficient number of concurrent requests
to consume its assigned share. Section 3 presents and analyzes
variants of SFQ to maintain virtual time and assign service tags for
interposed request scheduling.

2.4 Other Approaches
Several other systems have used some form of interposed request

scheduling to provide service quality assurances for storage arrays.
Facade [24] proposes a storage switch that uses Earliest Deadline
First (EDF) scheduling to meet response time objectives exposed
directly to the scheduler. The key drawback of EDF is that it is un-
fair: EDF does not isolate request flows from unexpected demand
surges by competing flows. Facade assumes effective admission

3

SYMBOLS DESCRIPTION

� 2 � Flow � ’s - -th request/packet
��2 � Cost of request �32 ���)+*(,� Maximum request cost for flow � � Weight or share for client �
AC� �32 � � Arrival time of request �32 �
4 � �32 � � Start tag of request �32 �
6 � � 2 � � Finish tag of request � 2 �7 ����� Virtual time at time �� ����� � ��� � � Aggregate work/cost of requests

served from flow � during interval � � � ��� �"�� � 4 � Aggregate cost of requests in set 4

Table 1: Some symbols used in the paper.

control and incorporates priority scheduling to isolate each flow
from the demands of lower-priority flows. Proportional sharing
provides a more general and configurable solution with strong per-
formance isolation. SLEDS [11] is a network adapter for network
storage; it uses a leaky bucket filter to shape and throttle I/O flows
from each client. The key drawback of the leaky bucket approach is
that it is not work-conserving: it throttles flows to their configured
service rate even if surplus resources are available to provide bet-
ter service. This paper proposes proportional sharing algorithms
for interposed request scheduling—SFQ(�), FSFQ(�), and Re-
quest Windows—that are both fair and work-conserving (for suffi-
ciently large �). SFQ(�) and FSFQ(�) are designed to function
in a switch environment similar to Facade, while Request Windows
can function on a per-client basis such as SLEDS.

Our approach entails two key resource efficiency tradeoffs rela-
tive to other approaches. One advantage of Facade’s EDF schedul-
ing is that it schedules directly for response time targets. A fair
proportional sharing system can meet service quality targets by siz-
ing the shares under feedback control according to the workload
profile and offered load levels [1, 5, 14, 16]. However, this may
require conservative overprovisioning of shares, particularly in a
storage service setting where per-request costs are difficult to es-
timate accurately. Second, like Facade and SLEDS, our approach
does not control scheduling of requests once they are dispatched
to the server. For example, request costs may vary based on the
interaction of requests (e.g., due to disk seek), or a request pattern
may result in load imbalances within the server, leading to unex-
pected queuing delays and leaving some resources unnecessarily
idle. The alternative approach of integrating service quality targets
into the server resource schedulers (e.g., disk schedulers) may use
resources more efficiently [27, 10, 22].

Several works extend fair queuing to multiprocessors on the as-
sumption that each flow corresponds to a thread making a sequence
of service requests for a CPU [12, 13]. These systems differ from
interposed request scheduling, in which multiple requests from a
single flow may execute concurrently. Recent work has also de-
rived theoretical properties for fair queuing over aggregated net-
work links [9], and suggested that similar algorithms would be use-
ful for network storage services. Those algorithms order requests
by finish tags derived from a simulation of GPS. We use the effi-
cient, practical SFQ algorithm as a starting point.

3. INTERPOSED PROPORTIONAL
SHARING

This section develops request scheduling algorithms for propor-
tional sharing of servers that can execute multiple outstanding re-
quests concurrently—including requests from the same flow. Ide-

ally, an interposed request scheduler would dispatch a sufficient
number of concurrent requests to fully utilize the resources in the
server. However, since the server defines the order in which dis-
patched requests complete, the scheduler cannot recall or reorder
dispatched requests. Thus a competing goal is to delay request
dispatching long enough to preserve the scheduler’s flexibility to
reorder requests and enforce fair sharing.

Our algorithms define a depth parameter � that controls the
number of outstanding requests at the server. When a request com-
pletes, the scheduler selects the next queued request according to
its scheduling policy, and dispatches it to maintain a concurrency
level of � within the server. The value of � represents a trade-
off between server resource utilization and scheduler fairness. For
instance, a larger � may allow better multiplexing of server re-
sources, but it may impose a higher waiting time on an incoming
client request. The policy to configure the � parameter or adapt it
dynamically is outside the scope of this paper.

This section derives three scheduling algorithms from SFQ. First,
we consider a direct adaptation of SFQ and show why it is unfair.
Next, we define a depth-controlled SFQ variant called SFQ(�) and
prove its fairness property in terms of a bound on lag given as a
function of � . Finally, we present a refinement to SFQ(�), called
Four-tag Start-time Fair Queuing or FSFQ(�), which can reduce
the lag bound modestly by giving newly active flows preference for
their fair share of the � request slots in dispatching requests.

3.1 Min-SFQ(�)
The simplest way to adapt SFQ to interposed request scheduling

is to define 7 ����� to be equal to the minimum start tag assigned to any
outstanding request. A request is outstanding if it has arrived but
has not yet completed, i.e., it is either queued in the scheduler or has
been dispatched and occupies one of the � request issue slots. The
scheduler may then compute start tags and finish tags of arriving
requests using Equations (2) and (3), and dispatch requests in start-
tag order as before. Call this scheduling algorithm Minimum-tag
Start-time Fair Queuing, or Min-SFQ(�).

To see that MFSQ is not fair, consider the behavior of an ac-
tive flow � that submits requests just fast enough for each request
to arrive before its previous request completes. This flow allows
little or no concurrency and may be unable to consume its share
of resources, leaving some of those resources idle to be consumed
by more aggressive flows. Since � has an outstanding request � 2 �
when � 2�S �� arrives, 7 ����� # 4 � � 2 � � and its start tag is 4 � � 2�S �� �T8
4 � � 2 � ��LVU

W X
Y X . Thus the virtual clock for flow � advances according

to its request arrival rate, and the tags for requests in � may lag ar-
bitrarily behind more aggressive flows. Thus Min-SFQ(�) has the
same flaw as Virtual Clock: a burst of requests arriving from � may
unfairly penalize more aggressive flows that have obtained higher
service rates by consuming resources previously left idle by � .

This example shows that it is no longer safe to assume that an
active flow is consuming at least its fair share. More generally, if
any flow persistently lags the others, then it holds back the system
virtual time 7 ����� so that the algorithm degrades to Virtual Clock,
which is known to be unfair. If a flow lags behind its competitors
due to insufficient concurrency, then it is necessary to advance the
virtual clock 7 ����� to catch up with more aggressive flows, to avoid
penalizing those flows unfairly. On the other hand, if 7 ����� advances
too rapidly then the scheduler degrades to FIFO, which is also un-
fair.

