

#### Introduction: Topics for this presentation: Based on the location of deployment: Different Filtering Techniques Router Based Hop-Count Filtering Improve routing infrastructure End-System Based Off-line analysis of flooding traffic traces Uses Packet Header Information Doesn't help sustain service availability during attack Distributed Packet Filtering On-line filtering of spoofed packets Rely on IP-Router enhancements to detect abnormal patterns Route-based No incentive for ISPs to implement these services Uses Routing Information Administrative overhead D-WARD Lack of immediate benefit to their customers Source-end network based End-System Based Uses Abnormal Traffic Flow information Provide sophisticated resource management to internet servers Inaress Filterina Doesn't required router support. Specifies Internet Best Current Practices Not so effective

# Hop-Count Filtering

Cheng Jin, Haining Wang, Kang G. Shin, Proceedings of the 10th ACM International Conference on Computer and Communications Security (CCS), October 2003

# Hop-Count Filtering:

#### Motivation:

- Most spoofed IP packets when arriving at victims do not carry hop-count values that are consistent with those of legitimate ones.
- Hop-Count distribution of client IP addresses at a server take a range of values

# Hop-Count Filtering:



### Hop-Count Filtering:

- So, how's hop-count calculated?
  - Computed based on the 8-bit TTL filed of IP header
    Introduced originally to specify maximum lifetime of IP packet
  - Introduced originally to specify maximum interime or in packet
    During transit, each intermediate router decrements the
  - TTL value of an IP packet before forwarding
    - The difference between the final value and the initial value is thus the number of hops taken.
  - What's the initial value of TTL field? Is it a constant?
    - NO

#### Hop-Count Filtering:

- TTL field:
  - Varies with operating Systems.
    - So do we have to know the type of Operating System before computing hop-count?
      - Not Really required
  - Most modern OSs use only few selected initial TTL values: 30,32,60,64,128 and 256
  - Its generally believed that few internet hosts are apart by more than 30 hops
  - Hence, initial value of TTL is the smallest number in the standard list greater than the final TTL value

# Hop-Count Filtering:

The basic algorithm follows:



## Hop-Count Filtering:

- The 'making' of the HCF Tables:
  - Objectives:
    - Accurate IP2HC mapping
    - Up-to-date IP2HC mapping
      - Continuously monitory for legitimate hop-count changes Legitimate – established TCP connections
    - Moderate storage
      - Concept of Aggregation with Hop-Count Clustering

# Hop-Count Filtering:



- IPs primarily mapped based on 24-bit prefix
- IP address further divided based on hop-count
- Nodes aggregated if hop-count value is same



# Hop-Count Filtering:

Aggregation with Hop-Count Clustering: Effectiveness



# Hop-Count Filtering:

- Effectiveness:
  - □ HCF removes nearly 90% of spoofed traffic
  - Assessed from a mathematical standpoint
  - Assumptions:
    - Victim knows complete IP2HP mapping
    - Attacker randomly selects source IP addresses
    - Static Hop-Count Values
    - Attackers evenly divide flooding traffic



- Uses routing information to determine 'goodness' of a arriving packet
- Similar to the limitation of firewalls whose filtering rules reflect access constraints local to the network system being guarded.
- Salient features:
  - Proactively filters out a significant fraction of spoofed packet flows
  - Reactively identifies source of spoofed IP flows
  - Takes advantage of the 'power-law' structure of the Internet AS topology.

Works on a graph of Internet Autonomous Systems (AS)





- Node 7 uses IP address belonging to node 2 when attacking node 4
- What if a border router belonging AS 6 would recognize if its cognizant of route topology?







# D-WARD:

Monitoring and attack detection:

#### Flow Classification

- Flow statistics kept in a limited-size hash table as flow records
- Stored at granularity of IP address of host
- Statistics on three types of traffic: TCP, UDP & ICMP
  - Number of packets sent Bytes sent / received

  - Active Connections

# D-WARD:

- Monitoring and attack detection:
  - Normal Traffic Modes
    - TCP: defines TCP<sub>do</sub> maximum allowed ratio of number of packets sent and received in the aggregate TCP flow to the peer.
    - ICMP: defines ICMP<sub>rto</sub> maximum allowed ratio of number of echo, time stamp and information request and reply packets sent and received in the aggregate flow to the peer.
    - UCP: defines
      - $\square$   $n_{\rm conn}$  an upper bound on number of allowed connections per destination
      - $p_{conn} a$  lower bound on number of allowed connections per destination  $UDP_{rate}$  maximum allowed sending rate per connection
  - Connection Classification
    - Good if compliant: receive guaranteed good service
    - Bad



#### D-WARD:





# D-WARD:

thack:

otal



Maximum attack rate (MBps)

ittack :

otal

Maximum attack rate (MBps)

D-WARD:



# D-WARD:



