
c© British Computer Society 2001

Managing Latency and Buffer
Requirements in Processing Graph

Chains
STEVE GODDARD1 AND KEVIN JEFFAY2

1Computer Science and Engineering, University of Nebraska—Lincoln, Lincoln, NE 68588-0115, USA
2Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill,

NC 27599-3175, USA
Email: goddard@cse.unl.edu

Real-time signal-processing applications for high assurance systems are commonly designed using
a processing-graph software architecture. Here we demonstrate the management of latency and
buffer requirements in such an architecture—the US Navy’sprocessing graph method(PGM). By
applying recent results in real-time scheduling theory to the subset of PGM employed by the US
DARPA rapid prototyping of application-specific signal processors (RASSP) synthetic aperture
radar (SAR) benchmark application, we identify inherent real-time properties of nodes in a PGM
graph, and demonstrate how these properties can be exploited to perform useful and important
system-level analyses such as schedulability analysis, end-to-end latency analysis, and memory
requirements analysis. More importantly, we develop relationships between properties such as

latency and buffer bounds and show how one may be traded off for the other.

Received 31 October 2000; revised 28 April 2001

1. INTRODUCTION

Signal-processing algorithms are often defined in the
literature using processing graphs [1]: directed graphs in
which a node is a sequential program that executes from
start to finish in isolation (i.e. without synchronization), and
the graph edges depict the flow of data from one node to
the next. Thus, an edge represents a producer/consumer
relationship between two nodes. Processing graphs provide
a natural description of signal-processing applications with
each node representing a mathematical function to be
performed on an infinite stream of data that flows on the
arcs of the graph. The streams of input data are typically
generated by sensors sampling the environment at periodic
rates, and sending the samples to the signal processor via an
external channel. The processing graph methodology allows
one to easily understand the signal processing performed by
depicting the structure of the algorithm; any portion of the
application can be understood in the absence of the rest of
the algorithm.

Embedded signal-processing applications are naturally
defined using processing graph techniques. As high-
assurance real-time applications, they require deterministic
performance. The signal processing graph must process data
at the rates of a set of external devices (e.g. sonobuoys,
dipping sonars or radars) without the loss of data. Hence
signal-processing applications, like other real-time systems,
have a dual notion of correctness: logical and temporal. It
is not sufficient only to produce the correct output—e.g. the

signature of a detected target; embedded signal-processing
applications must produce the correct output within the cor-
rect time interval—e.g. detect the signature within 1 second.

Explicit methods for evaluating latency and buffering
requirements are needed when applications developed using
a processing-graph model are executed in an embedded
environment with limited memory resources. Processing-
graph models implicitly define a temporal semantics for
a processing graph by specifying lower bounds to when
nodes may execute as a function of the availability of data
on input edges. However, most models do not support
the specification of either an end-to-end latency constraint
or an upper bound to the time that may elapse between a
node becoming eligible to execute and the time the node
either commences or completes execution. Without such a
bound, the buffer requirements of the application cannot be
determined.

Even the US Navy’s own processing graph methodology,
processing graph method (PGM) [2], lacks deterministic
analysis methods to verify latency and buffer requirements.
This is somewhat surprising since PGM is used to
develop real-time, embedded, anti-submarine warfare
(ASW) applications for the AN/UYS-2A (the US Navy’s
standard signal processor). PGM has also been used to
create a real-time Ka-band synthetic aperture radar (SAR)
benchmark application for DARPA’s rapid prototyping of
application-specific signal processors (RASSP) project.

Using the SAR application graph as a driving problem,
the management of latency and buffer requirements is

THE COMPUTER JOURNAL, Vol. 44, No. 6, 2001

LATENCY AND BUFFERS INPROCESSINGGRAPH CHAINS 487

demonstrated by applying real-time scheduling theory to
the subset of PGM used in the RASSP SAR benchmark
application. The AN/UYS-2A uses dynamic scheduling and
resource allocation in the execution of PGM applications.
The same dynamic execution environment is assumed in
this work, with the exception that a simple (on-line) earliest
deadline first (EDF) scheduler is used rather than the
default (on-line) first come first served (FCFS) scheduler
implemented in the AN/UYS-2A.

In this work, inherent relationships existing in real-time
processing graphs that have not been recognized in the
literature are identified. Latency and buffering requirements
are dependent on the rate and order in which nodes
execute. Thus, theorems that characterize the non-trivial
execution rates of every node in the processing graph as
a function of input rates are presented. Existing real-time
scheduling theory is then used to determine the order in
which nodes execute. From scheduling theory, conditions
for various EDF scheduling algorithms are used to determine
if the graph can be scheduled to meet specified latency
requirements. We show that, by changing parameters used
to schedule node execution, we can manage both latency
and buffer requirements. More importantly, we develop
relationships between latency and buffer bounds and show
how one may be traded off for the other.

The rest of this paper is organized as follows. Our results
are related to other work in Section 2. Section 3 presents
a brief overview of the portion of PGM used by the SAR
graph, which is introduced in Section 4. Section 5 presents
our execution model including node execution rates and
a schedulability condition for EDF scheduling. Section 6
addresses latency management issues and Section 7 shows
how to bound and manage the buffer requirements of an
implementation of a graph. We summarize our contributions
in Section 8.

2. RELATED WORK

This paper is part of a larger body of work that creates a
framework for evaluating and managing processor demand,
latency and memory usage in the synthesis of real-time
systems from general processing graphs (including cyclic
graphs) [3]. Here, we demonstrate the management of
latency and buffer requirements in the synthesis of a real-
time uniprocessor system from processing graph chains
developed with PGM. In [4], some of the results presented
here have been extended to compute node execution rates
and inherent latency for cyclic processing graphs that
contain feedback loops.

From the real-time literature, PGM graphs are most
closely related to the logical application stream model
(LASM) [5] and the generalized task graph (GTG)
model [6]. PGM, LASM and GTG were all developed
independently and support very similar dataflow properties;
PGM was the first of these to be developed. Our work
improves on the analysis of LASM and GTG graphs by
not requiring periodic execution of the nodes in the graph.
Instead, we calculate a more general execution rate, which

can be reduced to average execution rates assumed in the
LASM and GTG models. Our general execution rate
specification provides a more natural representation of node
execution for PGM graphs. Forcing periodic execution of
all graph nodes adds latency to the processed signal, but
simplifies the analysis of latency and memory requirements.

Processing graphs are a standard design aid in digital
signal processing. From the digital signal processing
literature, PGM is most similar to Lee and Messerschmitt’s
synchronous dataflow (SDF) graphs [1] supported by the
Ptolemy system [7]. The SDF graphs of Ptolemy utilize a
subset of the features supported by PGM. Any SDF graph
can be represented as a PGM graph where each queue’s
threshold is equal to its consume value. In addition to
supporting a more general processing-graph model, our
research differs from [1] in that we support dynamic real-
time scheduling techniques rather than the creation of static
schedules.

In 1996, Bhattacharyyaet al. published a method for
software synthesis from dataflow graphs [8]. Their software
synthesis method is based on the static scheduling of
Lee and Messerschmitt’s SDF graphs. The main goal
of Bhattacharyyaet al.’s software synthesis method and
related scheduling research based on SDF graphs has been
to minimize memory usage by creating off-line scheduling
algorithms [1, 8, 9]. Off-line schedulers create a static
node execution schedule that is executed periodically by
the processor. In contrast, the primary goal of our
research has been to manage the latency and memory usage
of processing graphs by executing them with an on-line
scheduler. Recently we have shown that for a large class
of applications, dynamic on-line scheduling creates less
imposed latency than static scheduling. An even more
surprising result is that, in many cases, dynamic on-line
scheduling uses less memory for buffering data on graph
edges than static scheduling [10].

Our latency analysis is related to the work of Gerber
et al. in guaranteeing end-to-end latency requirements on a
single processor [11]. However, Gerberet al. map a task
graph to a periodic task model in the synthesis of real-time
message-based systems rather than assuming a rate-based
execution. Our analysis and management of latency differs
from Gerberet al.’s in that PGM graphs allow non-unity
dataflow attributes. Finally, Gerberet al. introduce new
(additional) tasks to the task set in their synthesis method
to synchronize processing paths. Our method does not need
extra synchronization tasks since our analysis techniques
are rate based rather than periodic and we assume tasks are
released by the run-time system as soon as they are eligible
for execution.

3. NOTATION AND THE PROCESSING GRAPH
METHOD

The notation and terminology of this paper, for the most part,
is an amalgamation of the notation and terminology used in
[8] and [12]. A processing graph is formally described as a
directed graph(or digraph) G = (V,E, ψ). The ordered

THE COMPUTER JOURNAL, Vol. 44, No. 6, 2001

488 S. GODDARD AND K. JEFFAY

triple (V, E, ψ) consists of a non-empty finite setV of
vertices, a finite setE of edges, and an incidence function
ψ that associates with each edge ofE an ordered pair of (not
necessarily distinct) vertices ofV. Consider an edgee ∈ E
and verticesu, v ∈ Vsuch thatψ(e) = (u, v). We saye joins
u to v, oru andv are adjacent. The vertexu is called the tail
or source vertex ofe andv is the head or sink vertex of edge
e. The edgee is anoutput edgeof u and aninput edgeof
v. The number of input edges to a vertexv is the indegree
δ−(v) of v, and the number of output edges for a vertexv
is theoutdegreeδ+(v) of v. A vertexv with δ−(v) = 0 is
an input node. Foru, v ∈ V, there is apathbetweenu and
v, written asu❀ v, if and only if there exists a sequence of
vertices(w1, w2, . . . , wk) such thatw1 = u,wk = v andwi
is adjacent towi+1 for i = 1,2, . . . , (k − 1). A pathu❀ v
is achain if u �= v, δ−(u) ≤ 1, δ+(u) = 1, δ−(v) = 1 and
δ+(w) = δ−(w) = 1 for allw ∈ {{u❀v} − {u, v}}.

For concreteness, the US Navy’s PGM is used to present
our techniques for managing latency and buffer requirements
in processing graph chains. PGM was developed by the US
Navy to facilitate the design and implementation of signal-
processing applications, but it is a very general processing-
graph paradigm that is applicable to many other domains.

In PGM, a system is expressed as a directed graph in
which the nodes (or vertices) represent processing functions
and the edges represent buffered communication channels
called queues. The topology of the graph defines a
software architecture independent of the hardware hosting
the application. The graph edges are first in first out (FIFO)
queues. There are four attributes associated with each queue:
a produce amountprd(q), a threshold amountthr(q), a
consume amountcns(q) and an initialization amountinit(q).
Let queueq be directed from nodeu to nodew. The
produce amountprd(q) specifies the number of tokens (data
elements) appended to queueq when producing nodeu
completes execution. A token represents an instance of
a data structure, which may contain multiple data words.
There must be at leastthr(q) tokens on queueq before node
w is eligible for execution. A queue isover thresholdif the
number of enqueued tokens meets or exceeds the threshold
amountthr(q). After nodew executes, the number of tokens
consumed (deleted) from queueq by nodew is cns(q). The
number of initial data tokens on the queue isinit(q). The
length of queueq is denotedlength(q).