3.2 SFQ(�)
One way to advance virtual time more fairly in the presence of

lagging flows is to derive 7 ����� from the progress of backlogged
flows rather than lagging flows. The most direct way to do this is
to derive 7 ����� from the start tags of queued requests—requests that

4

have arrived but have not yet been dispatched—without consider-
ing requests currently in service. Since the scheduler dispatches
any arriving request from a lagging flow at the first opportunity, re-
ducing the window of vulnerability for a lagging flow to dominate
virtual time. If the request is dispatched before the flow’s next re-
quest arrives, then 7 ����� advances and the lagging flow forfeits its
right to recoup any resources it left idle.

We consider a simple variant of this policy, in which 7 ����� is de-
fined as the start tag of the last request dispatched on or before time� , i.e., the queued request with the lowest start tag at the time of
the last dispatch. Arriving requests are assigned start and finish
tags according to Equations 2 and 3 as before. This algorithm is
a depth-controlled variant of SFQ, referred to as SFQ(�). As in
SFQ, virtual time in SFQ(�) advances monotonically on request
dispatch events, but may not advance on every dispatch. This is
because requests dispatch in order of their start tags, and the start
tag of an arriving request 4 � � 2 � � HZ7 ����� .

Observe also that the scheduler’s request dispatch is driven by
completion of a previously issued request, opening up one of the �
issue slots. The algorithm used to dispatch requests is exactly SFQ,
and thus Theorem 1 applies to define the fairness and bound the lag
for requests dispatched by SFQ(�). It remains to determine fair-
ness and lag bounds for requests completed under SFQ(�), which
captures fairness from the perspective of the clients. Theorem 2
derives this bound.

THEOREM 2. During any interval � ��[� ���R[� � , the difference be-
tween the amount of work completed by an SFQ(�) server for two
backlogged flows � and ' is bounded by:

� � ����� [� ��� [� �
 � �

�\ ��� [� ��� [� �
	

�D# � � L J �M]P� �)+*(,� � L �)+*�, 	 � (5)

where � and are the weights assigned to flows � and ' .

[Proof]: Let the set 4 be the sequence of requests dispatched dur-
ing a time interval � ��������� � . Suppose 4 contains

� 4 � 8_^T` requests.
Define ��[� as the earliest time when any request in 4 completes. Let
the set 4 [be the sequence of ^ ` requests that complete at time� [� or later. Define � [� as the latest completion time for any request
from 4 [. For any interval � ��[� ���R[� � there is some corresponding inter-
val � ���(����� � defined in this way.4 consists of three disjoint subsets: 4 8 4 �aL 4 L 4�b , where4 � contains the requests from flow � , 4 contains the requests from
flow ' , and 4 b contains all requests in 4 that are not from flows �
or ' .

Consider the set of requests that were dispatched during � ���(�R��� �
and completed during � ��[� ���R[� � . This set 4 [dc 4 consists of three
disjoint subsets: 4 [� 8 4 [3c 4 � , 4 [8 4 [3c 4 and 4 [b 8 4 [Dc 4�b .
Therefore, the set 4 � � 4 [� represents the set of client � requests
dispatched but not yet completed at time ��[� , and similarly for 4 [
and 4 [b .

Now consider the set 4fe�g�h
ji of requests dispatched during � � � �R� �"�
but still in service after time ��[� : 4�e�gRh
ji 8 4 � � 4 [� L 4 [L 4 [b �k8� 4 � L 4� L 4 b � � � 4 [� L 4 [L 4 [b �N8l� 4 � � 4 [� ��L_� 4	 � 4 [��L� 4	b � 4 [b � . Since there are at most � requests in service at any
time,

� 4�e�gRh
ji
�3# � . Then trivially� 4 � � 4 [�

�3# �
and � 4 � 4 [

�3# �
Therefore

O # � � 4 �/� � � � 4 [� �
�] �)+*(,� (6)

O # � � 4	 � � � � 4 [�
�] �)+*(, (7)

Of the ^C` requests 4 [that completed service during � � [� ��� [� � ,
consider the subset 4 [h . e * " "m g that are not in 4 , i.e., they were dis-
patched before ��� or perhaps after ��� . Note that 4 [8n� 4 [� L
4 [L 4 [b �oL 4 [h . e * � �m g . 4 [h . e * � �m g can be further decomposed into
three disjoint sets 4 [h . e * " "m g 8 4 [[� L 4 [[L 4 [[b , where 4 [[� is the
set of requests from flow � , 4 [[from ' and 4 [[b otherwise. Since4 8l� 4 [� L 4 [L 4 [b �5L 4�e�gRh
ji , 4 [8l� 4 [� L 4 [L 4 [b �5L 4 [h . e * " "m g ,and

� 4 [� 8 � 4 � , we have
� 4 [h . e * � �m g

� 8 � 4 e�g�h
pi
�3# � . Therefore,

� 4 [[� �3# �rq O # � � 4 [[� � # �] �)s*(,� (8)� 4 [[�3# �rq O # � � 4 [[� # �] �)s*(, (9)

From Equation (6) to (9), we have:� � � � 4 �/� � � � 4 [� ��� � � � 4 [[� �
�5#

(10)
�] �)s*(,� (11)

and � � � � 4 � � � � 4 [��� � � � 4 [[�
�D#

(12)
�] �)+*�, (13)

Note that � �5����[� ���R[� �t8 � � 4 [� �oL � � 4 [[� � , and � ���R[� ����[� �C8
� � 4 [�ML � � 4 [[� . Therefore

� � � 4 �/�
 � �

� ������[� ����[� �
 �

�3# �] �)s*(,� � (14)

� � � 4 �
	 �

� ����[� ����[� �
	

�3# �] �)s*(, 	 (15)

Using
� A � �

� uv�3#w� A �
ux�3#w� A � L � ux� , we have

� � � ��� [� �R� [� �
 � �

�! ��� [� �������

�
� (16)

� � � 4 �/�
 � �

� � 4 �
	

�
(17)

�] ��)s*(,� � L �] �)+*(,
	 (18)

(19)

According to Theorem 1,

� � � 4 �/�
 � �

� � 4 �

�3# �)+*(,�
 � L �)+*�, (20)

Therefore,

� � �@��� [� ��� [� �
 � �

� ��� [� ��� [� �

�
(21)

� � L J �y]a� �)+*(,� � L ��)+*(,
 � (22)

� �
3.3 Four-tag Start-time Fair Queuing (FSFQ(�))

With interposed request scheduling, an arriving request � 2 � may
have up to � requests in service ahead of it. In some cases, a
fair policy such as SFQ would have ordered some or all of those
requests after � 2 � , but since they arrived earlier, the SFQ(�) sched-
uler dispatched them into free issue slots, and it is too late to recall
them. In the worst case, � exceeds the available concurrency in the
server, so � 2 � must wait for requests queued ahead of it at the server
to complete before it can receive service. Moreover, a request from
another flow may arrive, receive the same start tag, and issue first.
Min-SFQ(�) does not suffer from this drawback.

