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Real-time signal-processing applications for high assurance systems are commonly designed using
a processing-graph software architecture. Here we demonstrate the management of latency and
buffer requirements in such an architecture—the US Navy'sprocessing graph metho@®GM). By
applying recent results in real-time scheduling theory to the subset of PGM employed by the US
DARPA rapid prototyping of application-specific signal processors (RASSP) synthetic aperture
radar (SAR) benchmark application, we identify inherent real-time properties of nodes in a PGM
graph, and demonstrate how these properties can be exploited to perform useful and important
system-level analyses such as schedulability analysis, end-to-end latency analysis, and memory
requirements analysis. More importantly, we develop relationships between properties such as
latency and buffer bounds and show how one may be traded off for the other.
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1. INTRODUCTION signature of a detected target; embedded signal-processing
applications must produce the correct output within the cor-
Signal-processing algorithms are often defined in the rect time interval—e.g. detect the signature within 1 second.
literature using processing graphs [1]: directed graphs in Explicit methods for evaluating latency and buffering
which a node is a sequential program that executes fromféquirements are needed when applications developed using
start to finish in isolation (i.e. without synchronization), and & Processing-graph model are executed in an embedded
the graph edges depict the flow of data from one node to environment with limited memory resources. Processing-
the next. Thus, an edge represents a producer/consumegraph models implicitly define a temporal semantics for
relationship between two nodes. Processing graphs provide? Processing graph by specifying lower bounds to when
a natural description of signal-processing applications with nodes may execute as a function of the availability of data
each node representing a mathematical function to be©n input edges. However, most models do not support
performed on an infinite stream of data that flows on the the specification of either an end-to-end latency constraint
arcs of the graph. The streams of input data are typically OF &1 upper bound to the time that may elapse between a
generated by sensors sampling the environment at periodichode becoming eligible to execute and the time the node
rates, and sending the samples to the signal processor via aRither commences or completes execution. Without such a
external channel. The processing graph methodology a"OWSbound,_the buffer requirements of the application cannot be
one to easily understand the signal processing performed bydetermined.
depicting the structure of the algorithm; any portion of the =~ Even the US Navy’s own processing graph methodology,
application can be understood in the absence of the rest ofprocessing graph method (PGM) [2], lacks deterministic
the algorithm. analysis methods to verify latency and buffer requirements.
Embedded signal-processing applications are naturally This is somewhat surprising since PGM is used to
defined using processing graph techniques. As high- develop real-time, embedded, anti-submarine warfare
assurance real-time applications, they require deterministic(ASW) applications for the AN/UYS-2A (the US Navy's
performance. The signal processing graph must process datgtandard signal processor). PGM has also been used to
at the rates of a set of external devices (e.g. sonobuoyscreate a real-time Ka-band synthetic aperture radar (SAR)
dipping sonars or radars) without the loss of data. Hence benchmark application for DARPA's rapid prototyping of
signal-processing applications, like other real-time systems, application-specific signal processors (RASSP) project.
have a dual notion of correctness: logical and temporal. It Using the SAR application graph as a driving problem,
is not sufficient only to produce the correct output—e.g. the the management of latency and buffer requirements is
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demonstrated by applying real-time scheduling theory to can be reduced to average execution rates assumed in the
the subset of PGM used in the RASSP SAR benchmark LASM and GTG models. Our general execution rate
application. The AN/UYS-2A uses dynamic scheduling and specification provides a more natural representation of node
resource allocation in the execution of PGM applications. execution for PGM graphs. Forcing periodic execution of
The same dynamic execution environment is assumed inall graph nodes adds latency to the processed signal, but
this work, with the exception that a simple (on-line) earliest simplifies the analysis of latency and memory requirements.
deadline first (EDF) scheduler is used rather than the Processing graphs are a standard design aid in digital
default (on-line) first come first served (FCFS) scheduler signal processing. From the digital signal processing
implemented in the AN/UYS-2A. literature, PGM is most similar to Lee and Messerschmitt's
In this work, inherent relationships existing in real-time synchronous dataflow (SDF) graphs [1] supported by the
processing graphs that have not been recognized in thePtolemy system [7]. The SDF graphs of Ptolemy utilize a
literature are identified. Latency and buffering requirements subset of the features supported by PGM. Any SDF graph
are dependent on the rate and order in which nodescan be represented as a PGM graph where each queue’s
execute. Thus, theorems that characterize the non-trivialthreshold is equal to its consume value. In addition to
execution rates of every node in the processing graph assupporting a more general processing-graph model, our
a function of input rates are presented. Existing real-time research differs from [1] in that we support dynamic real-
scheduling theory is then used to determine the order in time scheduling techniques rather than the creation of static
which nodes execute. From scheduling theory, conditions schedules.
for various EDF scheduling algorithms are used to determine  In 1996, Bhattacharyya&t al. published a method for
if the graph can be scheduled to meet specified latencysoftware synthesis from dataflow graphs [8]. Their software
requirements. We show that, by changing parameters usedsynthesis method is based on the static scheduling of
to schedule node execution, we can manage both latencyLee and Messerschmitt's SDF graphs. The main goal
and buffer requirements. More importantly, we develop of Bhattacharyyeet al's software synthesis method and
relationships between latency and buffer bounds and showrelated scheduling research based on SDF graphs has been
how one may be traded off for the other. to minimize memory usage by creating off-line scheduling
The rest of this paper is organized as follows. Our results algorithms [1, 8, 9]. Off-line schedulers create a static
are related to other work in Section 2. Section 3 presentsnode execution schedule that is executed periodically by
a brief overview of the portion of PGM used by the SAR the processor. In contrast, the primary goal of our
graph, which is introduced in Section 4. Section 5 presentsresearch has been to manage the latency and memory usage
our execution model including node execution rates and of processing graphs by executing them with an on-line
a schedulability condition for EDF scheduling. Section 6 scheduler. Recently we have shown that for a large class
addresses latency management issues and Section 7 shows applications, dynamic on-line scheduling creates less
how to bound and manage the buffer requirements of animposed latency than static scheduling. An even more
implementation of a graph. We summarize our contributions surprising result is that, in many cases, dynamic on-line