Unlike many processing graph paradigms, PGM allows
non-unity produce, threshold and consume amounts as well
as a consume amount less than the threshold. The only
restrictions on queue attributes are that they must be non-
negative values and the consume amount must be less than
or equal to the threshold.

If a node has more then one input queue (input edge), then
the node is eligible for execution whenall of its input queues
are over threshold (i.e. when each input queueq contains at
leastthr(q) tokens). After the processing function finishes
executing,prd(q) tokens are appended to each output queue
q. Before the node terminates, but after data is produced,
cns(q) tokens are dequeued from each input queueq. The
execution of a node isvalid if and only if the node executes

only when it is eligible for execution, no two executions
of the same node overlap, each input queue has its data
atomically consumed after each output queue has its data
atomically produced and data is produced at most once on
an output queue during each node execution.

A graph execution consists of a (possibly infinite)
sequence of node executions. A graph execution isvalid if
and only if all of the nodes in the execution sequence have
valid executions and no data loss occurs.

4. SAR GRAPH

This section introduces the SAR graph, including a brief
description of the processing performed by each node in
the graph. This information is provided for concreteness
for the reader with a signal-processing background. The
actual logical operation of the SAR graph is immaterial to
the results we derive and the analyses we perform. The only
essential properties of the SAR graph are those that influence
node execution: the produce, consume and threshold values
for each node. For a more detailed description of the
processing performed by the SAR benchmark, see [13].

The full SAR benchmark cannot execute in real time on
a single processor. Therefore, the RASSP project allocates
a portion of the full SAR graph to individual processors.
The graph in Figure 1 is one such allocation. This graph,
called the ‘mini-SAR’, was originally created to test tools
developed by the RASSP project. It performs the range
and azimuth compression processing in the formation of
an image that is one eighth the size of that formed by the
full SAR benchmark. Henceforth, we shall refer to the
mini-SAR graph as the SAR graph since an analysis similar
to what we develop shortly could be performed on each
processor to analyze the full application.

The input node for the SAR graph (shown in Figure 1)
is labeledYRangeand represents a periodic external device
that produces data for the graph. The output node represents
an external device that executes whenever data is available
on theImagequeue. The nodes and queues of this graph
have mnemonic labels. Produce, threshold, and consume
values are displayed below the queue. For example, the
produce, consume, and threshold values of the queue labeled
Rangeare all 118. QueueRCSis the only queue that initially
contains data. It is initialized with 256× 64 zero-samples
(i.e. init(RCS) = 256× 64).

The top row of nodes in the SAR graph each operate on
one pulse of data at a time. The pulse delivered by the
external source, labeledYRange, has already been converted
to complex-valued data and consists of 118 range gate
samples. TheZero Fill node pads the pulse with zeroes
to create a pulse length of 256 samples in preparation for
the FFT node. Before performing the FFT, the data is
passed through a Kaiser window function, represented by the
nodeWindow Data, to reduce sidelobe levels and perform
bandpass filtering. After being compressed in the range
dimension by theRange FFTnode, the pulse is passed
through the radar cross-section calibration filter performed
by theRCS Multnode.

THE COMPUTER JOURNAL, Vol. 44, No. 6, 2001

LATENCY AND BUFFERS INPROCESSINGGRAPH CHAINS 489

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

✲ ✲

❄

✛ ✛ ✛

✲✲

✛

256

Range
Fill
Zero

p=118
c=118
τ=118,

Fill Window
Data256,

256
256

WindowYRange Range RFFT

256

RCS
MultFFT256,

256
256 256,

256

256·128,

Image
IFFT

Azimuth
128,
128c=128

τ=128, p=128

Mult Kernel
128,
128

Mult
AFFT

Output Azimuth
256·128128,

128

Corner

128

256·64

TurnFFT
Azimuth

128

RCS
init(RCS) = 256· 64

FIGURE 1. A PGM graph for the SAR application. The tail of each queue is annotated with its produce value. The head of each
queue is annotated with its threshold and consume values. For example, the queue labeledRCShasprd(q) = 256, thr(q) = 256× 128,
and cns(q) = 256 × 64. QueueRCSis the only queue that initially contains data. It is initialized with 256× 64 zero-samples (i.e.
init(RCS) = 256× 64).

Unlike the previous nodes in the SAR graph, which
require only one pulse of data before being eligible for
execution, theCorner Turnnode requires 128 pulses of data.
A 2-D processing array is formed where each row of the
array contains one sample from the 128 different pulses and
each column contains the 256 range gates that form a pulse.
The processing array consists of two 64×256 frames (or se-
quences of pulses). As a new frame is loaded in, the previous
two frames are ‘released’ with the oldest frame being shifted
out. This processing is achieved with threshold and produce
values of 256× 128 and a consume value of 256× 64.

Convolution processing is performed on each row of the
2-D matrix by theAzimuth FFT, Kernel Mult andAzimuth
IFFT nodes. TheAzimuth FFTnode performs a FFT on the
signal, which has been aligned in the azimuth dimension.
Next theKernel Multnode multiplies each row of the matrix
by a convolution kernel. Before the SAR image is output to
theOutputnode, an inverse FFT is performed by theAzimuth
IFFT node.

The SAR benchmark has a latency requirement (an upper
bound) of 3 s, where latency refers to the elapsed time
between when a frame of data (64 pulses) is input to the SAR
processor and the time the corresponding image is output
[13]. Assuming a pulse is received every 3.6 ms, it is natural
to ask whether it is possible to meet this latency requirement
when the graph is implemented on a certain processor and
what is the maximum amount of buffer memory required by
the queues? The last question is important when memory
resources are scarce, as in the AN/UYS-2A. The answers
to these questions are dependent on the execution model
assumed. The next section presents the execution model and
fundamental latent buffering bounds that affect the rate at
which nodes execute and the latency inherent in the graph.

5. EXECUTION MODEL

Latency and memory usage are dependent on the rate
at which each node executes and the order in which

producer/consumer pairs of nodes execute. Real-time
scheduling theory provides a framework upon which we
have developed an execution model that determines both
the rate and order of node executions so that latency and
memory usage can be managed.

This section introduces an execution paradigm and
analysis techniques that support the evaluation of real-
time properties for a graph. The first subsection explores
fundamental execution relationships that exist between
producer/consumer nodes, independent of the execution
model. These relationships determine node execution rates
and the latency inherent in any processing graph. The
concepts and theorems presented in Section 5.1 are used
throughout the rest of the paper. The remaining subsections
address node execution rates and the rate-based execution
(RBE) task model. These concepts are used to model an
implementation of the SAR graph.

5.1. Node executions and latent buffer usage

In processing graph systems that require unity dataflow
attributes (i.e. produce, threshold and consume values all
one), deriving the execution rates of nodes is relatively
straightforward. Deriving the execution rates of nodes in
PGM graphs is not. In this section, we present an example
that illustrates the impact of non-unity dataflow attributes on
node execution and quantify the number of times a producer
node must execute before its consumer node is eligible for
execution. We also derive several bounds related to latent
buffering that will be used throughout this paper.

To eliminate the influence of scheduling on node
executions, assume each node executes on its own processor
as soon as all of its input queues are over threshold. (This
assumption is made to simplify the presentation of node
execution rates and latent buffer usage. The execution rates
and bounds on latent buffer usages also apply when the
nodes execute on a single processor.) Consider the two-
node chain of Figure 2. Queueq is annotated with its

THE COMPUTER JOURNAL, Vol. 44, No. 6, 2001

490 S. GODDARD AND K. JEFFAY

✫✪
✬✩

✲v

✫✪
✬✩

✲ ✲u
q

cns(q) = 3
prd(q) = 4 thr(q) = 7,

Data produced Data consumed
Time by nodeu by nodev length(q)

0 0
t1 4 4
t2 4 8
t3 3 5
t4 4 9
t5 3 6
t6 4 10
t7 3 7
t8 3 4

FIGURE 2. A two-node PGM graph and snapshot sequence. In
this chain, the dataflow attributesprd(q), thr(q), andcns(q) all have
different values. The produce amount is 4, the threshold value
is 7, and the consume amount is 3. Queueq has no initial data:
init(q) = 0.

produce, threshold, and consume values below the queue;
it has no initial data. Nodeu produces four tokens every
time it executes. Nodev has a threshold of seven tokens
and consumes three tokens after it executes. Since queueq

is not initialized, nodeu must fire twice before queueq is
over threshold and nodev executes for the first time. After
nodev executes, it consumes only three tokens—leaving five
tokens on queueq. The third execution of nodeu produces
four more tokens (for a total of nine tokens on queueq) and
nodev executes again, consuming three more tokens. The
next execution of nodeu results in 10 tokens on queueq,
and nodev is able to execute twice—leaving four tokens on
queueq, which is the same number of tokens that were on
queueq after the first execution of nodeu. Thus, subsequent
executions of nodeu and nodev follow this same pattern:
uvuvuvv. Therefore, if nodeu executes once everyyu time
units, nodev will execute with a rate of four times every 3yu
time units.

The number of tokens on queueq at timet is a function of
the queue’s dataflow attributes and the number of executions
of nodesu and v prior to time t . Since nodev executes
whenever queueq contains at leastthr(q) tokens and it
consumescns(q) tokens each time it executes, queueq will
always contain at least(thr(q) − cns(q)) tokens after node
v executes for the first time. Note, however, that this lower
bound on the minimum number of tokens onq is not tight.
Consider, for example, the case where the dataflow attributes
of a queueq in a chain areprd(q) = 8, thr(q) = 7,
cns(q) = 6. In this case,thr(q)− cns(q) = 1, but there will
always be at least two tokens in the queue. The following
theorem bounds the minimum number of tokens on queueq

after the first execution of nodev and the maximum number
of tokens that can be on queueq without the queue being
over threshold.

THEOREM 5.1.Let ψ(q) = (u, v) and queueq be
initialized with init(q) ≥ 0 tokens. After nodesv andu have
executed at least once, the minimum number of tokens on
queueq is at least MinTokens(q) and the maximum number
of tokens queueq can hold without being over threshold is
MaxUnderThr(q) where

MinTokens(q) =
f(q)+

⌈
thr(q)− f(q)

gcd(prd(q), cns(q))

⌉
· gcd(prd(q), cns(q))−cns(q)

(1)

MaxUnderThr(q) =

thr(q)− gcd(prd(q), cns(q))

if gcd(prd(q), cns(q)) | (thr(q)− f(q))

f(q)+
⌊

thr(q)− f(q)

gcd(prd(q), cns(q))

⌋
· gcd(prd(q), cns(q))

otherwise
(2)

and

f(q) =

init(q)−
(⌊

init(q)− thr(q)

cns(q)

⌋
+ 1

)
· cns(q)

if init(q) ≥ thr(q)

init(q) otherwise.