5

We refine SFQ(�) to compensate a late-arriving flow by favor-
ing it over other flows that hold more than their share of the � is-
sue slots. Our approach—called Four-tag Start-time Fair Queuing
(FSFQ(�))—combines the benefits of SFQ(�) and Min-SFQ(�).

FSFQ(�) associates two pairs of tags with each request. One
pair is similar to the start and finish tag in SFQ(�). The other pair
are the adjusted start tag, 4 , and adjusted finish tag, 6 , similar to
the tag definition in Min-SFQ(�). Requests are scheduled in the
increasing order of the start tags of the requests. Ties are broken
according to the adjusted start tags.

In calculating the tags, two functions—the virtual time, 7 ����� , and
the adjusted virtual time, 7 ����� —are used. 7 ����� is defined as the
start tag of the last dispatched request, similar to the virtual time
definition in SFQ(�). z ����� is defined as the minimum start tag of
the requests in the system, similar to the virtual time definition in
Min-SFQ(�). The four tags are calculated the following way:

If 6 � � 2FE �� �+{ 7 ����� , then

4 � �32 � �98 max ? 7 �BAC� �32 � ���"� 6 � �D2FE �� ��G (23)

else:

4 � �32 � �|8 max ? 7 �BAC� �32 � ���"� 6 � �32FE �� ��G (24)

6 � �32 � �|8 4 � �32 � �fL ��2 �
 � (25)

4 � �32 � �|8 max ? 7 �BAC� �32 � ���"� 4 � �32 � ��G (26)

6 � �32 � �|8 4 � �32 � �fL � 2 �
 � (27)

where AC� �32 � � is the arrival time of request �32 � , 6 � �	�� �N8 6 � �	�� �N8
O , ��2 � is the request cost, and � is the weight for flow � .

Initially 7 �BO}� and 7 �BO/� are both O . During a busy period, 7 �����
is defined as the start tag of the last dispatched request. 7 ����� is
defined as the minimum start tag of all outstanding requests. At the
end of a busy period, 7 ����� and 7 ����� are set to the maximum finish
tag assigned to any request that has been serviced by time � .

When a request � 2 � arrives at time � , the scheduler checks if
6 � �D2FE �� �~{ 7 ����� . If so, then some requests from other flows have
been dispatched with start tags greater than 6 � �52FE �� � , but have not
yet completed. SFQ would serve the newly arrived request first, but
it is too late. FSFQ(�) compensates � by giving it extra credits to
make up for its slight late arrival. The rules above achieve this by
assigning the start tags for �32 � as the following:

4 � � 2 � ��8 max ? 7 �����"� 6 � � 2(E �� ��G (28)

4 � �D2 � ��8 max ? 7 �������"� 4 � �32 � ��Ga8 7 ����� (29)

The flow � receives surplus credits 4 � �52 � � � 4 � �32 � ��8 7 ����� �
max ? 7 �����"� 6 � �32FE �� ��G to be used in breaking ties. Note that 6 � �52 � �s8
4 � �32 � �fL U

W X
Y X 8 7 �����ML U

W X
Y X\� 7 ����� . Therefore, only the first newly

arrived request for � uses formula (23); subsequent requests use
formula (24) until � becomes inactive.

For any request ���� arriving right after � 2 � , we can see that 4 � ���� �
and 6 � � �� � are unchanged as long as 4 � � 2 � � has not caught up with
the virtual time 7 (see formula (26)). However, 4 � � �� � and 6 � � �� �
gradually increase with subsequent requests, using formula (24)
and (25), until all the credits are used, that is, when 4 � � �� ��8
4 � ���� ��8 7 �BAC� ���� ��� . At this point, we already have 6 � �f�� � �
7 �BAC� ���� ��� . After this 4 � ���� � � 7 ����� , so using formula (26), we
can see that 4 � ���� �N8 4 � �	�� � .

4. REQUEST WINDOWS
The SFQ(�) and FSFQ(�) scheduling algorithms proposed in

Section 3 require (i) per-client state variables (four tags, in case
of FSFQ), and (ii) a priority queue to select the request with the
smallest start tag. The scheduling overhead grows at best loga-
rithmically in the number of flows, limiting the scalability of these
mechanisms. Moreover, a full SFQ(�) or FSFQ(�) must inter-
pose at a central point and intercept all requests from all flows. In
this section, we ask the question: what isolation guarantees are
possible for a simple decentralized solution that throttles each flow
independently of the others?

We propose and analyze a simple credit-based server access scheme
called Request Windows (RW). RW allocates a specified number of
credits, � � , to each flow � . An independent scheduler is interposed
on each flow, e.g., residing at the clients. Each dispatched request
�32 � occupies a portion of the flow’s credit allocation equal to the re-
quest’s estimated cost � 2 � . We define the policy RW(�) by setting
�
 8 �I
 for the case where all shares
 sum to one. That is, re-
quests with total cost at most � may be outstanding from all flows,
with each flow’s share determining the portion of the total allow-
able outstanding work allocated to that client. Arbitrary weights
may be used: in the general case �
 8 �

Y>�� W Y W .
Request Windows can be implemented in a decentralized fash-

ion with minimal per-flow state and without priority queuing. RW
is closely related to request-based flow control in the Direct Access
File System [25]; they are equivalent if requests have uniform cost.
Note that if inactive flows leave surplus resources, then requests
from an flow encounter less congestion at the server and complete
at a faster rate, opening issue slots and allowing the flow to dispatch
its requests at a faster rate. This is similar to the self-clocking be-
havior of protocols with window-based rate control, such as TCP.
Even so, RW is not fully work-conserving for low values of � . The
primary drawback of Request Windows is that it throttles each flow
without knowledge of whether other flows are active; RW yields
a tighter fairness bound, but it may limit the concurrency at the
server under light load and/or limit an active flow’s use of surplus
resources.

THEOREM 3. Consider an idealized FIFO server under RW(�).
The difference between the amount of work completed by the server
for two backlogged flows � and ' during any interval � � [� ��� [� � is
bounded by:

� � �@��� [� ��� [� �
 � �

�\ ��� [� �R� [� �
	

�3#�� � (30)

[Proof]: Let the sequence of requests sent to the server during a
time interval � � � ��� ��� be 4 , and let the total number of credits � � 4 �
consumed by 4 be ^T` . Time � [� is defined as the earliest time
that any request in 4 completes. Let the set 4 [be the sequence of
requests that complete at time � [� or later, such that the total number
of credits � � 4 [�� consumed by 4 [is also ^ ` . Time ��[� is defined
to be the latest time that any request in 4 [completes.