in Section 8. scheduling uses less memory for buffering data on graph
edges than static scheduling [10].
2. RELATED WORK Our latency analysis is related to the work of Gerber

et al. in guaranteeing end-to-end latency requirements on a
This paper is part of a larger body of work that creates a single processor [11]. However, Gerbatral. map a task
framework for evaluating and managing processor demand,graph to a periodic task model in the synthesis of real-time
latency and memory usage in the synthesis of real-time message-based systems rather than assuming a rate-based
systems from general processing graphs (including cyclic execution. Our analysis and management of latency differs
graphs) [3]. Here, we demonstrate the management offrom Gerberet al’s in that PGM graphs allow non-unity
latency and buffer requirements in the synthesis of a real- dataflow attributes. Finally, Gerbet al. introduce new
time uniprocessor system from processing graph chains(additional) tasks to the task set in their synthesis method
developed with PGM. In [4], some of the results presented to synchronize processing paths. Our method does not need
here have been extended to compute node execution rateextra synchronization tasks since our analysis techniques
and inherent latency for cyclic processing graphs that are rate based rather than periodic and we assume tasks are
contain feedback loops. released by the run-time system as soon as they are eligible

From the real-time literature, PGM graphs are most for execution.

closely related to the logical application stream model
(LASM) [5] and the generalized task graph (GTG) 3 NOTATION AND THE PROCESSING GRAPH
model [6]. PGM, LASM and GTG were all developed METHOD
independently and support very similar dataflow properties;
PGM was the first of these to be developed. Our work The notation and terminology of this paper, for the most part,
improves on the analysis of LASM and GTG graphs by is an amalgamation of the notation and terminology used in
not requiring periodic execution of the nodes in the graph. [8] and [12]. A processing graph is formally described as a
Instead, we calculate a more general execution rate, whichdirected graph(or digraph) G = (V, E, ¥). The ordered
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triple (V, E, ) consists of a non-empty finite s&t of only when it is eligible for execution, no two executions
vertices a finite setE of edges and an incidence function of the same node overlap, each input queue has its data
Y that associates with each edgeeadn ordered pair of (not  atomically consumed after each output queue has its data

necessarily distinct) vertices ™ Consider an edge € E atomically produced and data is produced at most once on
and vertices, v € Vsuchthaty(e) = (u, v). We saye joins an output queue during each node execution.

u to v, oru andv are adjacent. The verteixis called the tail A graph execution consists of a (possibly infinite)
or source vertex of andv is the head or sink vertex of edge sequence of node executions. A graph executiomlsl if

e. The edger is anoutput edgeof u and aninput edgeof and only if all of the nodes in the execution sequence have

v. The number of input edges to a vertexs theindegree valid executions and no data loss occurs.

8~ (v) of v, and the number of output edges for a vertex

is theoutdegrees ™ (v) of v. A vertexv with §=(v) = O is 4. SAR GRAPH

aninput node Foru, v € V, there is gpath betweeru and

v, written asu~ v, if and only if there exists a sequence of This section introduces the SAR graph, including a brief

vertices(w, wa, ..., wg) such thatw1 = u, wy = v andw; description of the processing performed by each node in
is adjacent taw;+1 fori = 1,2,..., (k —1). A pathu~v the graph. This information is provided for concreteness
is achainif u # v, §7(u) < 1,67 =1,6"(v) = 1 and for the reader with a signal-processing background. The
8T(w) =686 (w) =1forallw e {{u~Vv} — {u, v}}. actual logical operation of the SAR graph is immaterial to

For concreteness, the US Navy's PGM is used to presentthe results we derive and the analyses we perform. The only
our technigues for managing latency and buffer requirementsessential properties of the SAR graph are those that influence
in processing graph chains. PGM was developed by the USnode execution: the produce, consume and threshold values
Navy to facilitate the design and implementation of signal- for each node. For a more detailed description of the
processing applications, but it is a very general processing-processing performed by the SAR benchmark, see [13].
graph paradigm that is applicable to many other domains. The full SAR benchmark cannot execute in real time on

