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1. INTRODUCTION

Most work on implementing shared objects in preemptive hard real-time unipro-
cessor systems has focused on using critical sections to ensure object consistency.
One of the main problems that arises when using critical sections is that of priority
inversion. A priority inversion exists when a given task must wait on a task of
lower priority to release a critical section. In a hard real-time system, unless pri-
ority inversions are carefully controlled, it may be di�cult or impossible to ensure
that task deadlines are always met. Most conventional mechanisms for controlling
priority inversions rely on the kernel to dynamically adjust task priorities to ensure
that a task within a critical section executes at a priority that is su�ciently high
to bound the duration of any priority inversion. Schemes that work in this way
include priority inheritance protocol [Sha et al. 1990; Rajkumar 1991], the priority
ceiling protocol (PCP) [Sha et al. 1990; Baker 1991; Rajkumar 1991], the dynamic
PCP [Chen and Lin 1990], and the earliest-deadline-�rst scheme with dynamic
deadline modi�cation (EDF/DDM) [Je�ay 1992]. Although these schemes provide
a general framework for real-time synchronization, this generality comes at a price,
speci�cally added operating system overhead.

In this paper, we consider interprocess communication in object-based, hard real-
time systems. Our main contribution is to show that lock-free shared objects [Lam-
port 1977; Massalin 1992; Bershad 1993; Herlihy 1993] | i.e., objects that are not
critical-section-based | are a viable alternative to lock-based schemes such as the
PCP in such systems. We establish this through a combination of formal analy-
sis and experimentation. We begin by establishing scheduling conditions for hard
real-time, periodic tasks that share lock-free objects on a uniprocessor under either
rate-monotonic (RM) or earliest-deadline-�rst (EDF) scheduling [Liu and Layland
1973]. We also briey present a slight variation of our RM condition that holds for
the deadline-monotonic (DM) priority scheme [Leung and Whitehead 1982], and an
EDF condition that holds when deadlines and periods do not coincide. (See Table
1 for a description of the scheduling schemes considered in this paper.) After pre-
senting our scheduling conditions, we compare lock-free and lock-based approaches
for implementing objects, both formally, based on our scheduling conditions, and
experimentally, based on work involving a real-time desktop videoconferencing sys-
tem. We also compare lock-free objects with wait-free objects. As explained below,
wait-free objects are also implemented without critical sections, but are required
to satisfy some additional conditions not required of lock-free objects.

Our formal analysis and experimental work both lead to the same conclusion:
lock-free shared objects often incur less overhead than object implementations based
on wait-free algorithms or lock-based schemes. In addition, our scheduling condi-
tions show that lock-free objects can be applied without detailed knowledge of which
speci�c tasks access which objects. This makes them easier to apply than lock-based
schemes. Also, with lock-free objects, new tasks can be added dynamically to a sys-
tem with very little e�ort. In contrast, adding new tasks with lock-based schemes
entails recomputing certain operating system tables (e.g., tables required by the
PCP to record the highest-priority task that locks each semaphore).

Lock-free operations are usually implemented using \retry loops". Figure 1 de-
picts a lock-free enqueue operation that is implemented in this way. An item is
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Table 1. Real-Time Scheduling Schemes
Scheme De�nitiona

Deadline-Monotonic (DM) A static-priority scheme in which tasks with shorter
relative deadlinesb have higher priorities.

Rate-Monotonicc (RM) A static-priority scheme in which tasks with shorter
periods have higher priorities.

Earliest-Deadline-Firstc (EDF) A dynamic-priority scheme in which, at any given instant,
the task that has the closest deadline has highest priority.

a These schemes are priority-based, i.e., the processor always executes the highest-priority task
available for execution. A periodic task is a sequential program that is invoked repeatedly. Suc-
cessive invocations are separated by a constant amount of time, called the task's period.

b The relative deadline of a task is the elapsed time between the beginning of an invocation of
that task and the deadline of that invocation. A task's relative deadline is assumed to be less
than or equal to its period.

c Under the RM and EDF schemes, it is assumed that task deadlines and periods coincide, i.e.,
each invocation of a task must complete execution before the next invocation of that task begins.
(At the end of Section 4, however, we do consider EDF scheduling when deadlines and periods do
not coincide.)

enqueued in this implementation by using a two-word compare-and-swap (CAS2)
instruction1 to atomically update a tail pointer and either the \next" pointer of the
last item in the queue or a head pointer, depending on whether the queue is empty.
This loop is executed repeatedly until the CAS2 instruction succeeds. Note that
the queue is not actually \locked" by any task. An important property of lock-free
implementations such as this is that operations may interfere with each other. An
interference results in the enqueue example when a successful CAS2 by one task
results in a failed CAS2 by another task.

In this paper, we use the term \lock-free" to refer to object implementations
based on an unbounded retry loop structure like that depicted in Figure 1.2 Some
lock-free implementations do not adhere to this characterization. For example,
there exists an important special class of lock-free implementations known as wait-

free implementations [Peterson 1983; Lamport 1986; Herlihy 1991; Herlihy 1993]
in which operations must satisfy a strong form of lock-freedom that precludes all
waiting dependencies among tasks, including potentially unbounded retry loops.3

Although one motivation for work on wait-free objects has been their potential use
in real-time systems, our results show that lock-free objects are often superior for
real-time computing on uniprocessors.

From a real-time perspective, lock-free object implementations are of interest
because they avoid priority inversion and deadlock with no underlying operating

1The �rst two parameters of CAS2 specify addresses of two shared variables, the next two pa-
rameters are values to which these variables are compared, and the last two parameters are new
values to assign to the variables if both comparisons succeed. Note that it is possible to simulate
the CAS2 instruction in software, as discussed in Section 7.
2Some authors use the term \nonblocking" to refer to such implementations.
3More precisely, individual wait-free operations are required to be starvation-free. In contrast,
lock-free objects guarantee only system-wide progress: if several tasks concurrently access such
an object, then some access will eventually complete.
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type Qtype = record data: valtype; next : pointer to Qtype end

shared variable Head , Tail : pointer to Qtype

procedure Enqueue(input: valtype)
private variable old , new : pointer to Qtype;

addr : pointer to pointer to Qtype

begin

�new := (input, NULL);
repeat old := Tail ;

if old 6= NULL then addr := &(old�>next) else addr := &Head �

until CAS2(&Tail;addr;old;NULL;new ;new)
end

Fig. 1. Lock-free enqueue implementation.

system support for object sharing. On the surface, however, it is not immediately
apparent that lock-free shared objects can be employed if tasks must adhere to
strict timing constraints. In particular, repeated interferences can cause a given
operation to take an arbitrarily long time to complete. Nonetheless, we show that
if tasks on a uniprocessor are scheduled appropriately, then lock-free retry loops
are indeed bounded. We now explain intuitively why such bounds exist. For the
sake of explanation, let us call an iteration of a retry loop a successful update if
it successfully completes, and a failed update otherwise. Thus, a single invocation
of a lock-free operation consists of any number of failed updates followed by one
successful update.
Consider two tasks Ti and Tj that access a common lock-free object B. Suppose

that Ti causes Tj to experience a failed update of B. On a uniprocessor, this
can only happen if Ti preempts the access of Tj and then updates B successfully.
Thus, there is a correlation between failed updates and task preemptions. The
maximum number of task preemptions within a time interval can be determined
from the timing requirements of the tasks. Using this information, it is possible to
determine a bound on the number of failed updates in that interval. Intuitively,
a set of tasks that share lock-free objects is schedulable if there is enough free
processor time to accommodate the failed updates that can occur over any interval.
The formal analysis that we present establishes a fundamental tradeo� between

lock-free and lock-based approaches. This tradeo� essentially hinges on the cost of
a lock-free retry loop, and the cost of the operating system overhead that arises
in lock-based schemes (which can be substantial). An important question, then,
is how costly lock-free retry loops are likely to be. Any general methodology for
constructing lock-free objects must be based on \universal" lock-free constructions
[Herlihy 1991; Herlihy 1993]. Such a construction can be employed to implement
any object in a lock-free manner. Unfortunately, this generality can lead to ex-
pensive implementations. For example, in the universal lock-free construction of
[Herlihy 1993], numerous copies of the implemented object are kept. The \current"
copy is indicated by a shared object pointer. Each task's retry loop consists of the
following steps: �rst, the shared object pointer is read using a load-linked operation
and a local copy of the object is made; then, the desired operation is performed
on the local copy; �nally, a store-conditional operation is performed to attempt
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to make the shared object pointer to point to the local copy. This retry loop can
be expensive for certain large objects due to the overhead of copying. Fortunately,
techniques have been recently developed that can be applied to substantially reduce
this copying overhead [Alemany and Felten 1992; Anderson and Moir 1995]. Also,
as shown in [Massalin 1992], many common objects, including most that would be
of use in a real-time system, can be implemented with very short retry loops, such
as that depicted in Figure 1. Finally, recent work by the �rst two authors and col-
leagues has shown that, in real-time systems, the priority structure that exists often
can be exploited to simplify object implementations, eliminating copying overhead
entirely [Ramamurthy et al. 1996; Anderson et al. 1997].
The lock-free approach to real-time object sharing that we espouse is actually

rooted in work done by Sorenson and Hamacher in the real-time systems community
some twenty years ago [Sorensen 1974; Sorensen and Hemachar 1975]. Sorenson and
Hamacher's work involved a real-time communication mechanism based on wait-
free read/write bu�ers. In their approach, all bu�er management is done within the
operating system, so it su�ers from many of the same shortcomings as conventional
lock-based approaches.
Unfortunately, the thread of research on wait-free and lock-free communication

begun by Sorenson and Hamacher was lost in the real-time systems community for
many years. Recently, however, this thread of research resurfaced in [Kopetz and
Reisinger 1993] and in [Johnson and Harathi 1994]. In the former paper, a sim-
ple lock-free, one-writer, read/write bu�er is presented, and scheduling conditions
are given for tasks sharing the bu�er. In the latter paper, the primary focus is
implementations of lock-free algorithms rather than scheduling. Our work deals
almost exclusively with scheduling, and signi�cantly extends the work of Kopetz
and Reisinger by focusing on arbitrary task sets and objects.
The rest of this paper is organized as follows. In Section 2, we present de�nitions

and notation, and prove some key lemmas. We use these lemmas to derive schedul-
ing conditions for the RM and DM priority schemes in Section 3, and the EDF
priority scheme in Section 4. We then compare the overhead of lock-free synchro-
nization with that of several other approaches, on a formal basis in Section 5, and
on an experimental basis in Section 6. In these comparisons, we consider lock-based
objects implemented using the PCP [Rajkumar 1991] and the EDF/DDM scheme
[Je�ay 1992], and wait-free objects implemented using the constructions of [Herlihy
1993]. We end with concluding remarks in Section 7.

2. PRELIMINARIES

We use the term task to refer to a sequential program that is invoked repeatedly.
A single execution of a task is called a job. The time at which a job arrives for
execution is called its release time. A task is periodic if and only if the interval
between job releases is constant. In our analysis, we assume that all tasks are
periodic and share a single processor; however, our scheduling conditions also ap-
ply if tasks are sporadic, in which case a minimum separation (but no maximum
separation) is assumed between job releases. We also assume that time is discrete,
i.e., all release times, periods, and computation costs are integers. We say that a
task executes at time t if it executes during the interval [t; t + 1). We implicitly
assume that tasks share a set of objects implemented by using lock-free algorithms.
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Note that there is no need to explicitly include such objects in our model, because
operations on lock-free objects are implemented by task-level code sequences. For
simplicity, we assume that jobs can be preempted at arbitrary points during their
execution, and ignore system overheads like context switch times, interrupt handler
overheads, etc. Techniques to account for system overheads have been described
elsewhere [Katcher et al. 1993; Je�ay and Stone 1993], and such techniques can be
applied to the scheduling conditions derived in this paper. (In fact, we employ the
techniques of [Je�ay and Stone 1993] in analyzing the videoconferencing system
described in Section 6.)
We say that a job is interfered with (or experiences an interference) if it executes

a lock-free retry loop that does not successfully complete. For now, we assume that
the deadline of a job of a task is the end of the corresponding period of that task.
Later, at the end of Sections 3 and 4, we briey consider scheduling conditions in
which this assumption is relaxed. A task set is schedulable if and only if all jobs of
all tasks meet their deadlines. The following is a list of symbols used in deriving
our scheduling conditions.

| N - The number of tasks in the system. We use i and j as task indices. Un-
less stated otherwise, we assume that i and j are universally quanti�ed over
f1; : : : ; Ng.

| Ti - The ith task in the system.

| pi - The period of task Ti. Tasks are sorted in nondecreasing order by their
periods, i.e., pi < pj ) i < j.

| ri(k) - The release time of the kth job of Ti, where ri(k) = ri(1) + (k � 1) � pi.
We use k as a job index. Unless stated otherwise, we assume that k is universally
quanti�ed with range k � 1.

| Ji;k - The kth job of task Ti.

| ci - The worst-case computational cost (execution time) of task Ti when it is
the only task executing on the processor, i.e., when there is no contention for the
processor or for shared objects.

| s - The execution time required for one loop iteration in the implementation of
a lock-free object, which for simplicity is assumed to be the same for all objects.

Under RM scheduling, we assume that if two tasks have the same period, then
the task with the smaller task index has higher priority. Under EDF scheduling,
we assume that if two jobs have the same deadline, then the job with the earlier
release time has higher priority; if two such jobs are released at the same time, then
the one with the smaller index has higher priority.
We obtain conditions for schedulability by determining the worst-case unful�lled

demand of each task. The unful�lled demand of task Ti at time t is the remaining
computation time of Ti's current job. The unful�lled demand of Ti decreases by
one from time t to time t + 1 if a job of Ti executes at time t. When a job of task
Ti is released, Ti's unful�lled demand increases by ci. Task Ti's unful�lled demand
can also increase due to interferences experienced by its jobs. Such increases are
characterized by the following interference assumptions.

IA1 A job J experiences an interference at time t if and only if, for some t0 � t,

(i) J executes at time t0�1, (ii) J is preempted at time t0 by some higher-priority
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Fig. 2. Illustration of the task sets de�ned in Examples 1 and 2.

job, (iii) only higher-priority jobs execute in the interval [t0; t], (iv) no higher-

priority job that accesses an object in common with J is released in [t0; t), and

(v) at least one such job is released at time t. (This implies that job J can be

interfered with at most once during any interval when it is preempted.)

IA2 Each interference experienced by a job Ji;k increases the unful�lled demand of

Ti by s.

IA1 is pessimistic because the preempted job J may not, in fact, be accessing
any shared object when preempted. IA2 is pessimistic because the cost of executing
one iteration of the retry loop of any object is assumed to be s units. If retry loop
costs are not the same, IA2 essentially requires that the unful�lled demand of a
task Ti be increased by the cost of the largest retry loop, for each interference in
jobs of Ti.
In the proofs of our scheduling conditions, we also use the notion of task \de-

mand", which is related to the notion of unful�lled demand. The demand placed
by a task Ti on the processor in an interval [t; t0] is the amount of processing time
required by jobs of Ti in that interval [Je�ay et al. 1991]. In particular, task Ti's
demand in [t; t0] includes Ti's unful�lled demand at time t, ci time units for each job
release of Ti in (t; t0], and s time units for each interference occurring within (t; t0]
in jobs of task Ti. A task is said to be inactive at time t if it places no demand on
the processor at that time. The following examples illustrate some of the subtleties
of our task model.

Example 1. Let a task Ti be given by the tuple (ri(1); ci; pi). Consider the fol-
lowing set of periodic tasks scheduled under the RM scheme.

T1 = (3; 4; 11) T2 = (0; 4; 18) T3 = (1; 7; 35)

Assume that object S1 is accessed by T2 and T3, and S2 is accessed by T1, T2, and
T3. Tasks T1 and T2 access S1 and S2 in that order. Also, assume that s = 2.

The execution of the above task set is illustrated in Figure 2(a). In this �gure, up-
arrows represent job releases, down-arrows represent job completions, and shaded
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regions represent shared object accesses. Because the deadline of a job of a task
corresponds to the release of the next job of that task, up-arrows also denote job
deadlines.
We see that job J3;1 experiences an interference at time 14, when job J1;2 is

released. This is because job J1;2 is the earliest job that accesses an object in com-
mon with J3;1 and that is released in the closed interval between J3;1's preemption
at time 14 and its subsequent resumption at time 22. Thus, J3;1's operation on
S2 that begins at time 13 fails. This operation is retried at time 18, when it is
successfully completed. Observe that J3;1 experiences only one interference in the
interval [14; 22], even though two jobs (J1;2 and J2;2) are released in that interval
that can potentially interfere with J3;1's object access. By IA1, we assume that
J2;4 interferes with J3;2 at time 54 (because J2;4 preempts J3;2), even though J3;2

is not actually accessing a shared object at that point. Thus, the upper bound on
interference costs in the analysis presented later is rather pessimistic.
Task T3's unful�lled demand increases by 7 units at time 1 due to a job release

and increases by 2 units at time 14 due to an interference by J1;2. Also, task T3's
unful�lled demand decreases by one unit at every instant in the interval [11; 14]
because it executes on the processor. The demand placed by T3 on the processor
in the interval [5; 37] is 16 units; 7 units due to T3's unful�lled demand at time 5,
2 units due to an interference in J3;1 at time 14, and 7 units due the release of J3;2

at time 36.