Assume that at time ��� the total number of credits consumed by
the outstanding client � requests is � [� , and � [for client ' . Obvi-
ously � [� # � � , and � [# �� .

Let the total number of credits of client � requests dispatched
during � � � ��� �"� be ^C� . We can rewrite ^T� as ^C�t8�� � � � � [� �}Lx��]� � L � [[� , where � [[� # � � . According to the way RW operates with
a FIFO server, the number of client ' requests sent to the server can
be represented as ^ 8�� �� � � [�DL���] �� L � [[, where � [[# �� .
Therefore,

� ����� � ��� � �k8_^C�C8��1�CL J �M] � � � � [� � � [[��\ ���"���������s8_^ 8l�1�CL J �M] �� � � [� � [[

6

0 50 100 150 200 250
0

5

10

15

Offered Workload in Reqs/sec

A
ve

ra
ge

 R
es

po
ns

e
Ti

m
e

(m
se

c)

Simulation Results Validation for FSFQ(4)

o: prototype

*: simulation

0 50 100 150 200 250 300 350 400
0

5

10

15

20

25

Offered Workload in Reqs/sec

A
ve

ra
ge

 R
es

po
ns

e
Ti

m
e

(m
se

c)

Simulation Results Validation for FSFQ(64)

o: prototype

*: simulation

Figure 2: Validation of simulation results. In these validation
experiments, we use two clients with equivalent weights. The� -axis shows the aggregate arrival rate for both clients.

Or

� �5��� � ��� � �
� � 8��1�TL J � �

� [� L � [[�
� � (31)

� ��� � �R� � �
� 8l�1�CL J � �

� [L � [[
� (32)

Therefore,

� � �������(�������
� � �

�! �����(�������
��

� 8 � � [� L � [[�� � �
� [L � [[
�f

�D#_�
(33)

Since the server is FIFO,

� ����� [� ��� [� �N8 � ����� � ��� � � (34)

And similarly,

� ��� [� ��� [� �N8 � ��� � ��� � � (35)

Therefore,

� � �@����[� �R��[� �
� � �

� ����[� ���R[� �
��

�5#��
(36)

Multiplying through by � proves the theorem. � �
5. EXPERIMENTAL EVALUATION

The share-based algorithms discussed in this paper are intended
to assure a proportional fair share of the server capacity for com-
peting flows in proportion to their weights or shares. In this sec-
tion, we evaluate and compare the performance isolation properties
of these algorithms experimentally for a representative synthetic
workload and storage server configuration. Our approach is to com-
pare the response times for two competing request flows—client 1
and client 2—for varying weights (shares), request rates, and values
of � .
Prototype and Simulation Environment

To evaluate our ideas, we have implemented a prototype inter-
posed request scheduler for the Network File System protocol by
extending an existing NFS proxy [3, 33] with about 1000 lines
of code. The proxy maintains per-client queues for each server
and uses SFQ(�) or FSFQ(�) to schedule requests, given a stat-
ically specified � parameter and shares associated with client IP
addresses.

For ease of experimentation, most of the results presented in this
section are obtained not from the prototype, but from experiments
run in a simulated server environment with support for different
client request arrival patterns. Requests arrive as an ON/OFF pro-
cess with poisson arrivals during ON times. Each server is modeled
as consisting of multiple service components (e.g., multiple hard
drives). The request service time for any component is modeled as
an exponential distribution; this model approximates the behavior
of random access storage workloads.

We validated our simulation environment by comparing repre-
sentative simulation results with experimental results from the pro-
totype. Figure 2 presents one such validation result for the response
times observed by two clients, with FSFQ(4) and FSFQ(64) con-
trollers. The response times observed in the simulator and the
prototype match closely. The proxy and NFS server ran on Dell
4400 servers running FreeBSD; the storage server uses a RAID on
a concatenated disk (CCD) stripe consisting of six Seagate Cheetah
drives. We used the fstress load generator [2] to generate a variable
workload dominated by random reads on large files. Requests are
assumed to have equivalent cost.

5.1 EDF vs. Share-based Scheduling
We first demonstrate the value of interposed proportional sharing

for performance isolation under overload, relative to an interposed
Earliest Deadline First (EDF) scheduler. This experiment simu-
lates a setting in which client 1 has a constant demanding workload
of 480 IO operations per second (IOPS or IOs/s), which is almost
enough to saturate the server. Client 2 has an ON/OFF workload
that is ON for 10 s with a constant 120 IOs/s and OFF for 10 s.
Client 1 has a loose response time target of 1 second, while the
target for client 2 is 10 ms.

Figure 3 plots the throughput and average response times ob-
served by both clients for a two-minute simulation with an EDF
scheduler. Requests from client 1 are queued and miss their dead-
lines, and are scheduled ahead of new requests from client 2, even-
though client 2 has a tighter response time target. The response
times of both clients increase steadily. In practice, EDF sched-
ulers depend on other mechanisms—such as priority or admission
control—for performance isolation. Proportional sharing, however,
does provide isolation, as shown in Figure 4, which plots results
from similar experiments using FSFQ and Request Windows (RW)
schedulers, with client 2 configured for a 33% share of the server.
Client 1 exceeds its 67% share of the server; when client 2 demands
service the response time for client 1 grows without bound, while
the response time for client 2 remains stable at around 18 ms.

5.2 Differentiated Response Time
The next experiments investigate the effectiveness of interposed

proportional sharing in differentiating the service quality received

7

0 20 40 60 80 100 120
0

50

100

150

200

250

300

350

400

450

500

time progression (second)

IO
s/

se
co

nd

EDF(16): Throughput of Two Clients

client 1: 480 IOs/sec, response time target = 1 sec

client 2: 120 IOs/sec during ON period
response time target = 0.01 sec

0 20 40 60 80 100 120
0

2

4

6

8

10

12

14

time progression (second)

re
sp

on
se

 ti
m

e
(s

ec
on

d)

EDF(16): Response Times of Two Clients

client 1: 480 IOs/sec, response time target = 1 sec

client 2: 120 IOs/sec during ON period
response time target = 0.01 sec

Figure 3: An EDF scheduler alone does not provide perfor-
mance isolation when the server is overloaded. Client 1’s high
arrival rate causes client 2’s response time to increase without
bound.

by competing clients according to their configured shares. We fix
client 1’s arrival rate, but increase client 2’s arrival rate, so that the
sum of client 1 and client 2’s arrival rate gradually approaches the
system saturation rate. The goal is to understand the effect of share
size on response time under resource competition, and in particular
to illustrate the degree to which interposed proportional sharing can
provide response time assurances for client 1 in spite of client 2’s
climbing rate. For these experiments we set � 8K� .
5.2.1 FSFQ(�) vs. SFQ(�)

For each curve plotted in Figure 5, we fix client 1’s rate (to either
30 or 240 requests/second) and the ratio � �~� � � (2:1 or 8:1), and
increase the arrival rate for client 2. We observe the following:

1. Client 2’s increasing rate degrades response time for both
clients. However, client 1’s response time eventually stabi-
lizes in all cases, while client 2’s response time grows with-
out bound as expected. This shows that both SFQ(�) and
FSFQ(�) provide performance isolation: client 2’s increas-
ing rate has limited impact on client 1’s performance. The
impact on client 1 occurs in large measure because client 1
receives better than its configured service when client 2 has a
low arrival rate, leaving surplus resources for use by client 1.
As competition from client 2 increases, there is less surplus
resource available for client 1; its response time initially de-
grades but ultimately stabilizes at a level that correlates with
client 1’s utilization of its configured share.