In PGM, a system is expressed as a directed graph ina single processor. Therefore, the RASSP project allocates
which the nodes (or vertices) represent processing functionsa portion of the full SAR graph to individual processors.
and the edges represent buffered communication channel§he graph in Figure 1 is one such allocation. This graph,
called queues. The topology of the graph defines a called the ‘mini-SAR’, was originally created to test tools
software architecture independent of the hardware hostingdeveloped by the RASSP project. It performs the range
the application. The graph edges are first in first out (FIFO) and azimuth compression processing in the formation of
queues. There are four attributes associated with each queuean image that is one eighth the size of that formed by the
a produce amounprd(q), a threshold amounthr(qg), a full SAR benchmark. Henceforth, we shall refer to the
consume amoumngg) and an initialization amournit(q). mini-SAR graph as the SAR graph since an analysis similar
Let queueq be directed from node to nodew. The to what we develop shortly could be performed on each
produce amourprd(q) specifies the number of tokens (data processor to analyze the full application.
elements) appended to queyewhen producing node The input node for the SAR graph (shown in Figure 1)
completes execution. A token represents an instance ofis labeledYRangeand represents a periodic external device
a data structure, which may contain multiple data words. that produces data for the graph. The output node represents
There must be at leasir(q) tokens on queug before node an external device that executes whenever data is available
w is eligible for execution. A queue ver thresholdf the on thelmagequeue. The nodes and queues of this graph
number of enqueued tokens meets or exceeds the thresholdlave mnemonic labels. Produce, threshold, and consume
amounthr(q). After nodew executes, the number of tokens values are displayed below the queue. For example, the

consumed (deleted) from quegdy nodew is cngq). The produce, consume, and threshold values of the queue labeled
number of initial data tokens on the queuerig(qg). The Rangeare all 118. QueuRCSis the only queue that initially
length of queug is denotedength(q). contains data. It is initialized with 256 64 zero-samples

Unlike many processing graph paradigms, PGM allows (i.e.init(RCS = 256 x 64).
non-unity produce, threshold and consume amounts as well The top row of nodes in the SAR graph each operate on
as a consume amount less than the threshold. The onlyone pulse of data at a time. The pulse delivered by the
restrictions on queue attributes are that they must be non-external source, labelé@Rangehas already been converted
negative values and the consume amount must be less thato complex-valued data and consists of 118 range gate
or equal to the threshold. samples. The&ero Fill node pads the pulse with zeroes

If a node has more then one input queue (input edge), thento create a pulse length of 256 samples in preparation for
the node is eligible for execution whafi of its input queues  the FFT node. Before performing the FFT, the data is
are over threshold (i.e. when each input qugw®ntains at passed through a Kaiser window function, represented by the
leastthr(q) tokens). After the processing function finishes nodeWindow Data to reduce sidelobe levels and perform
executingprd(q) tokens are appended to each output queue bandpass filtering. After being compressed in the range
q. Before the node terminates, but after data is produced,dimension by theRange FFTnode, the pulse is passed
cngq) tokens are dequeued from each input queud he through the radar cross-section calibration filter performed
execution of a node igalid if and only if the node executes by theRCS Multnode.
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FIGURE 1. A PGM graph for the SAR application. The tail of each queue is annotated with its produce value. The head of each
queue is annotated with its threshold and consume values. For example, the queueR&®#hedprd(q) = 256, thr(g) = 256 x 128,
andcngg) = 256 x 64. QueueRCSis the only queue that initially contains data. It is initialized with 26664 zero-samples (i.e.
init(RCS = 256 x 64).

Unlike the previous nodes in the SAR graph, which producer/consumer pairs of nodes execute. Real-time
require only one pulse of data before being eligible for scheduling theory provides a framework upon which we
execution, th&€orner Turnnode requires 128 pulses of data. have developed an execution model that determines both
A 2-D processing array is formed where each row of the the rate and order of node executions so that latency and
array contains one sample from the 128 different pulses andmemory usage can be managed.
each column contains the 256 range gates that form a pulse. This section introduces an execution paradigm and
The processing array consists of two6256 frames (or se-  analysis techniques that support the evaluation of real-
guences of pulses). As a new frame is loaded in, the previoustime properties for a graph. The first subsection explores
two frames are ‘released’ with the oldest frame being shifted fundamental execution relationships that exist between
out. This processing is achieved with threshold and produceproducer/consumer nodes, independent of the execution
values of 256x 128 and a consume value of 25664. model. These relationships determine node execution rates

Convolution processing is performed on each row of the and the latency inherent in any processing graph. The
2-D matrix by theAzimuth FFT Kernel Mult and Azimuth concepts and theorems presented in Section 5.1 are used
IFFT nodes. Thézimuth FFTnode performs a FFT on the throughout the rest of the paper. The remaining subsections
signal, which has been aligned in the azimuth dimension. address node execution rates and the rate-based execution
Next theKernel Multnode multiplies each row of the matrix ~ (RBE) task model. These concepts are used to model an
by a convolution kernel. Before the SAR image is output to implementation of the SAR graph.
theOutputnode, an inverse FFT is performed by tk@muth
IFFT node.