Proof. The proof of this theorem (as well as many others
in this paper) has been omitted for space considerations.
However, the full version of this paper, which includes all
proofs, is available via the Web [14].

Consider the two-node chain of Figure 2 once again
(whereprd(q) = 4, thr(q) = 7 andcns(q) = 3). This
time, assume queueq is initialized with seven tokens (thus
init(q) = 7 and thr(q) = 7). Using Equation (1), the
minimum number of tokens queueq contains after nodesu
andv both execute at least once is

MinTokens(q) =
f(q)+

⌈
thr(q)− f(q)

gcd(prd(q), cns(q))

⌉
· gcd(prd(q), cns(q))−cns(q)

= init(q)−
(⌊

init(q)− thr(q)

cns(q)

⌋
+ 1

)
· cns(q)

+
⌈

thr(q)− f(q)

gcd(prd(q), cns(q))

⌉
· gcd(prd(q), cns(q))− cns(q)

= 7 −
(⌊

7 − 7

3

⌋
+ 1

)
· 3 +

⌈
7 − f(q)

gcd(4,3)

⌉
· gcd(4,3)− 3

= 4 +
(⌈

7 − 4

1

⌉
· 1

)
− 3 = 4.

Since gcd(prd(q), cns(q)) = gcd(4,3) = 1, the gcd of
the produce and consume values divides(thr(q) − f(q)).
Therefore, by Equation (2), the maximum number of tokens
queueq can hold without being over threshold is

MaxUnderThr(q) = thr(q)− gcd(prd(q), cns(q))

= 7 − 1 = 6.

THE COMPUTER JOURNAL, Vol. 44, No. 6, 2001

LATENCY AND BUFFERS INPROCESSINGGRAPH CHAINS 491

When gcd(prd(q), cns(q)) = 1, the amount of initialized
data does not affect these functions:

MinTokens(q) =
f(q)+

⌈
thr(q)− f(q)

gcd(prd(q), cns(q))

⌉
· gcd(prd(q), cns(q))−cns(q)

= f(q)+ thr(q)− f(q)

gcd(prd(q), cns(q))
· gcd(prd(q), cns(q))−cns(q)

= f(q)+ thr(q)− f(q)− cns(q)

= thr(q)− cns(q)

and MinTokens(q) = thr(q) − 1 since 1 always divides
thr(q)− f(q).

When a queue is initialized withthr(q) − cns(q)
tokens, the initialized data does not affect the functions
MinTokens(q) andMaxUnderThr(q):

MinTokens(q) =
f(q)+

⌈
thr(q)− f(q)

gcd(prd(q), cns(q))

⌉
· gcd(prd(q), cns(q))−cns(q)

= thr(q)− cns(q)

+
⌈

thr(q)− (thr(q)− cns(q))

gcd(prd(q), cns(q))

⌉
· gcd(prd(q), cns(q))− cns(q)

= thr(q)− cns(q)

+ cns(q)

gcd(prd(q), cns(q))
· gcd(prd(q), cns(q))− cns(q)

= thr(q)− cns(q)+ cns(q)− cns(q)

= thr(q)− cns(q)

andMaxUnderThr(q) = thr(q)− gcd(prd(q), cns(q)) since

thr(q)− f(q) = thr(q)− (thr(q)− cns(q)) = cns(q)

and gcd(prd(q), cns(q)) always dividescns(q).
Whenever gcd(prd(q), cns(q)) | thr(q) − f(q), Equa-

tion (1) reduces toMinTokens(q) = thr(q) − cns(q) and
Equation (2) reduces toMaxUnderThr(q) = thr(q) −
gcd(prd(q), cns(q)).

Theorem 5.1 provides upper and lower bounds for the
number of tokens that a queue joining two nodes can contain
without being over threshold (after both nodes have executed
at least once). Givenlength(q) tokens on queueq, the
following theorem computes the number of executions of
nodev as a function of the number of tokens produced by
nodeu when queueq is the only queue joining the pair (i.e.
in a chain).

THEOREM 5.2.Let length(q) ≥ thr(q), ψ(q) = (u, v),
and δ−(v) = 1. At the current time, assuming node
u does not execute, nodev will execute �(length(q) −
thr(q))/cns(q)� + 1 times, consume(⌊

length(q)− thr(q)

cns(q)

⌋
+ 1

)
· cns(q)

tokens, and leavel tokens on queueq where MinTokens(q) ≤
l ≤ MaxUnderThr(q).

Proof. See [14].

Given length(q) tokens on queueq, it is also useful to
know how many more executions of nodeu are required
before queueq is over threshold. In this case, the consume
amount does not matter; we only care aboutthr(q), prd(q),
and the existing number of tokens on queueq, length(q).

THEOREM 5.3.Let there be length(q) tokens on queueq
andψ(q) = (u, v). Nodeu must execute

max

(
0,

⌈
thr(q)− length(q)

prd(q)

⌉)
(3)

times before queueq is over threshold.

Proof. If there are length(q) tokens on queueq and
length(q) ≥ thr(q), then queueq is already over threshold
and no more executions of nodeu are required. If
length(q) < thr(q), then thr(q) − length(q) more tokens
are required before queueq is over threshold. Since
nodeu producesprd(q) tokens every time it executes, it
follows that u must execute�thr(q) − length(q)/prd(q)�
times before queueq is over threshold. In either case, the
number of executions required of nodeu before queueq is
over threshold is max(0, �thr(q) − length(q)/prd(q)�) and
Equation (3) holds.

To illustrate Theorem 5.3 consider the chain of Figure 2
whereprd(q) = 4, thr(q) = 7, andcns(q) = 3. Assuming
four tokens on queueq in the chain of Figure 2, nodeumust
execute

max

(
0,

⌈
thr(q)− length(q)

prd(q)

⌉)
= max

(
0,

⌈
7 − 4

4

⌉)

= max

(
0,

⌈
3

4

⌉)
= 1

time before queueq is over threshold and nodev is eligible
for execution.

In this section we have informally derived node execution
rates by simulating executions. Section 5.2 formally defines
an execution rate and uses the theorems presented in this
section to analytically compute node execution rates.

5.2. Node execution rates

PGM does not explicitly define temporal properties for the
graph. However, the execution rate of every node in a graph
is defined by the graph topology, the definition of nodes,
the dataflow attributes and the rate at which the source node
produces data. Thus, given only the rate at which a source
node delivers data, the execution rates of all other nodes
can be derived. This fundamental property of real-time
processing graph chains is the basis of the result presented
in this section.

Consider the two-node chain of Figure 2. For the
producer/consumer pair of nodesu and v, the number of
tokens present on queueq at time t is a function of the
queue’s dataflow attributes and the number of executions of
nodesu andv prior to timet . Nodev can only execute when

THE COMPUTER JOURNAL, Vol. 44, No. 6, 2001

492 S. GODDARD AND K. JEFFAY

its input queue is over threshold, so the number of times it
is able to execute in any interval of time is dependent on the
number of times nodeu executes (and the dataflow attributes
on queueq). In an implementation of the graph, the actual
number of times that nodev executes in any interval of time
is dependent on the number of times nodeu executes and
on the scheduling algorithm employed. If the scheduling
algorithm delays executions of nodev but continues to let
nodeu execute, data will accumulate on queueq.

To bound latency and memory usage in an implementation
of the graph, we need to schedule the execution of nodes
in a deterministic manner. For this, we appeal to real-
time scheduling theory and execute the nodes according to a
model of real-time execution. Finally, to select the proper
model of real-time execution, we need to determine the
natural execution pattern of nodes. We informally called the
execution pattern a ‘rate’ in Section 5.1. Here, we formally
define an execution rate and show how to analytically derive
the execution rates of nodes in a PGM chain.

To simplify the presentation of execution rates, and to
eliminate the role scheduling and node execution times play
in the derivation of node execution rates, we extend our
assumption that each node executes on its own processor
and assume that the processors are each infinitely fast so
that node execution takes no time. More precisely, we
assume that nodes execute in accordance with the strong
synchrony hypothesis from the synchronous programming
literature [15]. The strong synchrony hypothesis states that
the system instantly reacts to external stimuli. For example,
the snapshot sequence in Figure 3 shows both nodesu andv
executing at timey. The system reacts instantaneously to the
arrival of data on the input queue to nodeu and both nodesu
andv execute at the same instant. At time 3y, one execution
of nodeu and two executions of nodev occur at the same
instant. Node execution rates are defined as follows.

DEFINITION 5.1.An execution rateis a pair of non-
negative integers(x, y).

DEFINITION 5.2.Execution rates(x1, y1) and (x2, y2)

areequalif and only ifx1 = x2 andy1 = y2.

DEFINITION 5.3.An execution rate specification for node
v, Rv = (x, y), is valid if there exists a timet such that node
v executes exactlyx times in time intervals[t+(k−1)y, t+
ky) for all k > 0.

Notice that the interval is closed at the beginning and open
at the end. Thus, if nodeu in Figure 3 continues to execute
once everyy time units, it has a valid execution rate of
Ru = (1, y) (starting at time 0). It executes exactly once in
the interval[0, y) since the execution at timey is counted in
the interval[y,2y). While the periodic execution of nodeu
satisfies the definition of a valid execution rate, the execution
of nodeu does not need to be strictly periodic for it to have
a valid execution rate ofRu = (1, y). For example, if node
u executed at times

0, 1.5y, 2y, 3.9y, 4y, 5y, 6y, . . . , ky, . . .

it still has a valid execution rate ofRu = (1, y) starting at

✫✪
✬✩

✲v

✫✪
✬✩

✲ ✲u
q

cns(q) = 3
prd(q) = 4 thr(q) = 7,

Time Execution of length(q)

0 u 4
y u, v 5
2y u, v 6
3y u, v, v 4
4y u, v 5
5y u, v 6
6y u, v, v 4
7y u, v 5
8y u, v 6
9y u, v, v 4
10y u, v 5

FIGURE 3. A two-node chain and a snapshot sequence that
shows the execution of nodesu andv under the strong synchrony
hypothesis. The execution rate of nodeu is Ru = (1, y), and the
execution rate of nodev isRv = (4, 3y).

time 0 since it executes exactly once in each time interval
[0 + (k − 1)y, 0 + ky) for all k > 0.

If the execution of nodeu is periodic, however, the
execution of nodeu is ‘well-defined’ in that it executes
at time ky for all k ≥ 0. While the rate specification
Ru = (1, y) is a valid execution rate for nodeu, it does not
describe the restricted execution pattern exhibited by node
u.

DEFINITION 5.4.An execution rate specification for node
v, Rv = (x, y), is well-defined if there exists a timetv
such that nodev executes exactlyx times in time intervals
[t, t + y) for all t ≥ tv .

COROLLARY 5.4.A well-defined rate specificationRv =
(x, y) for nodev is also a valid rate specification for nodev.

Proof. If Rv = (x, y) is a well-defined rate specification for
nodev, then by Definition 5.4 there exists a timetv such that
nodev executes exactlyx times in time intervals[t, t + y)
for all t ≥ tv . Thus, for anyt ≥ tv nodev executes exactlyx
times in time intervals[t + (k − 1)y, t + ky) for all k > 0,
andRv = (x, y) is a valid rate specification for nodev.