2. From the first pair of graphs in Figure 5, we can see that when
client 1’s arrival rate is low (30 IOs/sec), its response time is
relatively insensitive to weight assignment. This is because
requests from a flow that is not backlogged always receive
priority when they arrive—independent of weight—but each
request is scheduled behind up to � competing requests from

0 20 40 60 80 100 120
0

50

100

150

200

250

300

350

400

450

500

time progression (second)

IO
s/

se
co

nd

FSFQ(16): Thoughput for Two Clients

client 1: 480 IOs/sec

client 2: 120 IOs/sec during ON period

0 20 40 60 80 100 120
0

2

4

6

8

10

12

14

time progression (second)
re

sp
on

se
 ti

m
e

(s
ec

on
d)

FSFQ(16): Response Time for Two Clients

client 1: 480 IOs/sec

client 2: 120 IOs/sec during ON period

0 20 40 60 80 100 120
0

50

100

150

200

250

300

350

400

450

500

time progression (second)

IO
s/

se
co

nd
RW(D): Throughput for Two Clients, w1:w2=2:1

client 1: 480 IOs/sec

client 2: 120 IOs/sec during ON period

0 20 40 60 80 100 120
0

2

4

6

8

10

12

14

time progression (second)

re
sp

on
se

 ti
m

e
(s

ec
on

d)

RW(16): Response Time for Two Clients, w1:w2 = 2:1

client 1: 480 IOs/sec

client 2: 120 IOs/sec during ON period

Figure 4: This is the same experiment as Figure 3, but using
FSFQ(�) and RW(�) schedulers with client 2 configured for
a 33% share of the server. Both FSFQ(�) and RW(�) can
provide performance isolation: while client 1 exceeds its share
and is penalized, client 2 receives service with a stable response
time.

8

0 100 200 300 400 500
8

10

12

14

16

18

20

22

24
D = 8, Client 1 rate = 30 IOs/sec

Client 2 rate (IOs/sec)

C
lie

nt
 1

 R
es

po
ns

e
Ti

m
e

(m
s)

v: SFQ(D)

o: FSFQ(D) 2:1

8:1

0 100 200 300 400 500
0

50

100

150

200

250
D = 8, Client 1 rate = 30 IOs/sec

Client 2 rate (IOs/sec)

C
lie

nt
 2

 R
es

po
ns

e
Ti

m
e

(m
s)

v: SFQ(D)

o: FSFQ(D)
2:1

8:1

0 100 200 300 400 500
15

20

25

30

35

40

45

50

55

60
D = 8, Client 1 rate = 240 IOs/sec

Client 2 rate (IOs/sec)

C
lie

nt
 1

 R
es

po
ns

e
Ti

m
e

(m
s)

v: SFQ(D)

o: FSFQ(D)

2:1

8:1

0 100 200 300 400 500
0

50

100

150

200

250

300

350

400

450

500
D = 8, Client 1 rate = 240 IOs/sec

Client 2 rate (IOs/sec)

C
lie

nt
 2

 R
es

po
ns

e
Ti

m
e

(m
s)

v: SFQ(D)

o: FSFQ(D)

2:1

8:1

Figure 5: Response times under SFQ(�) and FSFQ(�) as load
from client 2 increases along the � -axis. Each pair of graphs
shows response times for each client when client 1 receives
either a 67% (2:1) or 88% (8:1) share—note that the � -axes
are scaled differently. All graphs show the expected behavior:
client 2’s response time degrades without bound as it exceeds its
share, while fair sharing isolates client 1. Client 1 has light load
in the top pair, but in the bottom pair it requests about 50% of
the server capacity: this leaves less surplus resource for client 2,
causing client 2’s response time to spike at a lower arrival rate.
In all cases client 1’s response time stabilizes at a level related
to its assigned share. The FSFQ refinement improves client 1’s
response time modestly when its share utilization is high.

backlogged flows. In contrast, the second pair of graphs in
Figure 5 shows that when client 1’s rate is relatively high
(e.g. 240 IOs/sec), its response time is more sensitive to the
weight assignment. In these cases, client 1 is often back-
logged, and its response time is determined largely by the
resource share assigned to it, as given by its weight.

3. FSFQ(�) offers modestly better isolation than SFQ(�). When
client 2 is persistently backlogged, the FSFQ scheduler al-
ways issues client 1’s requests ahead of any queued requests
from client 2 that have the same start time tag. As a re-
sult, FSFQ(�) achieves better response time for client 1 than
SFQ(�).

5.2.2 FSFQ(�) vs. RW(�)
Figure 6 presents results from similar experiments comparing

FSFQ(�) and RW(�) with � 8�� � . The key result from this
graph is that RW(�) isolates more effectively than even FSFQ(�),
in that it yields lower response times for client 1 even under heavy
competition from client 2. However, this advantage comes at a
cost: RW limits the ability of client 2 to use surplus resources left
idle by client 1. This can be seen from the bottom graph of each
pair, which shows that the response time of client 2 increases at
lower load levels with RW than with FSFQ, and that it is sensitive
to the size of client 2’s share. When client 2 has a smaller share, its
response time increases rapidly even when client 1 leaves surplus
resources that could serve client 2’s increasing load. RW does make
some use of these surplus resources: this can be seen by comparing
the RW lines in the bottom graphs in each pair, which show that
client 2 receives better service when client 1 has lighter load. Even
so, client 2’s response time is always better under FSFQ because
FSFQ is fully work-conserving: FSFQ is more effective at using
resources left idle by client 1. This experiment suggests that a hy-
brid of FSFQ and RW can balance the competing goals of fairness
and resource efficiency (work conservation), combining elements
of proportional sharing and reservations.