The SAR benchmark has a latency requirement (an upper
bound) of 3 s, where latency refers to the elapsed time |n processing graph systems that require unity dataflow
between when a frame of data (64 pulses) is input to the SAR attributes (i.e. produce, threshold and consume values all
processor and the time the corresponding image is outputone), deriving the execution rates of nodes is relatively
[13]. Assuming a pulse is received every 3.6 ms, itis natural strajghtforward. Deriving the execution rates of nodes in
to ask whether itis possible to meet this latency requirementpgM graphs is not. In this section, we present an example
when the graph is implemented on a certain processor antkhat jllustrates the impact of non-unity dataflow attributes on
what is the maximum amount of buffer memory required by node execution and quantify the number of times a producer
the queues? The last question is important when memorynode must execute before its consumer node is eligible for

resources are scarce, as in the AN/UYS-2A. The answersexecution. We also derive several bounds related to latent
to these questions are dependent on the execution modehyffering that will be used throughout this paper.

assumed. The next section presents the execution model and 1o eliminate the influence of scheduling on node

fundamental latent buffering bounds that affect the rate at executions, assume each node executes on its own processor
which nodes execute and the latency inherent in the graph. 55 soon as all of its input queues are over threshold. (This
assumption is made to simplify the presentation of node
5. EXECUTION MODEL execution rates and latent buffer usage. The execution rates
and bounds on latent buffer usages also apply when the
Latency and memory usage are dependent on the ratenodes execute on a single processor.) Consider the two-
at which each node executes and the order in which node chain of Figure 2. Queug is annotated with its

5.1. Node executions and latent buffer usage
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p THEOREMS5.1.Let () = (u,v) and queueq be
. initialized with init(q) > Otokens_. _After nodesandu have
prd(q) =4 thr(g) = 7, executed at least once, the minimum number of tokens on

cngQ) = gueuey is at least MinToker(g) and the maximum number
of tokens queug can hold without being over threshold is

Data produced Data consumed MaxUnderThtq) where
Time by nodex by nodev length(q) MinTokensg) —
0 0

thr(q) — f(q) 1

t 4 4 f +[— - gcd(prd(g), cn —cn
t; . : @ gcdprd(g). cnsg) ged(prd(g), cngg)) —cnga)
t3 3 5 (1)
14 4 9
15 3 6 MaxUnderTht(q) =
h ! . 1 thr() — ged(prd(@), ()
g 3 4 if gcd(prd(a), cng(q)) | (thr(a) — f(a))

f(@ + _thr@ —f@ | ged(prd(q), cng(g))
FIGURE 2. A two-node PGM graph and snapshot sequence. In gedprd(q), cngq)) ’
this chain, the dataflow attributpsd(q), thr(g), andcng(q) all have
different values. The produce amount is 4, the threshold value
is 7, and the consume amount is 3. Quegukas no initial data: )

init(q) = 0. and
. init(q) — thr(q)
init(q) — (L%J + 1) . cnsq)
produce, threshold, and consume values below the queue; f(q) = q

it has no initial data. Noda produces four tokens every if init () > thr(q)
time it executes. Node has a threshold of seven tokens init(q) otherwise.
and consumes three tokens after it executes. Since queue
is not initialized, node: must fire twice before queugis
over threshold and nodeexecutes for the first time. After
nodev executes, it consumes only three tokens—Ileaving five
tokens on queug. The third execution of node produces
four more tokens (for a total of nine tokens on queyand Consider the two-node chain of Figure 2 once again
nodev executes again, consuming three more tokens. The(whereprd(q) = 4, thr(g) = 7 andcngq) = 3). This
next execution of node results in 10 tokens on queye time, assume queugis initialized with seven tokens (thus
and nodev is able to execute twice—leaving four tokens on init(q) = 7 andthr(q) = 7). Using Equation (1), the
queueg, which is the same number of tokens that were on minimum number of tokens queyecontains after nodes
queug; after the first execution of node Thus, subsequent  andv both execute at least once is

executions of noda apd nodev follow this same paFtern: MinTokensq) =

uvuvuvv. Therefore, if noder executes once eveny, time
units, nodev will execute with a rate of four times every;3 HQ)+ ( thr(q) — f(q) —‘ . gediprd(g), eng(@)) —cnga)

otherwise

Proof. The proof of this theorem (as well as many others
in this paper) has been omitted for space considerations.
However, the full version of this paper, which includes all
proofs, is available via the Web [14]. O

time units. ged(prd(a), cnga))
The number of tokens on queget timet is a function of - init(q) — thr(q)
the queue’s dataflow attributes and the number of executions ~ nit(q) — ({WJ + 1) L)
of nodesu and v prior to time¢. Since nodev executes thr(q) — f(q)
whenever queug contains at leasthr(q) tokens and it (——‘ - gcd(prd(q), cngq)) — cngq)
consume€ngq) tokens each time it executes, queuwill gedprd(@). cns))
always contain at leasthr(q) — cns(@)) tokens after node ~ _ 7 _ QEJ N 1) 34 { 7 -1 —‘ ged4.3) — 3
v executes for the first time. Note, however, that this lower 3 gcd4, 3)
bound on the minimum number of tokens @iis not tight. 7-4
Consider, for example, the case where the dataflow attributes = 4+ <’V—-‘ ’ 1) —3=4

of a queueg in a chain areprd(q) = 8, thr(q) = 7,
cng) = 6. In this casethr(g) — cngq) = 1, but there will
always be at least two tokens in the queue. The following
theorem bounds the minimum number of tokens on qyeue
after the first execution of nodeand the maximum number
of tokens that can be on queyewithout the queue being MaxUnderThtq) = thr(q) — gcd(prd(q), cngq))
over threshold. —7-1=6.