If Ru = (1, y) is a valid execution rate for nodeu
in Figure 3, thenRu = (2,2y) is also a valid execution
rate since nodeu will execute twice in each time interval
[0+ (k− 1)2y, 0+ k2y) for all k > 0. In fact, as shown by
Corollary 5.5, there are an infinite number of valid execution
rates for nodeu.

COROLLARY 5.5. If Rv = (x, y) is a valid rate
specification for nodev, then for all positive integersm,
m · Rv = (m · x,m · y) is also a valid rate specification
for nodev.

Proof. If Rv = (x, y) is a valid rate specification for node

THE COMPUTER JOURNAL, Vol. 44, No. 6, 2001

LATENCY AND BUFFERS INPROCESSINGGRAPH CHAINS 493

v, then by Definition 5.3, there exists a timet such that
nodev executes exactlyx times in time intervals[t + (k −
1)y, t + ky) for all k > 0. Thus in each time interval
[t +m(k− 1)y, t +mky) for all k > 0, nodev will execute
exactlymx times, andm · Rv = (m · x,m · y) is also a valid
rate specification for nodev.

Although there exists an infinite number of valid
execution rates for a node, not every execution rate is valid.
For example, let the execution rateRu = (1, y) of nodeu
in Figure 3 be valid. By looking at the executions of node
v in the snapshot sequence, it would appear that nodev

executes with a rate ofRv = (4,4y). Even though node
v does execute four times in the interval[0,4y), the rate
specificationRv = (4,4y) is not valid because this is the
only interval of length 4y in which nodev executes exactly
four times. Nodev actually executes at a rate ofRv =
(4,3y) starting at timey. To see this, we need to simulate
more executions of nodesu andv. Consider the extended
snapshot sequence in Figure 3. This snapshot sequence
shows that nodev executes four times in the interval[y,4y),
four times in the interval[4y,7y), and four times in the
interval[7y,10y).

The execution rate of nodev in Figure 3 was derived by
simulating executions of nodesu and v and ‘guessing’ a
valid execution rate. Alternatively, Theorem 5.6 can be used
to analytically compute the execution rate of nodev using
the execution rate of nodeu and the dataflow attributes of
queueq.

THEOREM 5.6.Let u❀ v be a PGM chain withψ(q) =
(u, v), and letRu = (xu, yu) be a valid execution rate
for nodeu. Under the strong synchrony hypothesis, the
execution rateRv = (xv, yv), where

xv = prd(q)

gcd(prd(q) · xu, cns(q))
· xu (4)

and

yv = cns(q)

gcd(prd(q) · xu, cns(q))
· yu, (5)

is a valid execution rate for nodev.

Proof. By Definition 5.3, becauseRu is valid, there exists a
time tu such that nodeu executes exactlyxu times in each
interval[tu + (k − 1)yu, tu + kyu) wherek > 0. Let interval
j be the first interval[tu+(j−1)yu, tu+jyu) in which node
v executes, and lettv = tu + jyu.

In the remainder of the proof, we show thatRv = (xv, yv)
is a valid rate specification by showing that nodev executes
exactlyxv times in time intervals[tv+(k−1)yv, tv+kyv) for
all k > 0 wherexv andyv are as defined by Equations (4) and
(5). Under the strong synchrony hypothesis, nodev executes
instantaneously whenever its input queue is over threshold.
Let length(q) = n at time tv. Thus, by Theorem 5.1,n is
bounded such that

thr(q)− cns(q) ≤ MinTokens(q) ≤ n
≤ MaxUnderThr(q) < thr(q).

By Definition 5.3, nodeu executes exactlyxu times in
intervals[tu + (k − 1)yu, tu + kyu) for all k > 0. Thus, by
Corollary 5.5 and becausetv = tu+ jyu andyv is a multiple
of yu, nodeu executes(yv/yu) · xu times in every time
interval[tv + (k − 1)yv, tv + kyv) for all k > 0. Since node
u producesprd(q) tokens each time it executes, it enqueues
a total of

prd(q) · yv
yu

· xu

= prd(q) · cns(q) · yu/(gcd(prd(q) · xu, cns(q)))

yu
· xu

= prd(q) · cns(q)

gcd(prd(q) · xu, cns(q))
· xu

tokens on queueq in an interval of lengthyv. Since each
execution of nodev consumescns(q) tokens,xv executions
of nodev in an interval of lengthyv will consume(xv·cns(q))
tokens. Thus, if queueq containsn tokens at the beginning
of the interval, it will contain

n+
(

prd(q) · cns(q)

gcd(prd(q) · xu, cns(q))
· xu

)
−(xv · cns(q))

= n+
(

prd(q) · xu · cns(q)

gcd(prd(q) · xu, cns(q))

)

−
(

xu · prd(q)

gcd(prd(q) · xu, cns(q))
· cns(q)

)

= n+
(

xu · cns(q) · prd(q)

gcd(prd(q) · xu, cns(q))

)

−
(

xu · cns(q) · prd(q)

gcd(prd(q) · xu, cns(q))

)
= n

tokens at the end of the interval. Furthermore, no more than
xv executions could have occurred since thexvth execution
leaves exactlyn < thr(q) tokens onq. Any fewer executions
would have leftn ≥ thr(q) tokens onq, and another
execution of nodev would have occurred. Therefore, node
v executes exactlyxv times in time intervals[tv + (k −
1)yv, tv + kyv) for all k > 0 wherexv andyv are as defined
by Equations (4) and (5).

As required, the proof of Theorem 5.6 only proves that
Equations (4) and (5) can be used to compute a valid
rate specification for the consumer nodev, and there are
infinitely many other valid execution rate specifications for
nodev, as shown by Corollary 5.5.

We now consider the case where the specification of node
u is well-defined. In this case, the execution rate of nodev

is also well-defined when it is computed using Equations (4)
and (5).

THEOREM 5.7.Let u❀ v be a PGM chain withψ(q) =
(u, v), and letRu = (xu, yu) be a well-defined execution rate
for nodeu. LetRv = (xv, yv) be computed using Equations
(4) and (5). Under the strong synchrony hypothesis, the
execution rateRv = (xv, yv) is a well-defined execution rate
for nodev.

Proof. This proof follows, for the most part, the proof of
Theorem 5.6. See [14].

THE COMPUTER JOURNAL, Vol. 44, No. 6, 2001

494 S. GODDARD AND K. JEFFAY

Many non-trivial high assurance systems, such as the SAR
system, are described using a chain, and Theorem 5.6 can
be used to compute the execution rate of every node in
the system. If the execution rate of the source node is
well-defined, Theorem 5.7 can be used to compute well-
defined execution rates for all other nodes in the chain. For
example, letRYRange= (1, 3.6 ms) be a well-defined rate
specification for source nodeYRangebeginning at time 0
with the first execution of source nodeYRangeoccurring
at time 0. That is, source nodeYRangeexecutes at times
k · 3.6 ms for allk ≥ 0. Theorem 5.7 is used to compute
well-defined rate specifications for the other nodes in the
SAR graph as follows.

RZeroFill = (xZeroFill, yZeroFill)

where

xZeroFill = prd(Range) · xYRange

gcd(prd(Range) · xYRange, cns(Range))
,

yZeroFill = cns(Range) · yYRange

gcd(prd(Range) · xYRange, cns(Range))
.

Thus,

RZeroFill =
(

118· 1

gcd(118· 1, 118)
,

118· 3.6 ms

gcd(118· 1, 118)

)

=
(

118

118
,

118· 3.6 ms

118

)
= (1, 3.6 ms),

RWindowData= RRangeFFT= RRCSMult

=
(

256· 1

gcd(256· 1, 256)
,

256· 3.6 ms

gcd(256· 1, 256)

)

=
(

256

256
,

256· 3.6 ms

256

)
= (1, 3.6 ms),

RCornerTurn

=
(

256· 1

gcd(256· 1, 256· 64)
,
(256· 64) · 3.6 ms

gcd(256· 1, 256· 64)

)

=
(

256

256
,
(256· 64) · 3.6 ms

256

)
= (1, 64 · 3.6 ms)

= (1, 230.4 ms),

RAzimuthFFT

=
(

(256· 128) · 1

gcd((256· 128) · 1, 128)
,

128· 64 · 3.6 ms

gcd((256· 128) · 1, 128)

)

=
(

256· 128

128
,

128· 64 · 3.6 ms

128

)
= (256, 64 · 3.6 ms)

= (256, 230.4 ms),

and

RKernelMult = RAzimuthIFFT= ROutput

=
(

128· 256

gcd(128· 256,128)
,

128· 64 · 3.6 ms

gcd(128· 256,128)

)
= (256,230.4ms).

5.3. RBE task model

Moving from the strong synchrony hypothesis to an actual
implementation, we need to implement the graph as one or
more tasks on a single processor. A scheduling algorithm
and a schedulability test that will analytically determine
whether or not a graph will meet its temporal requirements
are also necessary. Since node execution is neither periodic
nor sporadic, even when the source is periodic, the RBE
[16] is used to model the execution of the processing graph
chain. The advantage of modeling graph execution with the
RBE model is that it supports the simple implementation of
representing each node as a task that is released when the
input queue goes over threshold. Indeed, this is how the SAR
benchmark that we evaluated was implemented.

RBE is a general task model consisting of a collection
of independent processes specified by four parameters:
(x, y, d, e). The pair(x, y) represents the execution rate of
a RBE task wherex is the number of executions expected
to be requested in an interval of lengthy. Parameterd
is a response time parameter that specifies the maximum
desired time between the release of a task instance and the
completion of its execution (i.e.d is the relative deadline).
The parametere is the maximum amount of processor time
required for one execution of the task.

A RBE task set is schedulable if there exists a schedule
such that thej th release of taskTi at timeti,j is guaranteed
to complete execution by timeDi(j), where

Di(j) =
{
ti,j + di if 1 ≤ j ≤ xi
max(ti,j + di,Di(j − xi)+ yi) if j > xi.

(6)

The RBE task model makes no assumptions regarding when
a task will be released, however Equation (6) ensures that no
more thanxi deadlines come due in an interval of lengthyi ,
even when more thanxi releases ofTi occur in an interval of
lengthyi . Hence, the deadline assignment function prevents
jitter from creating more process demand in an interval by a
task than that which is specified by the rate parameters.

The schedulability of a RBE task set under preemptive
EDF scheduling can be checked with Theorem 5.8
[16]. Schedulability conditions for non-preemptive EDF
scheduling are also presented in [16]. Note that if the
cumulative processor utilization for a graph is strictly less
than one (i.e.

∑n
i=1(xi · ei)/yi < 1) then condition (7) can

be evaluated efficiently (in pseudo-polynomial time) using
techniques developed in [17].