5.3 Impact of Depth �
By comparing the FSFQ(� �) results Figure 6 with the FSFQ(�)

results in Figure 5, we can see that FSFQ delivers weaker perfor-
mance isolation as the depth parameter � increases. When there
is competition for resources, higher � values increase average re-
sponse time because each issued request may wait behind as many
as � previously issued requests before it receives service. We now
explore the impact of � on response time in more detail under
FSFQ and Request Windows.

Figure 7 plots the average response times for both clients under
FSFQ and RW with different values of � . As in the previous ex-
periments, client 1 generates a fixed request rate (30 IOs/sec in the
top pair of graphs and 240 IOs/sec in the bottom pair of graphs),
while the arrival rate for client 2 increases along the � -axis. These
experiments fix the weights of clients 1 and 2 to � �~� � � 8 � � J ,
i.e., client 1 is assigned a 67% share.

Figure 7 confirms that increasing the depth � weakens fairness
for both RW and FSFQ. Weaker enforcement of the shares has the
effect of increasing client 1’s response time under competition from
client 2, and reducing client 2’s response time even at high load lev-
els. In essence, higher � allows client 2 to steal resources unfairly
from client 1, particularly when client 1’s load is light. Lower val-
ues of � offer tighter resource control. However, if � is too low,
then the service may have inadequate concurrency to use all of its
resources efficiently. For example, the third graph shows that the
response time for client 1 at 240 IO/s spikes at � 8�� because
the system has inadequate concurrency to keep all of its disks busy,
even as the scheduler delays issue of requests that could be served
by the idle disks.

9

0 100 200 300 400 500
0

10

20

30

40

50

60

70

80
D = 32, Client 1 rate = 30 IOs/sec

Client 2 rate (IOs/sec)

C
lie

nt
 1

 R
es

po
ns

e
Ti

m
e

(m
s)

o: FSFQ(D)

*: RW(D) 1:1
2:1
8:1

1:1

2:1

8:1

0 100 200 300 400 500
0

20

40

60

80

100

120

140

160

180
D = 32, Client 1 rate = 30 IOs/sec

Client 2 rate (IOs/sec)

C
lie

nt
 2

 R
es

po
ns

e
Ti

m
e

(m
s)

o: FSFQ(D)

*: RW(D)
1:1
2:1
8:1

1:1

2:1

8:1

0 100 200 300 400 500
0

50

100

150

200

250

300

350
D = 32, Client 1 rate = 240 IOs/sec

Client 2 rate (IOs/sec)

C
lie

nt
 1

 R
es

po
ns

e
Ti

m
e

(m
s)

o: FSFQ(D)

*: RW(D)

1:1

2:1
8:1

1:1

2:1

8:1

0 100 200 300 400 500
0

50

100

150

200

250

300
D = 32, Client 1 rate = 240 IOs/sec

Client 2 rate (IOs/sec)

C
lie

nt
 2

 R
es

po
ns

e
Ti

m
e

(m
s)

o: FSFQ(D)

*: RW(D)

1:1

2:1
8:1

1:12:1
8:1

Figure 6: These graphs are from experiments similar to Fig-
ure 5, but compare FSFQ(�) and RW(�) for varying share
sizes (weights) with a depth of � 8�� � . As in Figure 5, in-
creasing load from client 2 along the � -axis causes its response
time to increase without bound, while client 1’s response time
increases to a stable level related to the size of its share. The
top graph shows that FSFQ(� �) does not protect client 1 as ef-
fectively as FSFQ(�) in Figure 5. RW(�) always isolates more
effectively than FSFQ(�) because it limits the ability of client
2 to consume issue slots left idle by client 1.

0 100 200 300 400 500
0

20

40

60

80

100

120

140
W1:W2=2:1, Client 1 rate = 30 IOs/sec

Client 2 rate (IOs/sec)

C
lie

nt
 1

 R
es

po
ns

e
Ti

m
e

(m
s)

o: FSFQ(D)

v: RW(D)

D = 4

D = 16

D = 64

0 100 200 300 400 500
0

10

20

30

40

50

60

70

80

90
W1:W2=2:1, Client 1 rate = 30 IOs/sec

Client 2 rate (IOs/sec)

C
lie

nt
 2

 R
es

po
ns

e
Ti

m
e

(m
s)

o: FSFQ(D)

v: RW(D)

D = 4

D = 16

D = 64

0 100 200 300 400 500
0

50

100

150
W1:W2=2:1, Client 1 rate = 240 IOs/sec

Client 2 rate (IOs/sec)

C
lie

nt
 1

 R
es

po
ns

e
Ti

m
e

(m
s)

o: FSFQ(D)

v: RW(D)

D = 4

D = 16

D = 64

0 100 200 300 400 500
0

100

200

300

400

500

600
W1:W2=2:1, Client 1 rate = 240 IOs/sec

Client 2 rate (IOs/sec)

C
lie

nt
 2

 R
es

po
ns

e
Ti

m
e

(m
s)

o: FSFQ(D)

v: RW(D)

D = 4
D = 16

D = 64

Figure 7: These graphs compare the average response times
under FSFQ(�) and RW(�) for different values of � . These
experiments are similar to Figure 6, except that the weights are
constant at 2:1 while � varies. Increasing � may use resources
more efficiently, but it weakens resource control (fairness). This
weakened control is shown by the higher response times for
client 1 under competition from client 2, and the lower re-
sponse times for client 2 when its request rate exceeds its share.
Note also that RW always offers tighter control than FSFQ—as
shown by RW’s lower response times relative to FSFQ for client
1 when client 2’s load is high—but that RW also uses surplus
resources less aggressively—as shown by RW’s higher response
times for client 2 when client 1’s load is low.

10

Figure 7 also further illustrates the tradeoff of resource control
vs. resource efficiency for RW and FSFQ. RW offers tighter re-
source control and improved fairness at every value of � , because
it never permits any workload to consume more than its share of is-
sue slots. However, RW is less effective than FSFQ at using surplus
resources, i.e., it is not fully work-conserving. As result, client 2
always suffers higher response times under RW than FSFQ; while
this is the desired result when client 2’s load is high, it indicates
that RW is not using server resources efficiently when the com-
bined load is below the peak service rate.

5.4 Meeting Response Time Targets
A key premise of our approach is that proportional share schedul-

ing allows an external policy to meet response time targets by con-
trolling the share sizes. Indeed, the previous experiments illustrate
how larger shares yield better response times under resource com-
petition, when there are no surplus resources to exploit.

Figure 8 presents a simple example of how share-based schedul-
ing algorithms, such as FSFQ(�) and RW(�), can be used to meet
response time targets in this way. In this experiment client 1 gener-
ates a stable heavy load of requests with a response time target of
1 second, while client 2 generates bursts of requests with a much
tighter response time bound of 10 milliseconds. The graph shows
the expected behavior: bursts of requests from client 2 cause client
1’s response time to degrade, but both request flows stay within
their response time bound.