Since gcdprd(g), cngqg)) = gcd4,3) = 1, the gcd of
the produce and consume values dividds(q) — f(Q)).
Therefore, by Equation (2), the maximum number of tokens
gueugg can hold without being over threshold is
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When gcdprd(q), cngq)) = 1, the amount of initialized
data does not affect these functions:

MinTokengq) =
thr(q) — f(q)
f@+ (mw -ged(prd(g), cngg)) —cnga)

thr(q) — f(q)
ged(prd(g), cng())
= f(q) + thr(g) — f(9) — cngQ)
= thr(g) — cngq)

and MinTokensq) = thr(g) — 1 since 1 always divides
thr(q) — f(q).

When a queue is initialized withthr(gq) — cngq)
tokens, the initialized data does not affect the functions
MinTokengq) andMaxUnderThtq):

=f(Q)+ - gcd(prd(g), cng(g)) —cngqg)

MinTokengq) =
thr(q) — f(q)
f(a+ ’Vm—‘ - gcd(prd(q), cngq)) —cngq)

=thr(g) — cngQ)
[thr(q) — (thr(g) — cngQ))
ged(prd(g), cns(@))
-gcd(prd(g), cngq)) — cngQ)
= thr(q) — cngQ)
cng(q)
ged(prd(g), cng(a))
= thr(q) — cngq) 4 cngq) — cngq)
=thr(g) — cngq)

andMaxUnderThtq) = thr(q) — gcd(prd(q), cngQq)) since

thr(q) — f(q) = thr(g) — (thr(g) — cngq)) = cngq)

and gcdprd(g), cngq)) always dividexngq).

Whenever gctprd(q), cngq)) | thr(q) — f(g), Equa-
tion (1) reduces tdMinTokengq) = thr(q) — cngq) and
Equation (2) reduces tdMaxUnderThtq) thr(q) —

gedprd(q), cnga)).

1

- ged(prd(g), cng@)) — cngq)

Proof. See [14]. O

Given length(g) tokens on queue, it is also useful to
know how many more executions of nodeare required
before queug is over threshold. In this case, the consume
amount does not matter; we only care abtbutq), prd(q),
and the existing number of tokens on queu&ngthq).

THEOREM5.3.Let there be lengtty) tokens on queug
andy (q) = (u, v). Nodeu must execute

max(O, (thr(q) — lengthq)

prd(q)
Proof. If there are length(q) tokens on queug; and
lengthlq) > thr(q), then queug is already over threshold
and no more executions of node are required. If
lengthlq) < thr(q), thenthr(q) — length(q) more tokens
are required before queug is over threshold. Since
nodeu producesprd(g) tokens every time it executes, it
follows thatu must executefthr(q) — lengthiq)/prd(g)]
times before queug is over threshold. In either case, the
number of executions required of nodéefore queug is
over threshold is ma®, [thr(q) — length(q)/prd(g)]) and
Equation (3) holds. O

®)

times before queugis over threshold.

To illustrate Theorem 5.3 consider the chain of Figure 2
whereprd(q) = 4, thr(q) = 7, andcngqg) = 3. Assuming
four tokens on queug in the chain of Figure 2, nodemust

execuie D _ max(o, F%lb

max (o, (thr(q) — length(q)
= max(o, P-D =1
4

prd(q)
time before queug is over threshold and nodeis eligible
for execution.
In this section we have informally derived node execution
rates by simulating executions. Section 5.2 formally defines
an execution rate and uses the theorems presented in this

Theorem 5.1 provides upper and lower bounds for the section to analytically compute node execution rates.

number of tokens that a queue joining two nodes can contain

without being over threshold (after both nodes have executeds 2. Node execution rates

at least once). Givetength(q) tokens on queug, the
following theorem computes the number of executions of
nodev as a function of the number of tokens produced by
nodeu when queug is the only queue joining the pair (i.e.
in a chain).

THEOREMS5.2.Let lengthq) > thr(q), ¥(Q) = (u, v),
and §—(v) = 1. At the current time, assuming node
u does not execute, node will execute | (lengthlq) —
thr(g))/cngq) ] + 1times, consume

Qlengthq) — thr(g)
cngQ)

tokens, and leavitokens on queugwhere MinTokeng) <
I < MaxUnderThtq).

J + 1) -cngQ)

PGM does not explicitly define temporal properties for the
graph. However, the execution rate of every node in a graph
is defined by the graph topology, the definition of nodes,
the dataflow attributes and the rate at which the source node
produces data. Thus, given only the rate at which a source
node delivers data, the execution rates of all other nodes
can be derived. This fundamental property of real-time
processing graph chains is the basis of the result presented
in this section.

Consider the two-node chain of Figure 2. For the
producer/consumer pair of nodesand v, the number of
tokens present on queugat timet is a function of the
queue’s dataflow attributes and the number of executions of
nodes: andv prior to timez. Nodev can only execute when
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its input queue is over threshold, so the number of times it

is able to execute in any interval of time is dependent on the a _ .
number of times node executes (and the dataflow attributes prd(q) = 4 thr(g) :'7,
on queugy). In an implementation of the graph, the actual cngqg) =3
number of times that nodeexecutes in any interval of time
is dependent on the number of times nedexecutes and Time Execution of length(q)
on the scheduling algorithm employed. If the scheduling o P 4
algorithm delays executions of nodebut continues to let y 0o 5
nodeu execute, data will accumulate on queue 2y w.v 6
To bound latency and memory usage in an implementation 3y w, v, v 4
of the graph, we need to schedule the execution of nodes 4y u,v 5
in a deterministic manner. For this, we appeal to real- 5y u, v 6
time scheduling theory and execute the nodes according to a 6y u,v,v 4
model of real-time execution. Finally, to select the proper Ty u,v 5
model of real-time execution, we need to determine the 8y u,v 6
natural execution pattern of nodes. We informally called the 9y v 4
execution pattern a ‘rate’ in Section 5.1. Here, we formally 10y w 5
define an execution rate and show how to analytically derive
the execution rates of nodes in a PGM chain. FIGURE 3. A two-node chain and a snapshot sequence that