Example 2. Consider the following set of periodic tasks scheduled under the EDF
scheme.

T1 = (4; 4; 11) T2 = (1; 4; 18) T3 = (0; 7; 33)

Assume that object S1 is accessed by T1 and T3, and S2 is accessed by T1 and T2.
Task T1 accesses S1 and S2 in that order; T3 accesses S1 twice. As in the previous
example, we assume that s = 2.
The execution of the above task set is illustrated in Figure 2(b). We see that

job J3;1 experiences an interference at time 4 while accessing S1, when job J1;1 is
released. J1;1 has an earlier deadline than J3;1 and is the �rst job that accesses
an object in common with J3;1 and that is released in the closed interval between
J3;1's preemption at time 1 and its subsequent resumption at time 11. Observe that
J2;1 also experiences an interference at time 4 while accessing object S2 due to the
release of J1;1. The total demand placed in the interval [0; 25] by jobs with deadlines
at or before 25 is 10 units; 4 and 6 units due to tasks T1 and T2, respectively. Of
the 6 units of T2's demand, 2 units are due to an interference in T2 at time 4. Note
that we do not include the demand due to jobs J1;2, J2;2 and J3;1 because their
deadlines are after time 25.

Before we present our scheduling conditions, we prove several lemmas used in
the proofs of these conditions. In [Liu and Layland 1973], it is shown that for
independent tasks (i.e., tasks that do not share objects), the longest response time
of a task occurs at a critical instant of time, at which jobs of that task and all
higher-priority tasks are released. However, this is not necessarily the case if tasks
share lock-free objects, as illustrated in Example 1. In this example, the longest
response time of task T3 does not occur when its job is released along with higher-
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priority jobs at time 36. The job released at time 1 has a longer response time.
Instead of de�ning the critical instant, we introduce the notion of a \busy point".

The busy point bi(k) of job Ji;k is the latest point in time at or before ri(k) when
jobs that have priority at least that of Ji;k are either inactive or have a job release.
For example, in Figure 2, the busy point of J3;1 occurs at time 0, i.e., b3(1) = 0.
Because each task is either inactive or releases a job at time 0, bi(k) is well-de�ned
for any i and k. Our scheduling conditions are obtained by inductively counting
interferences over intervals of time. A busy point provides a convenient instant at
which to start such an inductive argument, because tasks that are inactive or that
have just released a job have experienced no interferences.

Lemma 1. Consider any t 2 [bi(k); ri(k+1)) at which Ji;k has positive unful�lled

demand. Let v be the priority of Ji;k. In the interval [bi(k); t], the number of

interferences in jobs with priority at least v is bounded by the number of instants

in the interval (bi(k); t] at which some job with priority greater than v is released.

Proof. To simplify the proof, we prove a slightly stronger statement: the num-
ber of interferences in the interval [bi(k); t] in jobs with priority at least v is bounded
by the di�erence between (i) the number of instants in the interval (bi(k); t] at which
some job with priority greater than v is released and (ii) the number of preempted
jobs at time t that have not been interfered with4 and that have priority at least
v. The proof is by induction on t.

Basis: We show that the lemma holds at bi(k), Ji;k's busy point. There can be no
interferences in the interval [bi(k); bi(k)] in jobs with priority at least v because Ji;k

and higher-priority jobs are either inactive or have a job release at bi(k). For the
same reason, there are no preempted jobs at bi(k) with priority at least v. Clearly,
there are zero instants in the interval (bi(k); bi(k)] at which some job is released
that has priority greater than v. Hence, the basis of the induction holds.

Induction Step: Assume that the above lemma holds at time t � 1 � bi(k). Let J
be some job executing at time t� 1. (Such a job J must exist by the de�nition of
bi(k).) Suppose that there are f interferences in the interval [bi(k); t � 1] in jobs
with priority at least v, and that there are w instants in the interval (bi(k); t�1] at
which some job with priority greater than v is released. Also, suppose that there are
x preempted jobs at time t� 1 that have priority at least v and that have not been
interfered with. Our inductive hypothesis can be formally written as f � w � x.
We now consider two cases.

Case 1: If no job is released at time t that has priority greater than v, then by
IA1, no interference can occur at that time in any job with priority at least v.
Hence, there are f interferences in [bi(k); t] and w instants in (bi(k); t] at which
some job is released that has priority greater than Ji;k's priority. Also, the number
of preempted jobs at time t is either x� 1 or x, depending on whether J completes
at time t or not. In either case, the lemma holds at time t because our inductive
hypothesis implies both f � w � (x� 1) and f � w � x.

Case 2: If y > 0 jobs are released at time t that have priority greater than v,
then there are w+ 1 instants in the interval (bi(k); t] at which some job is released

4Note that jobs that have been released but have not yet executed cannot be interfered with.
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that has priority greater than v. Suppose that some number q of the x preempted
jobs incur an interference at time t due to some newly released job that accesses a
common object. We consider three subcases.

J has higher priority than all newly released jobs. It follows from IA1 that none of
the jobs released at time t can interfere with J . Thus, there are f + q interferences
in [bi(k); t] and x � q preempted jobs that have not been interfered with. (The
y jobs released at time t cannot be interfered with because they have not started
execution yet.) The lemmaholds at time t because our inductive hypothesis implies
f + q � (w + 1)� (x� q).

J is preempted at time t but none of the newly released jobs accesses an object

in common with J . By IA1, none of the newly released jobs can interfere with J .
Therefore, the number of interferences in [bi(k); t] is f+q. The number of preempted
jobs that have not been interfered with is x� q+1 (including J). The lemma holds
at time t because our inductive hypothesis implies f + q � (w + 1)� (x� q + 1).

J is preempted at time t and some newly released job accesses an object in com-

mon with J . It follows from IA1 that J is interfered with at time t. Hence, the
number of interferences in [bi(k); t] is f + q + 1. The number of preempted jobs
that have not been interfered with is x�q. Again, our inductive hypothesis implies
f + q + 1 � (w + 1)� (x� q).

Lemma 2. Consider any t 2 [bi(k); ri(k+1)). Under the RM scheme, the number

of interferences in Ti and higher-priority tasks in the interval [bi(k); t] is at most

i�1X
j=1

l
t�bi(k)

pj

m
:

Proof. From Lemma 1, it follows that the number of interferences in jobs with
priority at least that of Ji;k in the interval [bi(k); t] is bounded by the number of
instants in (bi(k); t] at which some job is released that has priority greater than that
of Ji;k. Under the RM scheme, only jobs of tasks T1 through Ti�1 have priority
greater than Ji;k, and the number of jobs of task Tj released in the interval (bi(k); t]
is at most d(t�bi(k))=pje. Therefore, the number of interferences in Ti and higher-

priority tasks in the interval [bi(k); t] is bounded by
Pi�1

j=1

l
t�bi(k)

pj

m
.

Lemma 3. Under the RM scheme, if, at time ri(k + 1) � 1, Ti has positive un-

ful�lled demand and the total unful�lled demand of Ti and higher-priority tasks is

greater than one, then, for any t in the interval [bi(k); ri(k + 1)), the di�erence

between (i) the total demand placed on the processor by Ti and higher-priority tasks

in the interval [bi(k); t], and (ii) the available processor time in that interval, is

greater than one.

Proof. The proof can be established by contradiction. To this end, suppose that
there exists a t 2 [bi(k); ri(k+1)) such that the di�erence between the total demand
placed by tasks T1 through Ti in the interval [bi(k); t] and the available processor
time in that interval is at most one. It follows that the total unful�lled demand
of tasks T1 through Ti at time t equals zero or one. Because the total unful�lled
demand of Ti and higher-priority tasks is greater than one at time ri(k + 1) � 1,
t 6= ri(k + 1)� 1 holds. Also, either tasks T1 through Ti are inactive at time t, or
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one of tasks T1 through Ti has unit unful�lled demand and is the highest-priority
job executing on the processor. In both cases, it follows that Ti and higher-priority
tasks are either inactive or have a job release at time t+ 1. To complete the proof,
we show that this leads to a contradiction.
By the de�nition of a busy point, bi(k) is the latest time at or before ri(k) at

which Ti and higher-priority tasks are either inactive or have a job release. Thus,
it follows that t + 1 cannot lie in the interval (bi(k); ri(k)]. Also, as explained
earlier, t 6= ri(k + 1) � 1, i.e., t + 1 6= ri(k + 1). Hence, t + 1 lies in the interval
(ri(k); ri(k+1)). Ti clearly cannot have a job release in the interval [t+1; ri(k+1))
because t+ 1 > ri(k). Thus, Ti is inactive | and hence has no unful�lled demand
| throughout the interval [t+ 1; ri(k + 1)), contradicting our assumption that Ti
has positive unful�lled demand at time ri(k + 1)� 1.