To achieve this result, it is necessary to set the depth � and
weight �
 parameters appropriately. Section 5.3 demonstrates the
importance of choosing a depth � that balances resource efficiency
and resource control. For this experiment we used the approach
proposed to adjust � for Facade [24], an interposed deadline sched-
uler for response time targets. The policy uses a feedback controller
to converge on the maximum depth that meets the response time
targets. The share sizes for this experiment are set statically using
a rule of from queuing theory: response time is inversely propor-
tional to the idle time of the resources assigned to a request flow.
The idle time grows linearly with share size. For this experiment
we simply set each �
 to the inverse of its target response time,
although in practice it may be useful to adjust share sizes as load
changes. We leave a full investigation of the role of share size and
dept � on response time to future work.

6. CONCLUSION
This paper proposes an approach to proportional share resource

control in shared services by interposed request scheduling. The
approach is non-intrusive in the sense that it applies to network ser-
vices with no internal support for fair sharing or differentiated ser-
vice quality, such as commercial storage servers. The sole means
to coordinate resource sharing is to control the entry of requests
into the service, and reorder or delay them according to the sharing
policy. We propose three proportional share scheduling algorithms,
prove their fairness properties analytically, and present simulation
results to illustrate their fairness behavior and efficiency under a
selected workload. All of these algorithms are promising for use in
practice to meet service quality targets for shared servers.

The first two algorithms extend a previous fair queuing algo-
rithm, start-time fair queuing or SFQ, to depth-controlled variants
SFQ(�) and FSFQ(�) that are applicable to shared services with
internal concurrency. These algorithms are efficient (work-conserving)
and they are fair over sufficient time scales, but they have two draw-
backs. First, they require a central point of control for all requests
entering the service. Second, their behavior exposes a tension be-
tween server efficiency and response time. Specifically, they re-
lease up to � concurrent requests into the service; the depth �
defines a tradeoff between fairness and the degree of concurrency
allowed within the server. Larger values of � allow more flexi-

0 20 40 60 80 100 120 140 160
0

50

100

150

200

250

300

350

400

450

time progression (second)

IO
s/

se
co

nd

FSFQ(D): Thoughput for Two Clients
client 1: 360 IOs/sec
target = 1 sec

client 2: 120 IOs/sec during ON period
target = 0.01 sec

0 20 40 60 80 100 120 140 160
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

time progression (second)

re
sp

on
se

 ti
m

e
(s

ec
on

d)

FSFQ(D): Response Time for Two Clients

client 1: 480 IOs/sec
target = 1.0 sec

client 2: 120 IOs/sec during ON period
target = 0.01 sec

Figure 8: By adjusting weight assignment and � , we can use
FSFQ(�) to satisfy both clients’ response time targets.

bility to the server to schedule its resources, but they also increase
response time, particularly for request flows that have low utiliza-
tion of their assigned resource shares. Thus these algorithms are
not able to meet tight response time targets for services with a high
degree of internal concurrency. Note also that internal load im-
balances within the service may need more concurrency (greater
depth) to avoid head-of-line blocking behind requests awaiting the
bottleneck resources. To schedule for tight response time targets
under these conditions it may be necessary to integrate some sup-
port for deadlines or priority scheduling into the service itself (e.g.,
[22]).

The third algorithm—Request Windows (RW(�))— throttles each
flow independently to a configured share of the maximum total re-
quest cost permitted for release into the service at any time. The Re-
quest Windows scheme may be deployed in a decentralized fashion,
and it supports tighter bounds on response time. However, unless
the throttling of different flows is coordinated in some way, Request
Windows is not work-conserving: it may throttle requests even if
surplus resources are available to serve those requests. In this re-
spect Request Windows behaves more like a share-based reserva-
tion scheme rather than a true proportional sharing algorithm that
distributes surplus resources among the active flows in proportion
to their weights.

Our results suggest several directions for future research. First,
any form of share-based scheduling requires cost estimates for the
requests; sharing is fair only with respect to these estimated costs.
It is possible to adjust these costs to reflect observed imbalances
within the server or interference among flows, as in Stonehenge [22]
or Hippodrome [4]. Second, we have not investigated the behavior
of interposed request scheduling under dynamic policies for ad-
justing depth, share sizes, or throttling thresholds (�
 for Request
Windows) under feedback control, which is likely to be important
in practice. Finally, our results indicate the potential of hybrid
policies for interposed request scheduling that combine elements
of FSFQ(�) and Request Windows. Hybrid policies would ac-

11

commodate varying degrees of decentralization. They may also al-
low a configurable balance between proportional sharing and reser-
vations, trading off work conservation for tighter response time
bounds.

Acknowledgments
Ken Yocum and Darrell Anderson provided the NFS proxy and
fstress load generator, and David Becker assisted with experimen-
tal setup. We thank John Wilkes and Guillermo Alvarez for early
discussions on the idea of interposed request scheduling, and John
Douceur, Magnus Karlsson, Christos Karamanolis, John Wilkes,
Ken Yocum, and the anonymous reviewers for comments that helped
us to improve the paper.

7. REFERENCES
[1] Tarek F. Abdelzaher, Kang G. Shin, and Nina Bhatti.

Performance guarantees for Web server end-systems: A
control-theoretical approach. IEEE Transactions on Parallel
and Distributed Systems, 13(1):80–96, January 2002.

[2] Darrell C. Anderson and Jeffrey S. Chase. Fstress: A flexible
network file service benchmark. Technical Report
CS-2002-01, Duke University, Department of Computer
Science, January 2002.

[3] Darrell C. Anderson, Jeffrey S. Chase, and Amin M. Vahdat.
Interposed request routing for scalable network storage.
ACM Transactions on Computer Systems (TOCS) special
issue: selected papers from the Fourth Symposium on
Operating System Design and Implementation (OSDI),
October 2000, 20(1), February 2002.

[4] Eric Anderson, Michael Hobbs, Kimberly Keeton, Susan
Spence, Mustafa Uysal, and Alistair Veitch. Hippodrome:
running circles around storage administration. In
Proceedings of the First Usenix Conference on File and
Storage Technologies (FAST), January 2002.

[5] Mohit Aron. Differentiated and Predictable Quality of
Service in Web Server Systems. PhD thesis, Department of
Computer Science, Rice University, October 2000.

[6] Gaurav Banga, Peter Druschel, and Jeffrey C. Mogul.
Resource containers: A new facility for resource
management in server systems. In Proceedings of the Third
Symposium on Operating Systems Design and
Implementation (OSDI), February 1999.

[7] Jon C. R. Bennett and Hui Zhang. ��6 ��� : Worst-case fair
weighted fair queuing. In Proceedings of IEEE INFOCOM
’96, San Francisco, CA, March 1996.