THEOREM 5.8.Let T = {(x1, y1, d1, e1), . . . , (xn, yn,

dn, en)} be a set of RBE tasks.T will be feasible if and

THE COMPUTER JOURNAL, Vol. 44, No. 6, 2001

LATENCY AND BUFFERS INPROCESSINGGRAPH CHAINS 495

k+1 Pulse k+1+64

Azimuth
FFT

256 256 256

...

k y k(+64) y

Time

0 126y 127y 128y 190y 191y 192y 255y 256y

... ...

256 256 256

Output

...

YRange

Zero Fill

Node Pulse 1

...

...

...

...

Pulse 128 Pulse 129

...

...

Pulse 256Pulse 127 Pulse Pulse 192 Pulse 193Pulse 191 Pulse 255

...

...

...

...

Corner
Turn

...RCS
Mult

FIGURE 4. A simulation showing latency for the SAR graph under the strong synchrony hypothesis. Each down arrow represents the
release and instantaneous execution of a node, and the number 256 above a down arrow means 256 instantaneous executions of a node.

only if

∀ L > 0, L ≥
n∑
i=1

f

(
L− di + yi

yi

)
· xi · ei (7)

where

f (a) =
{

�a� if a ≥ 0

0 if a < 0.

For a PGM graph, Equation (7) becomes a sufficient
condition (but not necessary) for preemptive EDF schedul-
ing as long as nodes execute only when their input queues
are over threshold (i.e. the tasks are released when the
node’s input queue is over threshold—thereby ensuring
precedence constraints are met). Equation (7) is not a
necessary condition for PGM graphs since it assumes that
all xi releases of a node may occur at the beginning of an
interval of lengthyi . For some nodes, such asv in Figure 2,
this is not possible.

6. MANAGING LATENCY

Latency can be defined many different ways. An appealing
definition is the delay between a start event and a
corresponding stop event. In graph models that require unity
dataflow attributes, the start event may be the arrival of a
token from the source, and the stop event can be identified
as the enqueuing of a token on the graph’s output queue. But
it is difficult to apply this definition to PGM graphs. As the
SAR graph demonstrates, nodes may add tokens to the data
stream. Nodes may also reduce the number of tokens in the
data stream (known as data decimation), or the node may
delay some number of tokens and use the delayed tokens in
both the current and the subsequent execution as theCorner
Turnnode does in the SAR graph.

A signal-processing engineer describes latency as the time
delay between the sampling of a signal and the presentation
of the processed signal to the output device (which may

be a screen, speaker or another computer). We use this
definition with a clarification. Since we can only measure
time in units of the period of the source, we consider the
prd(q) tokens delivered each period by an external device to
be ‘one sample’; each pulse in the SAR graph constitutes
one sample, which consists of 118 tokens. Hence, under the
strong synchrony hypothesis, latency is the delay between
the enqueuing ofprd(q) tokens onto queueq by an external
source and the next enqueuing ofprd(q′) tokens on queueq ′
attached to an external output device.

Using the strong synchrony hypothesis, the next section
demonstrates that there exist multiple inherent latency values
for a graph. In Section 6.2 these inherent latency values are
added to the latency imposed by the scheduling algorithm
and node execution to bound the total latency any signal
encounters. Finally, we analyze the effect of deadlines on
latency in Section 6.3.

6.1. Latency with the strong synchrony hypothesis

There is a pattern of executions that result in various latency
values for the input signal. Consider the execution of
the SAR graph shown in Figure 4. In this example, we
assume the strong synchrony hypothesis and each down
arrow represents the release and instantaneous execution
of a node. The minimum latency for a sample is zero,
which is the case for the 128th pulse received by the SAR
graph. As shown in Figure 4, the 128th pulse arrives at
time 127y and results in the execution of every node in the
graph. Pulses 192, 256, 320, 384,. . . all have a latency
of 0. The maximum latency value, encountered by the first
pulse, is 127y. The first signal received by the graph always
encounters the maximum latency (assuming the queues have
no initial data). There is, however, another ‘maximum’
latency that is of more interest, and that is the maximum
latency that occurs after the first execution of every node
in the graph. In the execution example shown in Figure 4
for the SAR graph, this maximum latency is encountered by

THE COMPUTER JOURNAL, Vol. 44, No. 6, 2001

496 S. GODDARD AND K. JEFFAY

pulses 129, 193, 257, 321,. . . , which have a latency of 63y.
Notice that there are 126 other unique latency values for this
simple graph (e.g. the latency for pulsej + 1 is (127− j)y).

The latency which a sample encounters under the strong
synchrony hypothesis is dependent on the dataflow attributes
of the graph, the state of the queues (i.e. the number of
tokens on each queue of the graph) when the sample arrives,
and the execution rate of the graph source node. Lemma 6.1
states analytically what these relationships are, and, at any
point in time, it also tells us the number of samples that
must be produced by nodeu before nodew is eligible for
execution. This number is used by Theorem 6.2 to compute
a lower bound on the latency a sample will encounter when
the source is periodic.

LEMMA 6.1.Let path u❀w be a PGM chain, and let

Fu❀w =

max

(
0,

⌈
thr(q)− length(q)

prd(q)

⌉)
if ∃ q : ψ(q) = (u,w)

max

(
0,

⌈
(Fv❀w−1) · cns(q)+thr(q)−length(q)

prd(q)

⌉)
if ∃ q : ψ(q) = (u, v) ∧ v �= w ∧ Fv❀w > 0

0 if ∃ q : ψ(q) = (u, v) ∧ v �= w ∧ Fv❀w = 0.
(8)

Nodeu must executeFu❀w times to produce enough tokens
in order to put the input queue to nodew over threshold.

Proof. See [14].

Equation (8) defines a recursive function that determines
the number of times nodeu must execute before the input
queue to nodew is over threshold. The first branch of
the function handles a path of length one where nodeu

is attached to nodew. For example, consider the chain
Azimuth IFFT❀Outputin the SAR graph of Figure 1 whose
length is one. Assuminglength(Image) = 0, nodeAzimuth
IFFT must execute

FAzimuthIFFT❀Output

= max

(
0,

⌈
thr(Image)− length(Image)

prd(Image)

⌉)

=
⌈

128− 0

128

⌉
= 1

times before nodeOutputexecutes. The second branch of
the functionFu❀w recursively references itself when applied
to a path whose length is reduced by one (until the path is of
length one). Thus, by recursively invokingFu❀w, the second
branch returns the number of times the current source node
u must execute in order for the node attached to it, nodev,
to executeFv❀w times (which is the number of times node
v must execute in order to put the input queue to nodew

over threshold). For example, letlength(RCS) = 256× 100
and length(q) = 0 for the rest of the queues in the graph.

NodeRCS Multmust executeFRCSMult❀Output times before
nodeOutput executes. SinceFCornerTurn❀Output = 1, the
total number of times nodeRCS Multmust execute is⌈
(1 − 1) · cns(RCS)+ thr(RCS)− length(RCS)

prd(RCS)

⌉

=
⌈
(1 − 1) · (256· 64)+ (256· 128)− (256· 100)

256

⌉

=
⌈
(256· 28)

256

⌉
= 28.

The third branch of the functionFu❀w returns zero when
the input queue to nodew is already over threshold, or when
other queues in the chain have enough data that the input
queue to nodew will go over threshold without nodeu
executing again.

Let u ❀ w be a PGM chain such that nodeu is a
periodic source node with periodyu and nodew is an output
node. EvaluatingFu❀w just before a sample arrives will tell
us how many more samples are required before the input
queue to nodew is over threshold. Thus, the latency a
sample encounters under the strong synchrony hypothesis
is max(0, (Fu❀w − 1) · yu). We subtract one fromFu❀w

before converting it to time units since the latency interval
begins after the sample arrives.

THEOREM 6.2.Let u❀ w be a PGM chain such thatu
is a periodic source node with periodyu andw is an output
node. Under the strong synchrony hypothesis, the latency a
sample encounters is

max(0, (Fu❀w − 1) · yu). (9)

Proof. By Lemma 6.1,Fu❀w executions of source nodeu
are required before output nodew is eligible for execution.
If Fu❀w = 0, the sample’s latency is 0 and Equation (9)
returns 0 as desired. IfFu❀w = 1, the next sample will
encounter an latency of 0 since output nodew will execute as
soon as the sample arrives. In this case(Fu❀w − 1) · yu = 0
as desired. IfFu❀w > 1, the next sample will encounter
a latency of(Fu❀w − 1) · yu time units since(Fu❀w − 1)
additional executions of source nodeu are required after the
sample arrives before output nodew executes. Therefore,
under the strong synchrony hypothesis, if source nodeu has
a period ofyu, a sample’s latency will be(Fu❀w − 1) · yu
time units.

The latency defined by Theorem 6.2 provides a lower
bound on the latency any sample will encounter—even on an
infinitely fast machine. We call this latencyinherent latency
because it is inherently defined by the dataflow attributes of
the graph. Using Theorem 6.2 we find, as expected, that the
inherent latency of the first pulse received by the SAR graph
is 127y. Recall from Theorem 5.1 that the most tokens queue
q can hold without being over threshold isMaxUnderThr(q)
and the minimum possible number of tokens on queueq

after its sink node has fired once isMinTokens(q). When
all of the queues in the graph containMaxUnderThr(q)
tokens, as is the case just before pulses 192,256,320, . . . ,

THE COMPUTER JOURNAL, Vol. 44, No. 6, 2001

LATENCY AND BUFFERS INPROCESSINGGRAPH CHAINS 497

y0j y0127

Pulse k+1Pulse k+1

y0128 y0k(+64)y0
191y0k y0

192

Window
Data

Azimuth
IFFT

...

t +64y0
y0

Pulse 1 Pulse 128

......

Pulse j+1

......

......

Time

... ...

...

... ...

...

... ...

Pulse 129 Pulse 192

... ...

...

... ...

...

... ...

Pulse 193 +64 Pulse 256

Zero Fill

YRange

256

t

......

2550

256

...

256

...

FIGURE 5. Latency for the SAR graph. A light arrow represents a node’s release under the strong synchrony hypothesis. A dark arrow
represents the actual release time, and the node’s execution is represented by a box.

the next sample’s latency will be 0—just as Figure 4 shows.
Evaluating Equation (9) when each queue in the SAR graph
containsMinTokens(q) tokens, we get a sample latency of
63y—just as Figure 4 shows for pulses 129 and 193.

6.2. Latency in an implementation

Moving from the strong synchrony hypothesis to an actual
implementation, we assume each node in the graph is
implemented as a RBE task that is released whenever
its input queue is over threshold. To simplify the
presentation of managing latency and buffer requirements in
an implementation, we make a change in notation. For the
rest of the paper, we assume nodes in a chain are numbered
sequentially such that the first node is labeledN0 and the last
node is labeledNn+1. Queues are numbered sequentially
such that the output queue of nodeN0 is labeledQ0 and
the input queue to nodeNn+1 is labeledQn. NodeN0
represents an external input device and nodeNn+1 represents
an external output device. Neither nodesN0 nor Nn+1
require CPU time. Without loss of generality, the chain from
nodeN0 to nodeNn is represented as0 ❀ n. In Section 7
we assume the output device (nodeNn+1) consumes data
as soon as nodeNn produces data, which is the case for
the SAR graph. Thus, since the output device requires no
CPU time and is assumed to consume data as soon as it is
produced, latency will be computed using the chain0❀n.