Lemma 4. Under the EDF scheme, the number of interferences in jobs with a

deadline at or before ri(k + 1) in the interval [bi(k); ri(k + 1)) is at most

NX
j=1

j
ri(k+1)�bi(k)�2

pj

k
:

Proof. FromLemma1, it follows that the number of interferences in the interval
[bi(k); ri(k+ 1)) is bounded by the number of instants in (bi(k); ri(k+1)) at which
some job is released that has priority greater than Ji;k's priority, i.e., the released
job's deadline is before ri(k + 1). Under the EDF scheme, the number of jobs of
Tj released in the interval (bi(k); ri(k + 1)) that have a deadline before ri(k + 1)

is at most
j
(ri(k+1)�1)�(bi(k)+1)

pj

k
. Therefore, the number of interferences in jobs

with deadlines at or before ri(k+ 1) in the interval [bi(k); ri(k + 1)) is bounded byPN

j=1

j
ri(k+1)�bi(k)�2

pj

k
.

3. STATIC-PRIORITY SCHEDULING CONDITIONS

In this section, we give separate necessary and su�cient conditions for the schedu-
lability of a set of periodic tasks that share lock-free objects under the RM scheme.
We also briey consider the DM scheme. The following theorem gives a necessary
scheduling condition for the RM scheme. The left-hand side of the quanti�ed ex-
pression given below gives the minimum demand | which arises when there are
no interferences | placed on the processor by Ti and higher-priority tasks in the
interval [0; t], where 0 < t � pi. The right-hand side gives the available processor
time in that interval. For brevity, we omit the proof of this condition here, because
it is similar to that given for independent tasks in [Lehoczky et al. 1989].5 (A
formal proof within our model can be found in [Anderson et al. 1995].)

Theorem 1. (Necessity under RM ) If set of periodic tasks that share lock-free

objects is schedulable under the RM scheme, then the following condition holds for

every task Ti.

5Our necessary condition di�ers slightly from that in [Lehoczky et al. 1989] because we allow tasks
to release their �rst jobs at arbitrary times.
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h9t : 0 < t � pi :
iX

j=1

�
t

pj

�
� cj � ti

The next theorem gives a su�cient scheduling condition for the RM scheme. The
left-hand side of the quanti�ed expression given below gives the maximumdemand
placed by Ti and higher-priority tasks in the interval [0; t). The �rst summation
represents the demand placed on the processor by Ti and higher-priority tasks,
not including the demand due to interferences. The second summation represents
the total additional demand placed on the processor due to interferences in Ti and
higher-priority tasks. The right-hand side of the expression is the available processor
time in [0; t). Observe that this condition can be applied without knowledge of
which tasks access which objects.

Theorem 2. (Su�ciency under RM ) A set of periodic tasks that share lock-free

objects is schedulable under the RM scheme if the following condition holds for

every task Ti.

h9t : 0 < t � pi :
iX

j=1

�
t

pj

�
� cj +

i�1X
j=1

�
t� 1

pj

�
� s � ti

Proof. We prove that if a task set is not schedulable, then the negation of
the above expression holds. Assume that the given task set is not schedulable.
Let Ji;k be the �rst job to miss its deadline. (If several jobs simultaneously miss
their deadline along with Ji;k, then let Ji;k be the one with highest priority, i.e.,
smallest task index.) Consider any t in the interval [bi(k); ri(k + 1)). We begin by
deriving a bound on D(bi(k); t), the total demand placed on the processor by Ti and
higher-priority tasks in the interval [bi(k); t]. D(bi(k); t) is comprised of the demand
placed by job releases and the extra demand placed by interferences. Recall that
at the busy point bi(k), Ti and all higher-priority tasks are either inactive or have
a job release. Each job release of some task Tj introduces a demand of cj on the
processor, and there are at most d(t� bi(k)+ 1)=pje job releases of that task in the
interval [bi(k); t]. Therefore, the total demand placed on the processor due to job

releases of Ti and higher-priority tasks is at most
Pi

j=1d(t � bi(k) + 1)=pjecj .
By Lemma 2, the number of interferences in jobs of Ti and higher-priority tasks in

the interval [bi(k); t] is bounded by
Pi�1

j=1d(t�bi(k))=pje. By IA2, each interference
introduces s units of additional demand on the processor. Therefore, the total
additional demand due to interferences in jobs of Ti and higher-priority tasks is at
most

Pi�1

j=1d(t � bi(k))=pjes. Therefore, we have

D(bi(k); t) �
iX

j=1

�
t� bi(k) + 1

pj

�
cj +

i�1X
j=1

�
t � bi(k)

pj

�
s:

Job Ji;k will miss its deadline if and only if, at time ri(k+1)� 1, Ti has positive
unful�lled demand and the total unful�lled demand of Ti and higher-priority tasks
is greater than one. By Lemma 3, it follows that the di�erence between the total
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demand due to Ti and higher-priority tasks in the interval [bi(k); t] and the available
processor time in that interval is greater than one. Hence, we have the following.

D(bi(k); t)� (t� bi(k)) > 1

Using the bound on D(bi(k); t) derived above, the previous expression implies the
following.

iX
j=1

�
t� bi(k) + 1

pj

�
cj +

i�1X
j=1

�
t� bi(k)

pj

�
s > t� bi(k) + 1

The above expression holds for all t in the interval [bi(k); ri(k + 1)). Because
this expression is independent of the end points (it is a function of the length
of the interval), we can replace t � bi(k) with t0, where t0 = t � bi(k) and t0 2

[0; ri(k + 1)� bi(k)). Hence, we have the following.

iX
j=1

�
t0 + 1

pj

�
cj +

i�1X
j=1

�
t0

pj

�
s > t0 + 1

Now, replace t0 with t in the above expression, where t = t0 + 1 and t 2 (0; ri(k +
1)� bi(k)]. Then, the following holds for all t 2 (0; ri(k + 1)� bi(k)].

iX
j=1

�
t

pj

�
cj +

i�1X
j=1

�
t � 1

pj

�
s > t

By de�nition, bi(k) � ri(k). Therefore, the interval (0; ri(k+1)�ri(k)] is completely
contained in (0; ri(k + 1) � bi(k)]. Also, by de�nition, ri(k + 1) � ri(k) = pi.
Therefore, the expression above holds for all t in (0; pi].

In the videoconferencing system described in Section 6, tasks are sporadic rather
than periodic, and job deadlines and release points do not necessarily coincide, as
we have assumed. However, as remarked earlier, the scheduling conditions that
we derive also apply if tasks are sporadic. In addition, the scheduling condition
of Theorem 2 can be easily adapted to apply if job deadlines and release points
do not coincide. This requires changing our model to allow the relative deadline li
of task Ti to range over (0; pi] | by relative deadline, we mean the elapsed time
between a job's release time and its deadline. For simplicity, we assume that tasks
are indexed in nondecreasing order by relative deadline.
With this change to our model, it is possible to prove the following static-priority

scheduling condition. This condition assumes that priority is assigned by the DM
scheme [Leung and Whitehead 1982], in which tasks with smaller relative deadlines
have higher priorities. The two summation terms in the stated expression below give
the demand due to job releases of Ti and higher-priority tasks, and the additional
demand due to interferences in those tasks, respectively, in an interval of length t.

Theorem 3. (Su�ciency under DM ) A set of periodic tasks that share lock-free

objects is schedulable under the DM scheme if the following condition holds for

every task Ti.
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h9t : 0 < t � li :
iX

j=1

�
t

pj

�
� cj +

i�1X
j=1

�
t� 1

pj

�
� s � ti

In comparing this condition to that given in Theorem 2, we see that t now
ranges up to li, the relative deadline of Ti, rather than up to pi, the period of Ti.
Observe that when deadlines coincide with job releases, this condition reduces to
the su�cient condition for RM scheduling proved in Theorem 2.

4. DYNAMIC-PRIORITY SCHEDULING CONDITIONS

In this section, we give separate necessary and su�cient conditions for the schedu-
lability of a set of periodic tasks that share lock-free objects under the EDF scheme.
The following theorem gives a necessary scheduling condition for the EDF scheme.
According to this theorem, a task set is schedulable only if processor utilization is
at most one. This condition is the same as that given in [Liu and Layland 1973] for
independent tasks, so for brevity, its proof is omitted here. (A formal proof within
our model is given in [Anderson et al. 1995].)

