COMP 290-040 Network Intrusion Detection

Introduction & Overview

Kevin Jeffay Department of Computer Science University of North Carolina at Chapel Hill jeffay@cs.unc.edu January 19, 2005

http://www.cs.unc.edu/~jeffay/courses/nidsS05

©2005 by Kevin Jeffay

Network Intrusion Detection History

- Intrusions detected through audit of logs
 - » Develop models of normal usage
 - » Instrument system to log "significant events"
 - * Events, counts, timestamps, durations, usage, ...
 - » Detect anomalies
- Problems:
 - » False alarms
 - » "Normal" a slippery concept
 - » What if user covers their tracks?
 - » Intrusiveness of the detection system
- Distributed systems and the ability to edit logs led to network-based IDS

Network Intrusion Detection

Background & History

- Intrusion detection is the new cool systems topic!
 - » That started in the early 70s...
- ◆ The good olde days...
 - » Centralized systems
 - » Primary concern was untrusted "insiders" gaining access to unauthorized information
 - Legit users doing inappropriate things
 - » Primary source of the problem: too many unforeseen ways people could access memory
 - Invalid assumptions made by programmers
 - ❖ Systems designed to aid debugging or add new function ("new paradigm") could be corrupted
 - * Configuration problems ("user error")

©2005 by Kevin Jeffay

Network Intrusion Detection IDS Today

- Still grappling with the same fundamental problems
 - » System "features" can be exploited for unintended
 - » Issue today is largely denial-of-service rather than access to sensitive information
 - ❖ Much easier ways to get this...
- ◆ IDS still largely network-based
- ◆ New(er) issues:
 - » Resource usage attacks
 - » Scale
 - * Time, distance, effect, ...

Network Intrusion Detection

Detection basics

- Monitor network traffic...
 - » Decentralized end-system monitoring
 - » Centralized network-based monitoring
 - » Performance problems abound!
- Detect an intrusion the signal detection problem
 - » Signal: An intrusion
 - » Noise: Normal traffic
 - » Classical approach: Learn distributions of each and classify each new X as it is observed

©2005 by Kevin Jeffay

Network Intrusion Detection

Signature detection basics

- ◆ Textual pattern matching
- Protocol field matching
- Packet pattern matching
- ◆ Always assumes you know what you are looking for!
- Pros:
 - » Low false alarm rate
- Cons:
 - » Can only detect yesterday's intrusions (high "false-negative" rate)
 - » Small deviations can defeat (cat & mouse syndrome)

Network Intrusion Detection

Detection basics

- Signal-only detection ("signature" based detection)
 - » You know what an intrusion "looks like" and explicitly look for it
- Noise-only detection ("anomaly detection")
 - » You know what normal traffic looks like and detect significant perturbations from normal
- Both assume you have a good characterization of the world

©2005 by Kevin Jeffay

Network Intrusion Detection

Anomaly detection basics

- When is "strange" bad?
- Techniques
 - » Component analysis
 - » AI techniques
 - » Immunology
- Pros:
 - » Can recognize new attacks
- Cons:
 - » Requires training
 - » Can't classify or name attacks
 - » False alarms
 - » What if attacks evolve so slowly they appear normal?
 - » Is fundamental premise true?

©2005 by Kevin Jeffay

8

©2005 by Keyin Jeffsy

Network Intrusion Detection

Course pseudo-outline

- How to hack a system
 - » How to make a machine your slave
 - » How to build your own zombie army and take over the world
- ◆ What you can do with your army ("How to Own the Internet in Your Spare Time" by Staniford, Paxson, Weaver)
 - » Actual attacks
 - * Worms, viruses, DoS, DDoS, ...
 - » Theoretical attacks ("when smart people go bad")
 - * Protocol attacks
 - Congestion control attacks

©2005 by Kevin Jeffay

Network Intrusion Detection

Course pseudo-outline

- Mitigation practice
 - » Filtering
 - » Traffic normalization
- ◆ Mitigation theory
 - » Fingerprinting Finding the sources of attacks
 - » DoS-free protocol design

©2005 by Kevin Jeffay

Network Intrusion Detection

Course pseudo-outline

- ◆ Intrusion detection
 - » Measurement methods, practices, and limits
 - * Direct measurement
 - Indirect measurement ("backscatter," "Internet background radiation")
 - » Data mining
 - * Automatic extraction of features
 - » Internet signal processing
 - ❖ Component analysis
 - » Machine learning
 - ❖ Other AI techniques...
 - » Honeypots and tarpits
 - » IDS evasion & attacks on IDS
 - » State of practice

©2005 by Kevin Jeffay