To simplify the presentation of execution rates, and to shows thg execution of _nodasandv und_er the strong synchrony
eliminate the role scheduling and node execution times play YPothesis. The execution rate of nadés Ry = (1, y), and the
in the derivation of node execution rates, we extend our SXecution rate of nodeis Ry = (4, 3y).
assumption that each node executes on its own processor
and assume that the processors are each infinitely fast s
that node execution takes no time. More precisely, we 0
assume that nodes execute in accordance with the stron&
synchrony hypothesis from the synchronous programming
literature [15]. The strong synchrony hypothesis states that
the system instantly reacts to external stimuli. For example,
the snapshot sequence in Figure 3 shows both nodeslv
executing attime. The system reacts instantaneously to the
arrival of data on the input queue to nadand both nodes

%ime 0 since it executes exactly once in each time interval
+ (k— 1)y, 0+ ky) forallk > O.

If the execution of node: is periodic, however, the
execution of node: is ‘well-defined’ in that it executes

at time ky for all k > 0. While the rate specification
Ru = (1, y) is a valid execution rate for node it does not
describe the restricted execution pattern exhibited by node

andv execute at the same instant. At timg 8ne execution DEFINITION 5.4.An execution rate specification for node
of nodeu and two executions of nodeoccur at the same v, Ry = (x,y), is well-definedif there exists a time,
instant. Node execution rates are defined as follows. such that node executes exactly times in time intervals

. . . > 1y
DEFINITION 5.1.An execution rateis a pair of non- [r, t+y)forallr > 1,

negative integersx, y). COROLLARY 5.4.A well-defined rate specificatiaR, =

DEFINITION 5.2. Execution rates(x1, y1) and (xz, y2) (x, y) for nodev is also a valid rate specification for noade

are equalif and only ifx; = xp andy; = y». Proof. If Ry = (x, y) is a well-defined rate specification for
nodev, then by Definition 5.4 there exists a timesuch that
nodev executes exactly times in time interval$z, ¢ + y)
forallr > t,. Thus, for any > r, nodev executes exactly
times in time interval$s + (k — 1)y, ¢t + ky) forall k > 0,
andRy = (x, y) is a valid rate specification for node 0O

DEFINITION 5.3.An execution rate specification for node
v, Ry = (x, y), isvalid if there exists a time such that node
v executes exactlytimesintime interval§ + (k— 1)y, t+
ky) forall k > 0.

Notice that the interval is closed at the beginning and open
at the end. Thus, if node in Figure 3 continues to execute If Ry = (1,y) is a valid execution rate for node
once everyy time units, it has a valid execution rate of in Figure 3, thenR, = (2, 2y) is also a valid execution
Ry = (1, y) (starting at time 0). It executes exactly once in rate since node will execute twice in each time interval
the interval[0, y) since the execution at timeis counted in [0+ (k — 1)2y, 0+ k2y) for all k > 0. In fact, as shown by
the intervaly, 2y). While the periodic execution of node Corollary 5.5, there are an infinite number of valid execution
satisfies the definition of a valid execution rate, the execution rates for node:.
of nodeu does not need to be strictly periodic for it to have
a valid execution rate ok, = (1, y). For example, if node
u executed at times

COROLLARY 5.5.1f Ry = (x,y) is a valid rate
specification for node, then for all positive integers:,
m- Ry, = (m-x,m-y)is also a valid rate specification
0, 1.5y, 2y, 3.9y, 4y, 5y, 6y,..., ky,... for nodev.

it still has a valid execution rate at, = (1, y) starting at Proof. If Ry = (x, y) is a valid rate specification for node
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v, then by Definition 5.3, there exists a timesuch that
nodev executes exactly times in time interval$s + (k —
Dy, t + ky) for all k > 0. Thus in each time interval
[t +m(k— 1)y, t +mky) forall k > 0, nodev will execute
exactlymx times, andn - Ry = (m - x, m - y) is also a valid
rate specification for node |

Although there exists an infinite number of valid

By Definition 5.3, nodeu executes exactly, times in
intervals[t, + (k — L)yy, t, + kyy) for all k > 0. Thus, by
Corollary 5.5 and becausg= 1, + jyy andyy is a multiple

of yy, nodeu executes(yy/yy) - xy times in every time
interval[z, + (k — 1)yv, t, + kyy) forall k > 0. Since node

u producegrd(q) tokens each time it executes, it enqueues
a total of

execution rates for a node, not every execution rate is valid. prd(q) - pl <Xy

For example, let the execution raig, = (1, y) of nodeu

in Figure 3 be valid. By looking at the executions of node
v in the snapshot sequence, it would appear that node
executes with a rate aky = (4, 4y). Even though node

v does execute four times in the intenfél 4y), the rate
specificationRy = (4, 4y) is not valid because this is the
only interval of length 4 in which nodev executes exactly
four times. Nodev actually executes at a rate &, =

(4, 3y) starting at timey. To see this, we need to simulate
more executions of nodesandv. Consider the extended

snapshot sequence in Figure 3. This snapshot sequenc

shows that node executes four times in the intenjal, 4y),
four times in the interval[4y, 7y), and four times in the
interval[7y, 10y).