Theorem 4. (Necessity under EDF ) If set of periodic tasks that share lock-free

objects is schedulable under the EDF scheme, then

NX
i=1

ci
pi

� 1:

The next theorem gives a su�cient condition for schedulability under the EDF
scheme. It states that a task set is schedulable if processor utilization is at most
one, when interferences are taken into account. Like the RM su�ciency condition
of the previous section, this condition can be applied without knowledge of which
tasks access which objects.

Theorem 5. (Su�ciency under EDF ) A set of periodic tasks that share lock-free

objects is schedulable under the EDF scheme if the following condition holds.

NX
j=1

cj + s

pj
� 1

Proof. We prove that if a task set is not schedulable then
PN

j=1(cj + s)=pj > 1
holds. Assume that the given task set is not schedulable. Let Ji;k be the �rst job
to miss its deadline. (If several jobs simultaneously miss their deadline along with
Ji;k, then let Ji;k be the one with lowest priority.) We begin by deriving a bound
on D(bi(k); ri(k + 1) � 1), the total demand placed on the processor by Ji;k and
higher-priority jobs, i.e., jobs with deadlines at or before ri(k + 1), in the interval
[bi(k); ri(k + 1)). D(bi(k); ri(k + 1)� 1) is comprised of the demand placed by job
releases and the extra demand placed by interferences. Recall that at Ji;k's busy
point, all jobs of equal or higher priority either are inactive or have a job release.
Each job of some task Tj can place a demand of cj on the processor, and there are at
most b(ri(k+1)�bi(k))=pjc job releases of that task in the interval [bi(k); ri(k+1))
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that have a deadline at or before ri(k+ 1). Therefore, the total demand placed on
the processor due to such jobs is at most

NX
j=1

�
ri(k + 1)� bi(k)

pj

�
� cj:

By Lemma 4, the total number of interferences in jobs with deadlines at or before
ri(k+1) in the interval [bi(k); ri(k+1)) is bounded by the term

PN

j=1b(ri(k+1)�
bi(k) � 2)=pjc. By IA2, each interference requires s units of additional demand.
Therefore, the total additional demand due to interferences is at most

NX
j=1

�
ri(k + 1)� bi(k)� 2

pj

�
� s:

Job Ji;k will miss its deadline if and only if the di�erence between the total demand
due to tasks with a deadline at or before ri(k + 1) in the interval [bi(k); ri(k + 1))
and the available processor time in that interval is greater than one. Therefore, we
have the following.

NX
j=1

�
ri(k + 1) � bi(k)

pj

�
�cj+

NX
j=1

�
ri(k + 1)� bi(k) � 2

pj

�
�s�(ri(k+1)�bi(k)�1) > 1

The above expression implies

NX
j=1

(ri(k + 1)� bi(k)) � cj
pj

+
NX
j=1

(ri(k + 1)� bi(k)� 2) � s

pj
> ri(k + 1)� bi(k);

which implies the following.

NX
j=1

(ri(k + 1)� bi(k)) � (cj + s)

pj
> ri(k + 1)� bi(k)

Canceling out ri(k + 1) � bi(k) from both sides of the expression above yields the
following expression, completing the proof.

NX
j=1

cj + s

pj
> 1

When considering static-priority schemes in Section 3, we presented a condition
that can be applied when task deadlines and periods do not coincide. The following
theorem gives a similar result for EDF scheduling. (Recall that lj is the relative
deadline of task Tj .)

Theorem 6. (Su�ciency under EDF when deadlines di�er from periods) A set of

periodic tasks that share lock-free objects is schedulable under the EDF scheme if

the following condition holds.

h8t : t � 0 :
NX
j=1

�
t� lj + pj

pj

�
� cj +

NX
j=1

�
t� 1� lj + pj

pj

�
� s � ti
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As formulated above, the expression in Theorem 6 cannot be veri�ed because the
range of t is unbounded. However, there is an implicit bound on t. For example,
if all tasks are released at time 0, then we only need to consider values less than
or equal to the least common multiple of the task periods. If tasks are released at
di�erent times, an implicit bound still exists, but it is more complex [Baruah et al.
1993]. Also, if an upper bound on the utilization available for the tasks is known,
then we can restrict t to a much smaller range [Baruah et al. 1993].
Observe that the summation terms in both Theorems 5 and 6 range from 1 to

N . As a result, we are allowing for the fact that any of the N tasks can cause
interferences in other tasks. However, by our task model, TN cannot cause any in-
terferences in other tasks. It is a straightforward exercise to tighten both conditions
to account for this fact.

5. FORMAL COMPARISON

In this section, we compare lock-free objects to lock-based synchronization schemes
and wait-free objects. This comparison is based upon the scheduling conditions
presented in the previous two sections, and scheduling conditions for lock-based
schemes found in the literature. For simplicity, we assume that all accesses to
lock-based objects require r units of time, and that there are no nested object
calls. (We reconsider the subject of nested calls later in Section 7.) Thus, the
computation time ci of a task Ti can be written as ci = ui +mi � tacc, where ui is
the computation time not involving accesses to shared objects, mi is the number
of shared object accesses by Ti, and tacc is the maximum computation time for any
object access, i.e., s for lock-free objects and r for lock-based objects. (Recall that
ci is the computation time of Ti when it is the only task executing on the processor,
i.e., it does not including blocking terms associated with priority inversions in the
lock-based case or interference costs in the lock-free case.) As explained below,
recent studies that evaluate the performance of lock-free objects [Massalin 1992]
and lock-based objects [Gallmeister and Lanier 1991] indicate that s is likely to
be less than r for many common objects. This is con�rmed by the experimental
results presented in Section 6.

5.1 Static-Priority Scheduling

We begin by comparing the overhead of lock-free object sharing under RM schedul-
ing with the overhead of the lock-based priority ceiling protocol (PCP) [Rajkumar
1991]. When tasks synchronize by locking, a higher-priority job can be blocked by
a lower-priority job that accesses a common object; the maximum blocking time
is called the blocking factor . Under the PCP, the worst-case blocking time equals
the time required to execute the longest critical section. Since we do not consider
nested critical sections, the blocking factor equals r, the time to execute a single
critical section. We denote the schedulability condition for periodic tasks using the
PCP by the predicate sched PCP , which on the basis of the analysis in [Rajkumar
1991], is de�ned as follows.

sched PCP � h8i 9t : 0 < t � pi : r +
Pi

j=1

l
t
pj

m
(uj +mj � r) � ti

In the above equation, the �rst term on the left-hand side represents the blocking
factor. In the second term, uj +mj � r represents the computation time of task Tj .
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The expression on the left-hand side represents the maximum demand due to Ti
and higher-priority tasks in a interval of length t.
We now derive conditions under which lock-free objects are guaranteed to per-

form at least as well as lock-based objects under the PCP. Consider the following
derivation.

h8j : j � i : (mj + 1) � s � mj � ri ^ sched PCP

fSubstituting (mj + 1) � s for mj � r in sched PCPg

) h8i 9t : 0 < t � pi :
Pi

j=1

l
t
pj

m
(uj +mj � s) +

Pi

j=1

l
t
pj

m
� s+ r � ti (1)

) h8i 9t : 0 < t � pi :
Pi

j=1

l
t
pj

m
(uj +mj � s) +

Pi�1

j=1

l
t�1
pj

m
� s � ti (2)

Because cj = uj+mj �s in the lock-free case, the last expression in this derivation is
equivalent to the scheduling condition of Theorem 2. Note that s � r

2
implies that

h8j : j � i : (mj + 1) � s � mj � ri because, for positive mj ,
1

2
�

mj

mj+1
< 1. Thus,

if the time taken to execute one iteration of a lock-free retry loop is less than half
the time it takes to access a lock-based object under the PCP, then any task set
that is schedulable under the PCP is also schedulable when using lock-free objects.
This also implies that there are certain task sets that are schedulable when lock-free
objects are used, but not under the PCP.
Since the above comparison between lock-free objects and the PCP rests on

r and s values, it is instructive to take a closer look at what these values are
actually comprised of in practice. s is the cost of one lock-free retry loop. For
most simple data structures like read/write bu�ers, queues, and stacks, s is often
simply the cost of a simple, straight-line code sequence. For more complex data
structures like linked lists and balanced trees, a lock-free implementation would
be more complicated, and corresponding s values might be relatively high. In
some applications, s might also include the time taken to copy the implemented
object if a universal construction were being used, or the time taken to simulate
a synchronization primitive such as CAS2 if such primitives were not provided in
hardware. Under the PCP, r includes the cost of a system call to modify the
calling task's priority before accessing an object, the cost of actually performing
the shared-object operation, and the cost of a system call to restore the calling
task's priority after an access.
What are typical values of s and r? A performance comparison of various lock-