Scheduling an implementation of the graph results in
an upper and lower bound for each of the latency values
identified with the strong synchrony hypothesis. In other
words, we get latency intervals rather than precise latency
values for a given sample. The lower bound for a sample’s
latency is a function of the scheduling algorithm and, as
shown in Section 6.1, the graph attributes. The lower bound
for the latency interval is the latency value derived using
Equation (9) plus the sum of the execution times for the
nodes in the chain. That is, a sample’s latency must be
greater than or equal to(F0❀n − 1) · y0 + ∑n

i=1 ei .
The upper bound for a sample’s latency is dependent on

the scheduling algorithm, dataflow attributes and deadline
values. Generally, the deadline parameters are the only free

variables in the function. To determine a sample’s latency in
an implementation of the graph, we need to provide a value
for eachdi in the RBE task set. Realizing thatdi affects
latency, what should it be? How doesdi affect latency?

We start by observing that if∀ i : 1 ≤ i ≤ n, di = yi and
the graph is not schedulable (i.e. Condition (7) returns a neg-
ative result) then the processor is overloaded since Condition
(7) reduces to the Liu and Layland feasibility test [18] and
we get 1<

∑n
i=1(xi ·ei)/yi . We also observe that increasing

di > yi will not improve latency and, as we will show later,
increases buffer requirements. Hence, we will setdi = yi
and see how this affects the upper bound for latency values.

Figure 5 shows an execution of the SAR graph with
di = yi . In this figure, the light arrows represent the
release time forNi under the strong synchrony hypothesis
and the dark arrows represent the actual release time. We
see from Figure 5 that taskZero Fill is released at times 0,
y0, 2y0, 3y0, . . . and the deadlines corresponding to each
release time arey0, 2y0, 3y0, . . . , sinced1 = y1 = y0.
Due to scheduling and execution times, however, the task
Window Datais not released until times 0+ e1, y0 + e1,
2y0 + e1, 3y0 + e1, . . . and the corresponding deadlines are
0+e1+d2 = y0+e1, 2y0+e1, 3y0+e1, In this example,
the first execution of taskAzimuth IFFTis released at timet ,
which is after 128y0. Its deadline ist + 64y0, which is after
192y0. Also note that the 256th execution of taskAzimuth
IFFT completes execution by time 191y0—well before its
deadline.

The release times shown in Figure 5 for the tasksZero Fill
andWindow Dataare the earliest possible release times. As
we have noted, the taskAzimuth IFFTcompletes its 256th
execution by time 191y0 even though the deadline for the
first release ofAzimuth IFFTis not untilt + 64y0. This was
no accident. All of the first 256 executions ofAzimuth IFFT
will be released and complete execution between 127y0 and
191y0. To see this, we must look at the earliest possible
release time for the first execution ofAzimuth IFFT and
the schedulability Condition (7). From Theorem 6.2, we
know that the first release of taskAzimuth IFFT cannot
occur before 127y0. An affirmative result from Condition (7)
means that there exists enough processor capacity for nodes

THE COMPUTER JOURNAL, Vol. 44, No. 6, 2001

498 S. GODDARD AND K. JEFFAY

N1 throughNk , 1 ≤ i ≤ k ≤ n, to execute(yk/yi) · xi
times during an interval of lengthyk. This means that 64
executions ofZero Fill, Window Data, Range FFT, andRCS
Mult, one execution ofCorner Turn and 256 executions
of Azimuth FFT, Kernel Mult and Azimuth IFFTwill all
complete execution within 64y0 time units even when they
are all released at the same instant (i.e. whenZero Fill is
first released). We will exploit this fact, similarly to the way
Jeffay did in [19], to bound a sample’s latency.

We can use the release point derived with the strong
synchrony hypothesis and adddi to get the time at which
Ni will have completed execution—even if this time is less
than the actual release time plusdi . We call thisrelease-time
inheritance. When the deadline for each node is greater than
or equal to its predecessor’s relative deadline, release-time
inheritance can be used to minimize latency. Under release
time-inheritance, nodeNi is assigned a logical release time
(at the time of its actual release) that is equal to the logical
release time of the nodeNi−1. Deadline assignment function
(6) then uses the logical release times rather than the actual
release times to assign deadlines for the completion of node
execution. Theorem 6.3 uses release-time inheritance to
provide a lower and upper bound for any sample’s latency.

THEOREM 6.3.GivenR0 = (1, y0) and a schedulable
graph in which∀ i : 1 ≤ 1 < n :: di ≤ di+1, a sample’s
latency under EDF scheduling with release-time inheritance
and deadline-assignment function(6) is bounded such that

(F0❀n − 1) · y0 +
n∑
i=1

ei ≤ Sample Latency

≤ (F0❀n − 1) · y0 + dn
whereF0❀n is evaluated just before the sample’s arrival.

Proof. By Theorem 6.2, a sample’s latency in an implemen-
tation of the graph cannot be less than(F0❀n − 1) · y0
since this is the latency on an infinitely fast machine. The
minimum latency for a signal occurs when each node in
the chain must only execute once after nodeN0 delivers
the additional(F0❀n − 1) · prd(Q0) tokens. Therefore the
sample’s latency must be greater than or equal to(F0❀n −
1) · y0 + ∑n

i=1 ei . Let samplek be the sample for which
we are bounding latency. When the(F0❀n − 1)th sample
after samplek arrives, every node in the graph will fire at
least once before nodeNn produces data. Using release time
inheritance, every task released (either directly or indirectly)
from this last sample will have a deadline less than or equal
to dn time units from the arrival of the last signal. Therefore
if the graph is schedulable, nodeNn will execute within
(F0❀n − 1) · y0 + dn time units of the arrival ofsamplek.
Hence, a sample’s latency is bounded such that

(F0❀n − 1) · y0 +
n∑
i=1

ei ≤ Sample Latency

≤ (F0❀n − 1) · y0 + dn
whereF0❀n is evaluated just before the sample’s arrival, and
Theorem 6.3 holds.

As long as the scheduler ensures that a task only executes
when its input queue is over threshold, it does not matter if
nodeNi+1 executes before nodeNi . When the RBE task set
is specified such thatdi ≤ di+1, a release of nodeNi+1 will
never be assigned a deadline earlier than a release of node
Ni , even when logical release times are used. Moreover, the
latency bound of Theorem 6.3 holds even when a release of
nodeNi+1 executes before a release of nodeNi , which may
occur when both are assigned the same deadline. The EDF
scheduling algorithm does not specify how to break ties.
Hence, a variant of EDF may break ties based on topological
sorting rather than actual release times, which may result in
nodeNi+1 executing before nodeNi whendi = di+1. Al-
though latency is not affected by the tie breaking algorithm,
buffer bounds are. We address this issue in Section 7.

6.3. Reducing latency further

If the latency bounds derived usingdi = yi do not meet
the application’s latency requirements, we can evaluate
the latency with smaller deadlines. As long as we keep
di ≤ di+1, Theorem 6.3 can be used to evaluate new
latency bounds. A simple technique to reduce the maximum
latency any signal will encounter (for a graph executing
on a uniprocessor) is to iteratively decrease the maximum
deadline(s) to the maximumyi such thatyi < max{dj } in the
graph. For example, after a positive result from Condition
(7) with dn = yn, we would setdn = yn−1, assuming
yn−1 < yn, otherwise we would setdn−1 = dn = yn−2.
When Condition (7) finally returns a negative result we have
found a ‘breaking point’. We can either use the deadlines
from the previous iteration or findthe ‘breaking point’ (for
this technique), which lies between the deadline values used
in the last two iterations.

7. MANAGING BUFFER REQUIREMENTS

This section shows how to bound and manage the buffer
requirements of chains executed under the RBE model
with release time inheritance. Using logical release times
rather than actual release times, creates deadline ties during
execution. These ties can then be broken based on topology
to reduce the buffer requirements from what they would be if
the ties were broken arbitrarily. To simplify the presentation
of the buffer bounds (by shortening equations), another
change in notation is made. Letpi = prd(Qi), ci = cns(Qi),
τi = thr(Qi) andri = MaxUnderThr(Qi).

Since Nn+1 represents an external device and is not
scheduled, we cannot give an upper bound onQn. One may
assume the device takes data as it is produced and bound
the buffer space forQn with pn (i.e.prd(Qn)). Or assuming
double buffering techniques (common in I/O interfaces), one
might bound the buffer space as 2pn. In either case, the
bound is platform specific and not considered in the total
buffer bounds presented here.

Recall from Theorem 5.1 thatri = MaxUnderThr(Qi)

is the greatest number of tokensQi can hold without
being over threshold. AfterQi goes over threshold, the

THE COMPUTER JOURNAL, Vol. 44, No. 6, 2001

LATENCY AND BUFFERS INPROCESSINGGRAPH CHAINS 499

Azimuth
FFT

Azimuth
IFFT

Mult
Kernel

Mult
Kernel

Mult
Kernel

a

c d

e

b

FIGURE 6. A scheduling graph.

number of tokens that can accumulate on the queue is a
function of dataflow attributes, deadlines and the scheduling
algorithm. Here we assume dataflow attributes are fixed by
the signal-processing engineer and use deadline parameters
and scheduling algorithms to manage buffer requirements of
the application.

We have derived buffer bounds for preemptive EDF
scheduling and two variations of EDF: breadth-first EDF
(BF-EDF) and depth-first EDF (DF-EDF). The names for
these EDF variants become apparent when one looks at a
possible scheduling graph, which is used to break deadline
ties. A scheduling graph is a topologically-sorted graph
of vertices representing releases of RBE tasks with the
same deadline. The graph is sorted with respect to the
dataflow graph and all jobs in the graph have the same
deadline. Consider the scheduling graph in Figure 6—a
possible snapshot of the ready queue for the SAR graph
after Pulse 128 has been processed by theCorner Turnnode.
The BF-EDF scheduling algorithm performs a breadth-first
search of eligible jobs, beginning at the left-most side of
each level. Hence, the BF-EDF algorithm would select
the Azimuth FFTtask followed by the left-most release of
Kernel Mult. Using the labelsa, b, c, d and e to refer
to the tasks releases in Figure 6, BF-EDF would schedule
them in order:a, b, c, d, d ′, e ande∗ whered ′ represents
the new release ofKernel Mult caused by the execution of
Azimuth FFT, ande∗ represents the new releases ofAzimuth
IFFT which result from executions ofKernel Mult. The DF-
EDF scheduling algorithm performs a depth-first search of
eligible jobs by traversing down the left-most side of the tree
until it reaches a leaf. In this case, DF-EDF would select
theAzimuth IFFTtask to execute followed by the left-most
release ofKernel Mult. A DF-EDF schedule, starting with
the schedule graph of Figure 6, would bee, b, e′, c, e′′, d,
e′′′, a wheree′, e′′ ande′′′ are new releases ofAzimuth IFFT
caused by the executions ofKernel Mult.