[8] Jon C. R. Bennett and Hui Zhang. Hierarchical packet fair
queueing algorithms. IEEE/ACM Transactions on
Networking, 5(5):675–689, October 1997.

[9] Josep M. Blanquer and Banu Ozden. Fair queuing for
aggregated multiple links. In ACM SIGCOMM, August 2001.

[10] John Bruno, Jose Brustoloni, Banu Ozden, and Abraham
Silberschatz. Disk scheduling with quality of service
guarantees. In IEEE International Conference on Multimedia
Computing and Systems (ICMCS ’99), June 1999.

[11] David D. Chambliss, Guillermo A. Alvarez, Prashant
Pandey, Divyesh Jadav, and Tzongyu P. Lee Jian Xu,
Ram Menon. Performance virtualization for large-scale
storage systems. In 22nd International Symposium on
Reliable Distributed Systems (SRDS ’03), October 2003.

[12] Abhishek Chandra, Micah Adler, Pawan Goyal, and Prashant
Shenoy. Surplus fair scheduling: A proportional-share CPU
scheduling algorithm for symmetric multiprocessors. In
Fourth Symposium on Operating System Design and
Implementation (OSDI), October 2000.

[13] Abhishek Chandra, Micah Adler, and Prashant Shenoy.
Deadline fair scheduling: Bridging the theory and practice of
proportionate fair scheduling in multiprocessor systems. In
Seventh Real-Time Technology and Applications Symposium
(RTAS ’01), May 2001.

[14] Jeffrey S. Chase, Darrell C. Anderson, Prachi N. Thakar,
Amin M. Vahdat, and Ronald P. Doy le. Managing Energy
and Server Resources in Hosting Centers. In Proceedings of
the 18th ACM Symposium on Operating System Principles
(SOSP), pages 103–116, October 2001.

[15] Alan Demers, Srinivasan Keshav, and Scott Shenker.
Analysis and simulation of a fair queuing algorithm. ACM
SIGCOMM 89, 19(4):2–12, August 19-22, 1989.

[16] Ron Doyle, Jeffrey S. Chase, Omer Asad, Wei Jin, and Amin
Vahdat. Model-based resource provisioning in a Web service
utility. In Proceedings of the Fourth Symposium on Internet
Technologies and Systems (USITS), Seattle, Washington,
USA, March 2003.

[17] Boris Dragovic, Keir Fraser, Steve Hand, Tim Harris, Alex
Ho, Ian Pratt, Andrew Warfield, Paul Barham, and Rolf
Neugebauer. Xen and the Art of Virtualization. In
Proceedings of the ACM Symposium on Operating Systems
Principles, October 2003.

[18] S. Jamal Golestani. A self-clocked fair queuing scheme for
broadband applications. In Proceedings of the 13th Annual
Joint Conference of the IEEE Computer and
Communications Societies on Networking for Global
Communication. Volume 2, pages 636–646, Los Alamitos,
CA, USA, June 1994. IEEE Computer Society Press.

[19] P. Goyal, X. Guo, and H. Vin. A hierarchical CPU scheduler
for multimedia operating systems. In Proceedings of
Operating System Design and Implementation (OSDI’96),
Seattle, pages 107–122, October 1996.

[20] Pawan Goyal and Harrick M. Vin. Generalized guaranteed
rate scheduling algorithms: a framework. IEEE/ACM
Transactions on Networking, 5(4):561–571, August 1997.

[21] Pawan Goyal, Harrick M. Vin, and Haichen Chen. Start-time
fair queuing: A scheduling algorithm for integrated services
packet switching networks. IEEE/ACM Transactions on
Networking, 5(5):690–704, October 1997.

[22] Lan Huang, Gang Peng, and Tzi cker Chiueh.
Multi-dimensional storage virtualization. In Joint
International Conference on Measurement and Modeling of
Computer Systems (SIGMETRICS/Performance ’04), June
2004.

[23] Zhen Liu, Mark Squillante, and Joel Wolf. On maximizing
service-level-agreement profits. In Proceedings of the 3rd
ACM Conference on Electronic Commerce (EC-01), pages
213–223, New York, October 14–17 2001. ACM Press.

[24] Christopher Lumb, Arif Merchant, and Guillermo A.
Alvarez. Facade: Virtual storage devices with performance
guarantees. In Proceedings of the 2nd USENIX Conference
on File and Storage Technologies, San Francisco, CA, March
2003.

[25] Kostas Magoutis, Salimah Addetia, Alexandra Fedorova,
Margo Seltzer, Jeff Chase, Ri chard Kisley, Andrew Gallatin,
Rajiv Wickremisinghe, and Eran Gabber. Structure and
performance of the Direct Access File System. In USENIX
Technical Conference, pages 1–14, June 2002.

[26] Abhay K. Parekh and Robert G. Gallager. A generalized
processor sharing approach to flow control in integrated
services networks: the single-node case. IEEE/ACM
Transactions on Networking, 1(3):344–357, June 1993.

[27] Prashant J. Shenoy and Harrick M. Vin. Cello: A disk
scheduling framework for next generation operating systems.

12

In Proceedings of the 1998 ACM Sigmetrics Conference on
Measurement and Modeling of Computer Systems, pages
44–55, 1998.

[28] Dimitrios Stiliadis and Anujan Varma. Latency-rate servers:
a general model for analysis of traffic scheduling algorithms.
IEEE/ACM Transactions on Networking, 6(5):611–624,
October 1998.

[29] Bhuvan Urgaonkar, Prashant Shenoy, and Timothy Roscoe.
Resource overbooking and application profiling in shared
hosting platforms. In Proceedings of the Fifth Symposium on
Operating Systems Design and Implementation (OSDI),
Boston, MA, USA, December 2002.

[30] Carl A. Waldspurger. Memory Resource Management in
VMware ESX Server. In Symposium on Operating Systems
Design and Implementation, December 2002.

[31] Carl A. Waldspurger and William E. Weihl. Lottery
Scheduling: Flexible Proportional-Share Resource
Management. In Proceedings of the First Symposium on
Operating Systems Design and Implementation (OSDI),
pages 1–11, November 1994.

[32] John Wilkes. Traveling to Rome: QoS specifications for
automated storage system management. Lecture Notes in
Computer Science, 2092:75–92, 2001.

[33] Kenneth G. Yocum, Darrell C. Anderson, Jeffrey S. Chase,
and Amin Vahdat. Anypoint: Extensible transport switching
on the edge. In Proceedings of the Fourth USENIX
Symposium on Internet Technologies and Systems (USITS),
March 2003.

[34] Lixia Zhang. Virtual Clock: A new traffic control algorithm
for packet switching networks. In SIGCOMM ’90
Symposium: Communications Architectures and Protocols,
pages 19–29, September 1990.

13