free objects is given by Massalin in [Massalin 1992]. Massalin reports that, given
hardware support for primitives like compare-and-swap, s varies from 1.3 microsec-
onds for a counter to 3.3 microseconds for a circular queue. In the absence of
hardware support, such primitives can be simulated by a trap, adding an addi-
tional 4.2 microseconds. Massalin's conclusions are based on experiments run on
a 25 MHz, one-wait-state memory, cold-cache 68030 CPU. In contrast, lock-based
implementations fared much worse in a recent performance comparison of commer-
cial real-time operating systems run on a 25 MHz, zero-wait-state memory 80386
CPU [Gallmeister and Lanier 1991]. In this comparison, the implementation of
semaphores on LynxOS took 154.4 microseconds to lock and unlock a semaphore in
the worst case. The corresponding �gure for POSIX mutex-style semaphores was
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243.6 microseconds. Although these �gures cannot be regarded as de�nitive, they
do give some indication as to the added overhead when operating-system-based
locking mechanisms are used. For the videoconferencing system described in Sec-
tion 6, the situation is very similar. In this system, s is 37 time units, while r is
151 time units.
In deriving (2) from (1) in the comparison above, we dropped the term r, ef-

fectively ignoring the e�ect of blocking under the PCP. If blocking times are con-
siderable, then lock-free objects would be more competitive than this comparison
indicates. It should also be noted that our scheduling analysis is very pessimistic.
In reality, a preempted task need not be accessing a shared object, and hence may
not necessarily have an interference as we have assumed.

5.2 Dynamic-Priority Scheduling

We now compare the overhead of lock-free objects with the dynamic deadline mod-
i�cation (DDM) scheme under EDF scheduling (EDF/DDM) [Je�ay 1992], which
is a lock-based protocol for dynamic-priority schemes. Under this scheme, tasks
are divided into one or more phases. During each phase, a task accesses at most
one shared resource. Before a task Ti accesses a shared object Sm, its deadline is
modi�ed to the deadline of some task Tj that accesses Sm and that has the smallest
deadline of all tasks that access Sm. Upon completing the shared object access,
Ti's deadline is restored to its original value. In our comparison, we assume that
phases in which some shared object is accessed are r units in length. Under the
EDF/DDM scheme, r includes the cost of a system call to modify the task dead-
line before accessing an object, the cost of performing the shared-object operation,
and the cost of a system call to restore the task deadline after an access. Based
on the analysis of [Je�ay 1992], a su�cient condition for the schedulability of a
set of periodic tasks under the EDF/DDM scheme, sched DDM , can be de�ned as
follows.

sched DDM � (
PN

j=1

uj+mj �r
pj

� 1) ^

h8i; t : Pi < t < pi : r +
Pi�1

j=1

j
t�1
pj

k
� (uj +mj � r) � ti

In the �rst conjunct of the above equation, the expression in the left-hand side of
the inequality represents the total processor utilization due to tasks in the system.
The term uj+mj �r represents the computation time of Tj . In the second conjunct,
the term Pi is de�ned as the minimumpj such that Tj shares a common object with
Ti. The �rst term on the left-hand side of the inequality in the second conjunct
represents the maximum time Ti can block tasks with smaller periods, and the
second term represents the total demand on the processor due to tasks with smaller
periods in an interval of length t � 1. The expression on the left-hand side of the
inequality represents the maximum demand that can be placed on the processor
during an interval of length t.
We now derive conditions under which lock-free objects are guaranteed to perform

at least as well as objects implemented using the DDM scheme. Consider the
following derivation.

h8j : (mj + 1) � s � mj � ri ^ sched DDM (3)
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fBy the de�nition of sched DDM g

) h8j : (mj + 1) � s � mj � ri ^
PN

j=1
uj+mj �r

pj
� 1 (4)

fSubstituting (mj + 1) � s for mj � rg

)
PN

j=1
uj+(mj+1)�s

pj
� 1

Because cj = uj +mj � s in the lock-free case, the last expression in this derivation
is equivalent to the scheduling condition of Theorem 5. As noted previously, s � r

2
implies h8j : (mj + 1) � s � mj � ri. Thus, as with the PCP, if the time taken to
execute one iteration of a lock-free retry loop is less than half the time it takes to
access an object using the DDM scheme, then any task that is schedulable under
the EDF/DDM scheme is also schedulable under EDF scheduling using lock-free
objects. As mentioned previously, s is likely to be smaller than r for many objects.
In deriving (4) from (3) in the above comparison, we dropped the second conjunct

in sched DDM , e�ectively ignoring the e�ect of blocking under the EDF/DDM
scheme. If blocking times are considerable, then lock-free objects would perform
better than as indicated above.

5.3 Wait-Free Objects

Wait-free shared objects di�er from lock-free objects in that wait-free objects are
required to guarantee that individual tasks are free from starvation. Most wait-free
universal constructions ensure termination by requiring each task to \help" every
other task to complete any pending object access [Herlihy 1991; Herlihy 1993].
To see how this works, consider the lock-free universal construction of Herlihy
[Herlihy 1993], which is described in Section 1. This construction does not guarantee
termination because the store-conditional operation of each retry loop iteration
may fail. Herlihy extends this construction to be wait-free by requiring each task
to \announce" any pending operation by recording it in a shared array. Using
this information, each task is able to \help" other tasks with pending operations
by performing their operations in addition to its own. If a task is repeatedly
unsuccessful in modifying the shared object pointer, then it is eventually helped by
another task | in fact, after at most two retry loop iterations.
Note, however, that on a uniprocessor, lower-priority tasks cannot help higher-

priority tasks because a higher-priority task does not release the processor until its
demand has been ful�lled. Thus, each task only helps lower-priority tasks. Hence,
the greater the task priority, the larger the access time. In some sense, the problem
of priority inversion still exists, because a medium-priority task will have to wait
while a high-priority task helps a low-priority task. On the other hand, when
lock-free objects are used, the time to complete an object access decreases with
increasing priority. For these reasons, some task sets that are schedulable when
using lock-free objects will not be schedulable when using wait-free objects. This
is true of the task set evaluated in the next section.
In order to more formally compare lock-free and wait-free objects, let us assume

that objects are implemented using Herlihy's universal constructions. First, note
that tasks that share wait-free objects can be viewed as independent tasks, i.e.,
the scheduling conditions derived in [Lehoczky et al. 1989] and [Liu and Layland
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1973] apply. These conditions are the same as those given in Theorems 2 and 5,
respectively, when s = 0. The computational cost cj in this case equals uj+mj �twf ,
where twf is the worst-case access time of a wait-free object, which occurs when all

lower-priority tasks with pending operations are helped. If s is the time taken for
the retry loop in Herlihy's less-complicated lock-free construction, then we would
expect twf = c � s, for some c � 1. Observe that if c � 2, then the cj term in the
wait-free case is greater than or equal to uj+(mj+1)�s. Note also that uj+(mj+1)�s
is at least as large as the terms corresponding to Tj in Theorems 2 and 5. Thus, if
a task set is schedulable using Herlihy's wait-free universal construction, then it is
also schedulable using Herlihy's lock-free universal construction.
The conclusion drawn above that lock-free implementations always perform bet-

ter than wait-free ones may not apply if wait-free objects are implemented using
techniques other than a Herlihy-like helping scheme. In fact, Anderson, Rama-
murthy, and Jain have shown in a recent paper that it is possible to dramatically
reduce helping overhead in wait-free implementations for priority-based real-time
systems [Anderson et al. 1997]. For such implementations, it may indeed be the
case that wait-free implementations are superior to lock-free ones for certain ob-
jects, although the exact extent (if any) to which this is true is currently unknown.

6. EXPERIMENTAL COMPARISON

In this section, we provide empirical evidence that lock-free objects are often su-
perior to more traditional lock-based approaches to real-time object sharing. This
evidence comes from a set of experimental comparisons performed using a real-
time desktop videoconferencing system implemented at UNC [Je�ay et al. 1992].
We modi�ed this system to support lock-free shared objects implemented under
both DM and EDF scheduling, semaphores implemented using the PCP under DM
scheduling, and semaphores implemented under EDF/DDM scheduling. We also
considered wait-free shared objects implemented under both DM and EDF schedul-
ing. The formal analysis for each synchronization scheme was applied to determine
whether it was theoretically possible to ensure that no deadlines would be missed.
We then executed the system using each synchronization scheme under a variety of
loading conditions, and compared the actual performance to that predicted by the
formal analysis. In all cases, the formal analysis predicted the actual behavior of the
system. Moreover, our lock-free synchronization schemes frequently led to higher
levels of sustainable system utilization than was possible with lock-based synchro-
nization. Also, our experiments con�rm that, for the objects considered, lock-free
implementations are superior to wait-free implementations based on Herlihy-like
helping schemes, for real-time computing on uniprocessors. The following subsec-
tion describes the videoconferencing system in more detail.