7.1. Buffer bounds for EDF scheduling

We begin the process of bounding the buffer requirements of
a graph by observing that whendi+1 > di , the buffer bound

forQi is the same for all EDF variant scheduling algorithms
that use release-time inheritance to schedule PGM graphs.
The case ofdi+1 > di prevents deadline ties from occurring;
hence, the tie breaking algorithm has no impact on the buffer
bound forQi . Whendi+1 > di anddi+1 ≥ y0, we can
bound the buffer requirements ofQi independently of the
number of tokens that may accumulate onQi−1.

LEMMA 7.1.For EDF scheduling algorithms with re-
lease time inheritance, ifR0 = (1, y0) and dj+1 > dj ∧
dj+1 ≥ y0, the maximum buffer space required byQi of a
schedulable graph is less than or equal to

BEDF(Qi) =

(⌈
d1

y0

⌉
· p0

)
+ r0 if i = 0

(⌈
di+1

yi

⌉
· xi · pi

)
+ ri

if (i > 0 ∧ ((di+1 > di ∧ y0 ≤ di+1 < yi)

∨ (di < yi ≤ di+1)))(⌊
di+1

yi

⌋
· xi · pi

)
+ ri

if (i > 0 ∧ yi ≤ di < di+1).

Proof. See [14].

The EDF scheduling algorithm does not specify how
deadline ties are broken, and the buffer requirements of a
queue are greatest when breadth-first scheduling is used to
break deadline ties between two eligible nodes. Thus, to
bound a queue’s buffer requirements, we must assume that
whenever a deadline tie is possible it may be broken by
performing a breadth-first search of the scheduling graph.

LEMMA 7.2.For EDF scheduling algorithms with re-
lease time inheritance that may break ties using a breadth-
first search of the scheduling graph, ifR0 = (1, y0), the
maximum buffer space required byQi , ∀ i ≥ 0, of a
schedulable graph is less than or equal to

BBF(Qi) =

(⌈
d1

y0

⌉
· p0

)
+ r0 if i = 0

(⌈
di+1

yi

⌉
· xi · pi

)
+ ri

if (i > 0 ∧ di+1 > di ∧ y0 ≤ di+1 < yi)

∨ (i > 0 ∧ di < yi ≤ di+1)(⌊
di+1

yi

⌋
· xi · pi

)
+ ri

if (i > 0 ∧ yi ≤ di < di+1)(⌊
BBF(Qi−1)− τi−1

ci−1

⌋
+ 1

)
· pi + ri otherwise.

(10)

Proof. See [14].

THE COMPUTER JOURNAL, Vol. 44, No. 6, 2001

500 S. GODDARD AND K. JEFFAY

Since EDF does not specify how ties are broken, we need
to sumBBF(Qi) over all of the queues in the chain to bound
a graph’s simultaneous buffer requirements.

THEOREM 7.3.For EDF scheduling with release time
inheritance, ifR0 = (1, y0) anddi+1 ≥ di , ∀ i : 0 ≤ i < n,
the maximum buffer space required is less than or equal to∑n−1
i=0 BBF(Qi).

Proof. From Lemma 7.2, the maximum spaceQi will
require isBBF(Qi). Since EDF does not specify how ties are
broken, we need to sumBBF(Qi) over all of the queues in the
chain to bound a graph’s simultaneous buffer requirements.
Therefore, the maximum buffer space required is less than
or equal to

∑n−1
i=0 BBF(Qi).

If deadline ties are broken in a deterministic manner
specified by the deadline driven scheduling algorithm, we
can get a much tighter bound on buffer requirements.

7.2. Buffer bounds for BF-EDF scheduling

The BF-EDF scheduling algorithm is an EDF algorithm in
which deadline ties are broken by performing a breadth-
first search of the scheduling graph. The functionBBF(Qi),
Equation (10), returns the maximum number of tokens the
ith queue will ever hold when deadline tiesmaybe broken
with a breadth-first search of the scheduling graph. The BF-
EDF algorithmalwaysbreaks ties with a breadth-first search
of the scheduling graph, so we can useBBF(Qi) to bound the
memory needs ofQi when a schedulable graph is executed
under BF-EDF scheduling. Whendi < di+1, ∀ i > 0, no
deadline tie is possible and Theorem 7.3 bounds the graph’s
buffer requirements for BF-EDF scheduling as well as EDF
scheduling. When there exist consecutive nodes in the chain
with the same deadline, however, we can reduce the buffer
bounds for the graph.

Consider the case whendi = di+1, ∀ i > 0. Since
EDF does not specify how ties are broken, we had to sum
BBF(Qi) over all of the queues in the chain to bound a
graph’s simultaneous buffer requirements. With BF-EDF,
however, we know that,∀ j > i > 1, any release ofNi will
execute before a release ofNj whenNi andNj both have the
same deadline. WhenNi executes, it reads data fromQi−1
and writes data toQi—using both queues simultaneously.
By the timeNi+1 executes, however,Qi−i will be under
threshold and will hold at mostri−1 tokens. Much of the
space that was used byQi−1 whenNi was executing can
be reclaimed and used byQi+1 to hold the data produced by
Ni+1. Therefore the total buffer space required forQi−1 and
Qi+1 is

max{BBF(Qi−1)−ri−1, BBF(Qi+1)−ri+1} + ri−1 + ri+1.

Theorem 7.4 divides the queues into two disjoint sets and
uses this technique to bound the total buffer space required
by the chain when all of the nodes have the same deadline
values.

THEOREM 7.4.For the BF-EDF scheduling algorithm
with release time inheritance, ifR0 = (1, y0) and di+1 =

di, ∀ i : 0 < i < n, the maximum buffer space required is
≤ β, where

β = BBF(Q0)

+ max{BBF(Qk)− rk | ∀ k = 2i : i > 0 ∧ k < n}
+ max{BBF(Qk)−rk | ∀ k = 2i − 1 : i > 0 ∧ k < n}

+
n−1∑
i=1

ri . (11)

Proof. See [14].

Depending on thedi values, we may be able to use
variations of the techniques shown in this section to get
tighter buffer bounds for a specific graph than either
Theorem 7.3 or Theorem 7.4. We leave open the problem
of finding a tight buffer bound for generic chains executed
with the BF-EDF scheduling algorithm.

7.3. Buffer bounds for DF-EDF scheduling

The DF-EDF scheduling algorithm is an EDF algorithm
in which deadline ties are broken by performing a depth-
first search of the scheduling graph. For some applications,
breaking deadline ties with a depth-first search of the
scheduling graph rather than a breadth-first search results in
a lower upper bound on buffer requirements for the graph.
The functionBDF(Qi) returns the maximum number of
tokensQi will ever hold when the graph is scheduled with
release inheritance and DF-EDF. This function is used in
Theorem 7.6 to bound the total buffer space required for the
graph to execute with DF-EDF scheduling.

LEMMA 7.5.For the depth-first EDF scheduling algo-
rithm with release time inheritance, if the graph is schedu-
lable,R0 = (1, y0), anddi+1 ≥ di, ∀ i : 0 ≤ i < n, the
maximum buffer space required byQi is less than or equal
to

BDF(Qi) =

(⌈
d1

y0

⌉
· p0

)
+ r0 if i = 0

(⌈
di+1

yi

⌉
· xi · pi

)
+ ri

if (i > 0 ∧ di+1 > di ∧ y0 ≤ di+1 < yi)

∨ (i > 0 ∧ di < yi ≤ di+1)(⌊
di+1

yi

⌋
· xi · pi

)
+ ri

if (i > 0 ∧ yi ≤ di < di+1)(⌊
BDF(Qi−1)− τi−1

ci−1

⌋
+ 1

)
· pi + ri

if i > 0 ∧ di < di+1 < y0

pi + ri otherwise.

(12)

Proof. See [14].

THE COMPUTER JOURNAL, Vol. 44, No. 6, 2001

LATENCY AND BUFFERS INPROCESSINGGRAPH CHAINS 501

2,
2

2,
2

2,
22

2,

�
✧

✥
✦

�
✧

✥
✦

�
✧

✥
✦

�
✧

✥
✦

�
✧

✥
✦

�
✧

✥
✦✲ ✲ ✲ ✲✲N0

Q0
N1

Q2
N3 N4

Q3 Q4
N5N2

Q1

2τ=8,
c=8

p=8 48 4

FIGURE 7. Six-node chain scheduled with the DF-EDF algorithm.

TABLE 1. Maximum buffer space required per queue evaluated
with BBF(Qi) andBDF(Qi).

BBF(Qi) BDF(Qi) BBF(Qi) BDF(Qi)

Queue di = y0 di = y0 di = yi di = yi
Range 118 118 118 118
Fill 256 256 256 256
Window 256 256 256 256
RFFT 256 256 256 256
RCS 32,768 32,768 48,896 48,896
Azimuth 32,768 32,768 32,768 32,768
AFFT 32,768 128 32,768 128
Mult 32,768 128 32,768 128

THEOREM 7.6.For DF-EDF scheduling with release
time inheritance, ifR0 = (1, y0) anddi+1 ≥ di , ∀ i : 0 <
i < n, the maximum buffer space required is less than or
equal to

∑n−1
k=0 BDF(Qk).

Proof. From Lemma 7.5, the maximum spaceQk will
require isBDF(Qk). Therefore, the maximum buffer space
required is less than or equal to

∑n−1
k=0BDF(Qk).

When the graph is scheduled with the BF-EDF algorithm
and di+1 = di, ∀ i : 0 < i < n, Theorem 7.4
provides a tighter bound on the buffer space required by
the graph than Theorem 7.3 by reclaiming unused buffer
space. Unfortunately we cannot use the same technique
when the graph is scheduled with the DF-EDF algorithm
to get a tighter bound than Theorem 7.6 provides. To see
this, consider the graph of Figure 7 and letR0 = (1, y0).
Under DF-EDF scheduling, every timeN4 executes,Q3 will
require space for four tokens. At the same timeQ1 will
require space for six tokens (notr1 = 0 as it does with BF-
EDF scheduling). We leave open the problem of finding a
tight buffer bound for generic chains executed with the DF-
EDF scheduling algorithm.

7.4. Buffer bounds for the SAR graph

This section develops buffer bounds for the SAR graph (see
Figure 1) using differentdi values and scheduling algorithms
by applying Theorems 7.3, 7.4 and 7.6. We begin by finding
the minimum buffer space required to execute the graph.
This occurs when we setdi = y0, ∀ i > 0, assuming we
have a fast enough CPU that the graph is schedulable with
these deadline values. Observe thatdi = y0, ∀ i > 0,
also minimizes the latency any sample will encounter. Let
RYRange= (1,3.6 ms), as before, and eachdi = 3.6 ms.