The execution rate of nodein Figure 3 was derived by
simulating executions of nodes and v and ‘guessing’ a

valid execution rate. Alternatively, Theorem 5.6 can be used

to analytically compute the execution rate of nadasing
the execution rate of node and the dataflow attributes of
queuey.

THEOREM5.6.Let u~ v be a PGM chain with/(q) =
(u,v), and letRy, = (xy, yu) be a valid execution rate
for nodeu. Under the strong synchrony hypothesis, the
execution rateRy = (xy, yv), where

_ prd(@) .
gedprd(q) - xu, cna))

Xu (4)

Xv

and

_ cngq) )
ged(prd(g) - xu, cnga))

is a valid execution rate for node

v Yus )

Proof. By Definition 5.3, becausg,, is valid, there exists a
time ¢, such that node executes exactly, times in each
interval[z, + (k — 1)yy, t, + kyy) wherek > 0. Let interval
j be thefirstintervalt, + (j — 1) yu, t, + jyu) in which node
v executes, and lef =1, + jyu.

In the remainder of the proof, we show thiat = (xy, yv)
is a valid rate specification by showing that nadexecutes
exactlyxy times in time interval§r, 4+ (k — 1) yy, t, +kyy) for
all k > 0 wherex, andyy are as defined by Equations (4) and
(5). Under the strong synchrony hypothesis, noégecutes

Yu
— prd(q) - SMSD v/ (@edprd@ - v, Cng@)
Ju
= prd(q) - cnsa Xy

gedprd(q) - xu, cng(Q))

tokens on queug in an interval of lengthy,. Since each
execution of node consumegngq) tokens,xy executions
of nodev in an interval of lengthy, will consume(xy-cngq))
tokens. Thus, if queug contains: tokens at the beginning
gf the interval, it will contain

cngq)
" (prd(Q) " gedprd(q) - xu, cnq)) 'x“> ~ G- ena@)
Xy - cngQ) )
=n+ (| prd() -
" (pr @ gcd(prd(q) - xu, cngQ))

_ xy - prd(q) ] )
(gcd(prd(q) o onsg) M9
_ ( xu - cngQ) - prd(g) )
=n
gcd(prd(q) - xy, cngQ))

( Xy - €ng(Q) - prd(q) )_
— =n

gedprd(q) - xu, cNIQ))

tokens at the end of the interval. Furthermore, no more than
xy executions could have occurred since thth execution
leaves exactly < thr(q) tokens ony. Any fewer executions
would have leftn > thr(q) tokens ong, and another
execution of node would have occurred. Therefore, node
v executes exactlyy times in time intervalqz, + (k —
Dy, ty + kyy) for all k > 0 wherex, andyy, are as defined

by Equations (4) and (5). O

As required, the proof of Theorem 5.6 only proves that
Equations (4) and (5) can be used to compute a valid
rate specification for the consumer nodeand there are
infinitely many other valid execution rate specifications for
nodev, as shown by Corollary 5.5.

We now consider the case where the specification of node
u is well-defined. In this case, the execution rate of node
is also well-defined when it is computed using Equations (4)
and (5).

THEOREMS5.7.Let u~ v be a PGM chain withy(q) =
(u, v), and letRy = (xy, yu) be awell-defined execution rate

instantaneously whenever its input queue is over threshold.for nodeu. Let R, = (xy, yv) be computed using Equations

Let length(q) = n at timer,. Thus, by Theorem 5.1 is
bounded such that

thr(g) — cngq) < MinTokengq) < n
< MaxUnderThtq) < thr(g).

(4) and (5). Under the strong synchrony hypothesis, the
execution rateR, = (xv, yy) is a well-defined execution rate
for nodev.

Proof. This proof follows, for the most part, the proof of
Theorem 5.6. See [14]. O
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Many non-trivial high assurance systems, such as the SARand
system, are described using a chain, and Theorem 5.6 can
be used to compute the execution rate of every node in RkemelMult= RazimuthiFFT= Routput
the system. If the execution rate of the source node is 128- 256 128.64-3.6 ms
WeI_I-defined, T_heorem 5.7 can be used tc_) compute_: well- = (gcd(128~ 256,128 gcd128- 256, 128))
defined execution rates for all other nodes in the chain. For — (256, 2304ms)
example, letRyrange= (1, 3.6 m9g be a well-defined rate - S
specification for source nodéRangebeginning at time 0
with the first execution of source noRangeoccurring ~ 9-3-  RBE task model

at time 0. That is, source nodkRangeexecutes at times  \joving from the strong synchrony hypothesis to an actual
k-3.6 ms forallk > 0. Theorem 5.7 is used to compute  jplementation, we need to implement the graph as one or
well-defined rate specifications for the other nodes in the more tasks on a single processor. A scheduling algorithm
SAR graph as follows. and a schedulability test that will analytically determine
whether or not a graph will meet its temporal requirements
are also necessary. Since node execution is neither periodic