6.1 Experimental Setup

The videoconferencing system considered in our investigations acquires analog au-
dio and video samples on a workstation and then digitizes, compresses, and trans-
mits the samples over a local-area network to a second workstation where they
are decompressed and displayed. Here we consider only the portion of the system
responsible for the acquisition, compression, and network transmission of media
samples by the sending workstation.
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Fig. 3. Tasks and shared queues in the videoconferencing system.

Abstractly, the tasks on the sending workstation are organized as a software
pipeline. Communication between stages is realized through a queue of media
samples that is shared using a simple producer/consumer protocol. These queues
must support a get length operation in addition to enqueue and dequeue, which
slightly complicates their implementation. Queues of shared media samples exist
between the digitizing task and the compression task and between the compression
task and the network transmission tasks. The real-time constraints on the operation
of the pipeline require media samples to ow through the pipeline in a predictable
manner. These media samples arrive sporadically and are manipulated by a set of
sporadic tasks. Each task must process arriving media samples before a prespeci�ed
deadline that does not coincide with that task's period, and no media samples may
be lost due to bu�er overows.
A comprehensive view of the tasks (dashed boxes) and shared queues (solid boxes)

on the sending workstation is given in Figure 3. In this �gure, an arrow is directed
from each task to each of the shared objects it accesses. The message queues
(S1 � S13) are used for inter-task communication. For our purposes, it su�ces to
consider the tasks in Figure 3 to be an abstract set of tasks | details regarding
the function of each task, and how the tasks interact are not important to us. For
a more detailed description of this system, we refer the interested reader to [Stone
1995].
We evaluated the performance of the system when the shared queues were imple-

mented using lock-free algorithms, wait-free algorithms, and lock-based techniques.
We implemented lock-free queues by using the shared queue implementation given
in [Massalin 1992] (modi�ed to support the get length operation), and wait-free
queues by using the wait-free universal construction given in [Herlihy 1993]. Mas-
salin's queue implementation requires CAS (needed for the dequeue operation) and
CAS2 (needed for the enqueue operation), and Herlihy's construction requires load-
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linked and store-conditional . We implemented these primitives by short kernel calls;
interrupts were disabled for the duration of these calls.
We found that the videoconferencing task set was not schedulable, in any experi-

ment, when the shared queues were implemented using Herlihy's wait-free universal
construction. This is due to the high overhead of helping, as discussed in Section
5.3. In contrast, our lock-free implementations required very little overhead, with
interferences occurring only rarely. For example, in ten executions of the system,
only 363 interferences occurred in 415,229 enqueue operations. We also found that
multiple interferences of a single operation never occurred. In the following two
subsections, we discuss results of experiments that were conducted to compare
lock-free and lock-based schemes under static- and dynamic-priority scheduling.

6.2 Static-Priority Scheduling

In this subsection, we discuss the results of experiments that compare the overhead
of lock-free objects to lock-based objects implemented using the PCP. In both
cases scheduling was performed using the DM scheduling algorithm [Leung and
Whitehead 1982].
Qualitatively, when queue synchronization was achieved using semaphores, ap-

proximately seven media samples were lost in the pipeline every second due to bu�er
overow. In contrast, no media samples were lost when lock-free objects were used.
This result is predicted by the formal analysis of the system, which we now

present. The model we consider consists of a set of N = 15 sporadic tasks, M = 21
shared objects, and Q = 12 periodic and sporadic interrupt handlers. The ith

task in the system is given by the tuple hci; pi; li; aii, where ci and pi have the usual
meanings, li is the relative deadline of Ti, and ai is the set of shared objects accessed
by Ti. We assume that tasks are indexed in the order of nondecreasing deadlines.
The ith interrupt handler is given by the tuple hei; vii, where ei is the execution
time of the handler and vi is the minimum time between interrupts. Interrupt
handlers are executed in a �rst-come-�rst-served manner and always have priority
over application tasks. The periods, relative deadlines, and the execution times of
the tasks in our formal model are shown in Table 2. The periods and execution
times of the interrupt handlers are shown in Table 3.
The formal model of the experimental system can be analyzed by using the

scheduling condition given in Theorem 3 when lock-free objects are used, and that
given in [Lehoczky et al. 1989] when lock-based objects are used. Note, however,
that these conditions do not consider the cost of handling interrupts, and hence
cannot be used directly. Fortunately, this problem can be overcome by using tech-
niques derived in [Je�ay and Stone 1993]. The idea is to derive an expression that
bounds the demand due to interrupt handlers in any given interval, and to then
account for this demand in the scheduling conditions of Theorem 3 and [Lehoczky
et al. 1989].
Informally, we account for the cost of interrupt handlers as follows (see [Je�ay

and Stone 1993] for a more formal version of this argument). First, we de�ne the
term F (t) to be the cost of handling interrupts over an interval of length t. In order
to derive a bound on F (t), consider Ii, the ith interrupt in the system, and consider
an interval [t0; t0 + t) of length t, where t0 � 0. Ii occurs at most dt=vie times in
that interval, and requires ei units of processor time for every occurrence. Hence,
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Table 2. Task characteristics. Times are given in microseconds.
Task Name Cost [DM] Cost [EDF] Period Deadline WC Responsey

Ti ci ci pi li t�
i

t��
i

PCP LF DDM LF

InitXmit1 T1 579 459 687 649 33333 6705 4743 4623

Xmit1 T2 147 147 147 147 45603 6705 4890 4807

Xmit2 T3 147 147 147 147 45603 6705 5037 4991

Xmit3 T4 147 147 147 147 45603 6705 5184 5175

Compress T5 602 528 669 624 9573 8000 5786 5740

Camera T6 396 396 416 416 15746 15000 6182 6173

Audio T7 1017 953 1024 966 15746 15000 7199 7163

InitDigit T8 1110 1046 1137 1096 31492 15000 8309 8246

InitComp T9 1332 746 1069 640 31492 15000 10243 9029

InitXmit2 T10 710 604 821 982 33333 19850 11287 10235

Packetize1 T11 8315 8315 8315 8315 40842 33333 22651 21943

Packetize2 T12 8315 8315 8315 8315 40842 33333 N/A 30860

UserTimer T13 126 122 102 137 54538 54538 37872 31385

Keyboard T14 580 549 637 589 490853 490853 39054 37065

Screen T15 142 71 148 78 1963379 1963379 39196 37173

y Worst-case (WC) response times apply to DM scheduling.

Table 3. Interrupt handler execution times and periods. Times are given in microseconds.
Ii I1 I2 I3 I4�5 I6�7 I8�9 I10�12

ei 254 333 333 183 389 389 389

vi 54925 16666 10493 15492 45666 42603 47666

the total demand placed on the processor by Ii in the interval is at most dt=vie � ei.
It then follows that the total demand due to all the interrupt handlers, F (t), is
bounded by the summation on the right-hand side of the following inequality.

F (t) �
PQ

j=1

l
t
vj

m
� ej (5)

Using (5), we can obtain a schedulability condition when the tasks synchronize
using lock-based objects and the PCP. This involves modifying the condition pre-
sented in [Lehoczky et al. 1989] to account for the demand placed by interrupt
handlers, as given by (5). The resulting condition is as follows.

h8i 9t : 0 < t � li : r +
Pi

j=1

l
t
pj

m
� cj +

PQ

j=1

l
t
vj

m
� ej � ti (6)

The �rst term in (6) gives the worst-case blocking time in the system, and the
second term gives the demand placed by Ti and higher-priority tasks on the proces-
sor. The third term gives the maximum demand placed by all interrupt handlers
in the same interval.

In our system, r equals 151. In Table 2, t�i gives a value of t in the interval (0; li]
that satis�es (6). The analysis shows that the task Packetize2 is not schedulable.
This task copies compressed media sample bu�ers to the network adapter. When
Packetize2 does not meet its deadline, the sender drops (never transmits) some of
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the media samples. This analysis explains why some media samples were lost when
the system was run using lock-based objects and the PCP.
We now consider the system when the tasks synchronize using lock-free objects.

A schedulability condition for this case is obtained by modifying the condition of
Theorem 3 to account for the demand placed by interrupt handlers, as given by
(5). The resulting condition is as follows.

h8i 9t : 0 < t � li :
Pi

j=1

l
t
pj

m
� cj +

Pi�1

j=1

l
t�1
pj

m
� s +

PQ

j=1

l
t
vj

m
� ej � ti (7)

In the above equation, the �rst term gives the demand placed on the processor
due to Ti and higher-priority tasks. The second term gives the additional demand
due to interferences, and the third term gives the maximum demand placed on the
processor by interrupt handlers in the same interval. In our system, s equals 37.
(Observe that s is less than r=2 in our system.) In Table 2, t��i gives a value of t
in the interval (0; li] that satis�es (7). It can be seen that all tasks are schedulable
when lock-free objects are used. This is con�rmed by the fact that no media samples
are lost during the execution of the system.