7.4.1. EDF and BF-EDF scheduling withdi = y0

To bound the graph’s buffer needs when it is executed with
either canonical EDF or BF-EDF scheduling, we first need to
bound the buffer requirements of each queue usingBBF(Qi),
Equation (10). These results are summarized in Table 1.

By Theorem 7.3, the total buffer space required to execute
the SAR graph with EDF scheduling whendi = y0 =
3.6 ms is less than or equal to

∑n−1
i=0 BBF(Qi) = 131,958.

By Theorem 7.4, if BF-EDF scheduling is used whendi =
y0 = 3.6 ms, the required buffer spaced is less than or equal
to β where

β = BBF(Q0)

+ max{BBF(Qk)− rk | ∀ k = 2i : i > 0 ∧ k < n}
+ max{BBF(Qk)−rk | ∀ k = 2i − 1 : i > 0 ∧ k < n}

+
n−1∑
i=1

ri = 118+ 32,768+ 32,768+ 32,512

= 98,116.

7.4.2. DF-EDF scheduling withdi = y0

To bound the graph’s buffer needs when it is executed
with DF-EDF scheduling, we first need to bound the buffer
requirements of each queue usingBDF(Qi), Equation (12).
These results are summarized in Table 1. By Theorem 7.6,
the total buffer space required to execute the SAR graph with
DF-EDF scheduling whendi = y0 = 3.6 ms is less than or
equal to

∑n−1
i=0 BDF(Qi) = 66,678.

7.4.3. Scheduling withdi = yi
Now consider what happens to the buffer bounds when
∀ i > 0 : di = yi . Table 1 shows the values returned from
BBF(Qi) andBDF(Qi) for each queue in the SAR graph
with di = yi . Notice that only the queue labeledRCSis
affected by the new deadline values. This is because the
Corner Turnnode acts as a gating node in which its deadline
is 64 times greater than theRCS Multnode, but the deadline
values for the remaining nodes are the same as theCorner
Turn node. Sincei > 0 andyi ≤ di < di+1, BBF(Qi) and
BDF(Qi) for the queue labeledRCSare evaluated with the
same expression:

BBF(Q4 = RCS) = BDF(Q4 = RCS)

= BEDF(Q4 = RCS)

=
(⌊
dCorner T urn

yRCS Mult

⌋
· xRCS Mult· pRCS

)
+ rRCS

THE COMPUTER JOURNAL, Vol. 44, No. 6, 2001

502 S. GODDARD AND K. JEFFAY

=
(⌊

64 · 3.6 ms

3.6 ms

⌋
· 1 · 256

)
+ (256· 127)

= (64 · 256)+ (256· 127)

= 256· 191= 48,896.

By Theorem 7.3, the total buffer space required for the
graph to execute with EDF or BF-EDF scheduling is less
than or equal to 148,086 tokens. Sincedi+1 �= di , ∀ i,
Theorem 7.4 is not applicable. By Theorem 7.6, the total
buffer space required to execute the SAR graph with DF-
EDF scheduling whendi = yi is less than or equal to∑n−1
i=0 BDF(Qi) = 82,806.
Theorems 7.3, 7.4 and 7.6 are upper bounds on buffer

needs for the graph, depending on deadline values and
scheduling algorithms. For some graphs, these may even
be least upper bounds. However, these are not tight bounds
for the SAR graph. The buffer bounds derived here can be
reduced further by taking advantage of specific attributes of
the SAR graph and features of the scheduling algorithms, as
shown in [14].

8. SUMMARY

In most processing graph methodologies used to build high
assurance systems, system engineers are unable to analyze
the real-time properties of processing graphs like those
created using PGM. We have shown that this is not an
intrinsic property of the methodologies, and that by applying
scheduling theory to a PGM graph, we can determine exact
node execution rates, which are dictated by the input data
rate and the dataflow attributes of the graph. We have
also shown how to bound and manage latency and buffer
requirements for an implementation of the graph scheduled
with simple EDF algorithms under the RBE task model.

Given a graph, the only free parameters we have to affect
the latency or buffer bounds of the application are deadlines.
If the latency requirement of the application is less than
the latency value from the strong synchrony hypothesis (i.e.
(F0❀n − 1) · y0), then the given graph will never meet
its latency requirement since this latency is inherent in the
graph. If the latency requirement is greater than the strong
synchrony hypothesis bound but less than the lower bound
(F0❀n − 1) · y0 + ∑n

i=1 ei , changing deadlines will not
help the graph meet its latency requirement; a faster CPU
is required.

If the latency requirement is greater than this lower
bound but less than the upper bound(F0❀n − 1) · y0 + dn
(where di < di+1,1 ≤ i < n), then one can attempt
to follow the procedures outlined in Section 6.3 to reduce
latency to the desired bound. Should this technique fail,
the system engineer may need to make cost trade offs. For
example, if the deadline assignment technique outlined in
Section 6.3 failed to yield satisfactory latency bounds before
the schedulability test returned a negative result, the system
engineer can decide whether to use a faster processor, or
add memory to increase buffering. It is clear that the first
choice resolves the latency problem, assuming a fast enough
CPU exists. It may not be clear, however, that adding

memory can reduce latency. Suppose the deadlines have
been reduced such that the firstk nodes in the chain all have
deadlines equal to their rate interval (i.e.di = yi,∀ i :
1 ≤ i ≤ k), and the last(n − k) nodes have deadline
values ofdk, but the latency bound is still too high; and
lowering the deadline parameters for the last(n − k) nodes
yields a negative result from Equation (7). We may be able
to reduce the latency bound further by setting all of the
deadline parameters toLatencyRequirement−(F0❀n−1)·y0.
This increases the buffer requirements of the firstk nodes,
but may produce enough slack in the schedule such that
the graph is now schedulable even though the deadline
parameters of the last(n − k) nodes have been reduced to
achieve the desired latency bound. Should the graph become
schedulable with these new deadline parameters, but require
too much memory, the system engineer can make cost trade
offs: more memory, faster CPU or relaxed requirements.

Since our driving application has the topology of a chain,
for space consideration we have restricted our analysis to
chains. Many of the results presented in this paper have been
extended to general PGM graphs in [4, 10, 20].

REFERENCES

[1] Lee, E. A. and Messerschmitt, D. G. (1987) Static scheduling
of synchronous data flow programs for digital signal
processing.IEEE Trans. Comp., C-36, 24–35.

[2] Processing Graph Method Specification(1987) Prepared by
the Naval Research Laboratory for use by the Navy Standard
Signal Processing Program Office (PMS-412), Version 1.0.

[3] Goddard, S. (1998)On the Management of Latency in
the Synthesis of Real-Time Signal Processing Systems from
Processing Graphs. PhD Dissertation, University of North
Carolina at Chapel Hill.
http://www.cse.unl.edu/̃goddard/Papers/Dissertation.ps

[4] Goddard, S. and Jeffay, K. (2000) The synthesis of real-time
systems from processing graphs.Proc. 5th IEEE Int. Symp.
on High Assurance Systems Engineering, Albuquerque, NM,
pp. 177–186. IEEE Computer Society Press, Los Alamitos,
CA.

[5] Chatterjee, S. and Strosnider, J. (1995) Distributed pipeline
scheduling: A framework for distributed, heterogeneous real-
time system design.Comp. J., 38, 271–285.

[6] Dasdan, A., Ramanathan, D. and Gupta, R. K. (1998)
A timing-driven design and validation methodology for
embeded real-time systems.ACM Trans. Design Automaton
Electron. Syst. (HLDVT’97 Special Issue), 3, 533–553.

[7] Buck, J., Ha, S., Lee, E. A. and Messerschmitt, D. G.
(1994) Ptolemy: a framework for simulating and prototyping
heterogeneous systems.Int. J. Comp. Simul. (Special Issue on
Simulation Software Development), 4, 155–182.

[8] Bhattacharyya, S. S., Murthy, P. K. and Lee, E. A. (1996)
Software Synthesis from Dataflow Graphs. Kluwer, Norwell,
MA.

[9] Ritz, R., Willems, M. and Meyer, H. (1995) Scheduling for
optimum data memory compaction in block diagram oriented
software synthesis.Proc. ICASSP 95, Detroit, MI, pp. 133–
143.

[10] Goddard, S. and Jeffay, K. (1998) Managing memory
requirements in the synthesis of real-time systems from
processing graphs.Proc. 4th IEEE Real-Time Technology and

THE COMPUTER JOURNAL, Vol. 44, No. 6, 2001

LATENCY AND BUFFERS INPROCESSINGGRAPH CHAINS 503

Applications Symp., Denver, CO, 3–5 June, pp. 59–70. IEEE
Computer Society Press, Los Alamitos, CA.

[11] Gerber, R., Seongsoo, H. and Saksena, M. (1995) Guarantee-
ing real-time requirements with resource-based calibration of
periodic processes.IEEE Trans. Software Eng., 21, 579–592.

[12] Bondy, J. A. and Murty, U. S. R. (1976)Graph Theory with
Applications. North Holland, New York.

[13] Zuerndorfer, B. and Shaw, G. A. (1994) SAR Processing for
RASSP Application.Proc. 1st Ann. RASSP Conf., Arlington,
VA, pp. 253–268. IEEE Computer Society Press, Los
Alamitos, CA.

[14] Goddard, S. and Jeffay, K. (2000)Managing Latency and
Buffer Requirements in Processing Graph Chains. Technical
Report UNL-CSE-00-530, Computer Science and Engineer-
ing, University of Nebraska–Lincoln.
http://www.cse.unl.edu/̃goddard/Papers/TR-UNL-CSE-
00530.ps

[15] Berry, G. and Cosserat, L. (1985) The ESTEREL syn-
chronous programming language and its mathematical se-
mantics.Seminar on Concurrency. Lecture Notes in Com-
puter Science, 197, 389–448. Springer, Berlin.

[16] Jeffay, K. and Goddard, S. (1999) A theory of rate-
based execution.Proc. 20th IEEE Real-Time Syst. Symp.,
Phoenix, AZ, pp. 304–314. IEEE Computer Society Press,
Los Alamitos, CA.

[17] Baruah, S., Howell, R. and Rosier, L. (1990) Algorithms
and complexity concerning the preemptively scheduling of
periodic, real-time tasks on one processor.Real-Time Syst. J.,
2, 301–324.

[18] Liu, C. and Layland, J. (1973) Scheduling algorithms for
multiprogramming in a hard-real-time environment.J. ACM,
30, 46–61.

[19] Jeffay, K. (1994) On latency management in time-shared
operating systems.Proc. 11th IEEE Workshop on Real-Time
Operating Systems and Software, Seattle, WA, pp. 86–90.
IEEE Computer Society Press, Los Alamitos, CA.

[20] Goddard, S. and Jeffay, K. (1999) Analyzing the real-time
properties of a U.S. navy signal processing system.Proc. 4th
IEEE Int. Symp. on High Assurance Systems Engineering,
Washington, DC, pp. 141–150. IEEE Computer Society
Press, Los Alamitos, CA.

THE COMPUTER JOURNAL, Vol. 44, No. 6, 2001