6.3 Dynamic-Priority Scheduling

In this subsection, we discuss the results of experiments that compare the over-
head of lock-free objects under the EDF scheme to lock-based objects under the
EDF/DDM scheme. Our experiments showed that the task set of Tables 2 and 3 is
schedulable under both schemes. This is result is predicted by the formal analysis
of the system, which we now present.
Our analysis of the EDF/DDM scheme is based upon the following scheduling

condition, which is proved in [Stone 1995].

(
PN

j=1 cj=pj +
PQ

j=1 ej=vj � 1) ^

h8t : p1 � t � BDDM :
PN

j=1

j
t�lj+pj

pj

k
� cj +

PQ

j=1

l
t
vj

m
� ej � ti ^

h8i; t : p1 < t < pi : r +
Pi�1

j=1

j
t�1�lj+pj

pj

k
� cj +

PQ

j=1

l
t
vj

m
� ej � ti

In the second conjunct above, BDDM � (
PN

j=1 cj +
PQ

j=1 ej)=(1�
PN

j=1 cj=pj +PQ

j=1 ej=vj). The �rst and third conjuncts above correspond to the two conjuncts
of sched DDM given in Section 5.2. However, these conjuncts have been modi�ed
to account for the overhead of interrupt handlers, and to reect the fact that in the
videoconferencing system deadlines and job releases do not necessarily coincide. In
the left-hand side of the inequality in the second conjunct, the �rst and second sum-
mation terms give the maximum demand due to the tasks and interrupt handlers,
respectively, in an interval of length t. The right-hand side of the inequality gives
the available processor time in that interval. It can be shown that this scheduling
condition holds for the abstract task set de�ned in Tables 2 and 3.
Our analysis of the system when lock-free objects are used is based upon the

scheduling condition below. This condition is based upon the conditions given in
Theorems 5 and 6 and the techniques given in [Je�ay and Stone 1993] for accounting
for the overhead of interrupt handlers.

(
PN

j=1(cj + s)=pj +
PQ

j=1 ej=vj � 1) ^
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h8t : t 2 [p1; BLF ] :
PN

j=1

�j
t�lj+pj

pj

k
� cj +

j
t�1�lj+pj

pj

k
� s
�
+
PQ

j=1

l
t
vj

m
� ej � ti

In this expression, BLF � (
PN

j=1(cj + s) +
PQ

j=1 ej)=(1 �
PN

j=1(cj + s)=pj +PQ

j=1 ej=vj). The �rst conjunct above is the condition of Theorem 5 augmented
to include utilization due to interrupt handlers. The second conjunct follows from
Theorem 6 and results of [Je�ay and Stone 1993]. The three summation terms
in this conjunct give the maximum demand due to the tasks, interferences, and
interrupt handlers, respectively, in an interval of length t. The right-hand side of
the stated inequality gives the available processor time in that interval. It can
be shown that this scheduling condition holds for the abstract task set de�ned in
Tables 2 and 3.
In order to more precisely compare lock-free objects with objects implemented

under the EDF/DDM scheme, we introduced a dummy task T16, given by the
tuple hc16; 2342664; 2342664;fS17�21gi, to increase the processor utilization of the
system. This dummy task consists of a bounded loop. During each loop iteration,
the task performs some busy work and accesses some shared objects. The demand
on the processor was varied by modifying the number of loop iterations executed
by the dummy task.

Our experiments showed that processor utilization was higher under the
EDF/DDM scheme for all task loads. Under the EDF/DDM scheme, tasks started
to miss deadlines when the dummy task performed approximately 3500 loop itera-
tions. The processor utilization corresponding to this load was close to 99.4%. For
the same load, the processor utilization was only 94% when lock-free objects were
used. Processor utilization is higher under EDF/DDM for the same load due to the
overhead of modifying task deadlines for each shared object access. This con�rms
the prediction of Section 5.2 that lock-free objects often require less overhead than
object implemented under the EDF/DDM scheme. In our experiments, when lock-
free objects were used, tasks started missing deadlines when processor utilization
was about 99.1%.

7. CONCLUDING REMARKS

Our results show that lock-free objects have a number of advantages over lock-based
schemes such as the PCP for real-time computing on uniprocessors. First, lock-
free objects can be applied without detailed knowledge of which tasks access which
objects. Second, systems using lock-free objects can be easily modi�ed to add tasks
dynamically, since operating system tables do not have to be recomputed. Third,
and most importantly, the use of lock-free objects often results in less overhead and
lower task response times as compared to objects implemented using lock-based
techniques.
It can be shown that the upper bound on the number of interferences we derived

can be reduced if the �rst job of every task is released at the same time, and if the
period of each task is a multiple of the smallest period. The intuitive reasoning for
this observation is as follows. Consider two jobs J and J 0 that access a common
object, where J 0 has a higher priority than J . If both jobs are released together,
then J does not start executing before J 0 completes its execution, and hence J 0

cannot cause an interference in J . On the other hand, if J 0 is released at some time
during J 's execution, then it can cause an interference in J . Hence, by releasing
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the tasks together and by de�ning their periods to be multiples of the smallest
period, we increase the number of instances at which jobs are released together and
decrease the number of interferences. Moreover, it can be shown in this case that
the number of interferences in jobs with priority greater than or equal to v in the
interval (t; t0] is bounded by d(t0 � t + 1)=p1e, which implies that the number of
interferences of a task is independent of the level of that task.
Even in the absence of hardware support for primitives like CAS2 (refer to Figure

1), lock-free shared objects can be implemented with low overhead. On a unipro-
cessor, this can be achieved by a nonpreemptable kernel call that simulates the
required primitive. This requires the introduction of a blocking factor y in our
scheduling conditions. This nonpreemptable code fragment is smaller than one it-
eration of a lock-free retry loop, i.e., y < s. Observe that the introduction of this
blocking term in our RM scheduling condition does not a�ect our comparison with
the PCP because in comparing the two schemes, we ignored the blocking factor
in sched PCP. This reasoning also holds for the EDF/DDM scheme, because our
comparison with that scheme ignored the second conjunct of sched DDM, which
includes the blocking factor under EDF/DDM scheduling. Even without kernel sup-
port for disabling preemptions, it is possible to e�ciently simulate synchronization
primitives like CAS and CAS2. This follows from recent work on wait-free imple-
mentations for priority-based real-time uniprocessor systems [Ramamurthy et al.
1996; Anderson and Ramamurthy 1996; Anderson et al. 1997]. This work shows
that in such systems needed primitives can be simulated in a wait-free manner from
other instructions (even reads and writes) entirely at the user level.

One advantage of lock-based schemes is that they allow critical sections to be
arbitrarily nested. It might be useful, for example, to nest two critical sections to
transfer the contents of one shared bu�er to another. Together with Mark Moir,
we recently developed a transaction-based framework that can provide this kind
of functionality [Anderson et al. 1997]. Using this framework, a bu�er transfer
can be accomplished in a lock-free manner by performing a lock-free transaction
that accesses both bu�ers. Our scheduling conditions are still applicable if multi-
object accesses are allowed, provided s is de�ned to be the time taken by the
longest retry loop. In this case, the longest loop would presumably be one that
accesses several objects at once. If multi-object accesses are rare, then this could
lead to scheduling conditions that are somewhat pessimistic. Although lock-free
transactions are a promising idea, further experimentation is needed to determine
if they can be e�ectively applied in real-time applications.
The task model considered in this paper assumes that all objects have equal

access times. This is reasonable if all access times are comparable. Recent work
by the �rst two authors has shown that when large variations in retry loop costs
exist, tighter scheduling conditions can be obtained by using linear programming
to obtain a better estimate of the cost associated with interferences [Anderson and
Ramamurthy 1996]. In this approach, the total cost of interferences in Ti and
higher-priority tasks over an interval I is �rst expressed as a linear expression E
involving a set of variables. Each variable represents the number of interferences of a
particular lock-free loop in I. The variables are constrained by a set of inequalities.
A simple example of such a constraint is that the total number of interferences
caused by task Tj in I is bounded by the number of job releases of Tj in I. Finally,E
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is maximized using linear programming. The result is a bound on interference costs.
Simulation experiments reported in [Anderson and Ramamurthy 1996] indicate that
when linear programming is used to bound interference costs, lock-free objects are
likely to perform better than lock-based schemes if the average cost of a lock-free
retry loop is at most the average cost of a lock-based access. By contrast, the results
obtained in Section 5 indicate that when the conditions of this paper are applied,
lock-free objects will perform better if the worst-case cost of a lock-free retry loop
(s) is at most half the worst-case cost of a lock-based access (r).
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