RzeroFill = (XzeroFill, YZeroFill)

where nor sporadic, even when the source is periodic, the RBE
[16] is used to model the execution of the processing graph
Yperofil = prd(Range - xyrange ’ chain. The advantage of modeling graph execution with the
gcd(prd(Range - xyrange CNYRange) RBE model is that it supports the simple implementation of
cngRange - yyrange representing each node as a task that is released when the
YZeroFill = gcd(prd(Range - xyrange cNSRange) input queue goes over threshold. Indeed, this is how the SAR

benchmark that we evaluated was implemented.
RBE is a general task model consisting of a collection
Thus, of independent processes specified by four parameters:
(x,y,d,e). The pair(x, y) represents the execution rate of

RzeroFil = ( 118- 1 , 118-36ms ) a RBE task where is the number of executions expected
ged118-1, 118 ged118-1, 118 to be requested in an interval of length Parameted
_ (118 118-3.6 ms is a response time parameter that specifies the maximum
B (ﬁ 118 ) desired time between the release of a task instance and the
— (1, 3.6ms, completion of its execution (i.el is the relative deadline).

The parameter is the maximum amount of processor time
required for one execution of the task.
A RBE task set is schedulable if there exists a schedule

RwindowData= RRangeFFT= RRCSMult such that the'th release of task; at timet; ; is guaranteed
256-1 256-3.6 ms to complete execution by timb; (j), where
- (gcd(256~ 1, 256 gcd(256- 1, 256)) _
:<2_56 256.3‘6ms):(1 26ms Di(j)z{li,j+di | 1<)
256 256 e ' max(,j +di, Di(j —xi) +yi)  if j>x.

(6)

The RBE task model makes no assumptions regarding when

Rcornertum a task will be released, however Equation (6) ensures that no
_ 256-1 (256-64) - 3.6 ms more thanx; deadlines come due in an interval of length
~ \ gcd256- 1, 256- 64)" gcd256- 1, 256- 64) even when more thar releases of; occur in an interval of
256 (256.64) - 3.6 ms !_engthyi. HenC(_a, the deadline assignment_funct_ion prevents
=|og 5z )=, 64.36myg jitter from creating more process demand in an interval by a
256 256 2 o
task than that which is specified by the rate parameters.
= (1, 2304 ms, The schedulability of a RBE task set under preemptive

EDF scheduling can be checked with Theorem 5.8
[16]. Schedulability conditions for non-preemptive EDF

RAzimuthFET scheduling are also presented in [16]. Note that if the
) ) EA. cumulative processor utilization for a graph is strictly less
= ( (256-129 - 1 , 128-64-3.6 ms ) than one (i.e}"/_1(x; - ¢;)/y; < 1) then condition (7) can
gcd(256-128) - 1, 128 ged(256-128) - 1, 128 be evaluated efficiently (in pseudo-polynomial time) using
_ (256 128’ 128-64-3.6 ms\ _ (256, 64-3.6 M9 techniques developed in [17].
128 128
THEOREMS5.8.Let 7 = {(x1,y1,d1,e€1), ..., (Xn, Yn,
= (256, 2304 ms, d,, e;)} be a set of RBE tasks7 will be feasible if and
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FIGURE 4. A simulation showing latency for the SAR graph under the strong synchrony hypothesis. Each down arrow represents the
release and instantaneous execution of a node, and the number 256 above a down arrow means 256 instantaneous executions of a node.

only if be a screen, speaker or another computer). We use this
R definition with a clarification. Since we can only measure
VL>0, L> Z (L —di + y,-) X - € @) time in units of t_he period of tht_a source, we conside_r the

Yi prd(q) tokens delivered each period by an external device to

be ‘one sample’; each pulse in the SAR graph constitutes

i=1

where one sample, which consists of 118 tokens. Hence, under the
{LaJ ifa>0 strong synchrony hypothesis, latency is the delay between
fla) = o the enqueuing oprd(qg) tokens onto queug by an external
0 ifa <0. source and the next enqueuingoofl(q’) tokens on queug’

For a PGM graph, Equation (7) becomes a sufficient attSC_hedttr? antexternal o;:tput dhewc?r.] is th t secti
condition (but not necessary) for preemptive EDF schedul- sing the strong synchrony Rypotnesis, the next section
demonstrates that there exist multiple inherent latency values

ing as long as nodes execute only when their input queues

are over threshold (i.e. the tasks are released when theforagraph. In Section 6.2 these inherent latency values are

node’s input queue is over threshold—thereby ensuring added to the latency imposed by the scheduling algorithm

precedence constraints are met). Equation (7) is not aand node execution to bound the total latency any signal

necessary condition for PGM graphs since it assumes thatencount_ers. F!nally, we analyze the effect of deadlines on
latency in Section 6.3.

all x; releases of a node may occur at the beginning of an
interval of lengthy;. For some nodes, such asn Figure 2,
this is not possible. 6.1. Latency with the strong synchrony hypothesis

There is a pattern of executions that result in various latency
values for the input signal. Consider the execution of
Latency can be defined many different ways. An appealing the SAR graph shown in Figure 4. In this example, we
definition is the delay between a start event and a assume the strong synchrony hypothesis and each down
corresponding stop event. In graph models that require unityarrow represents the release and instantaneous execution
dataflow attributes, the start event may be the arrival of a of a node. The minimum latency for a sample is zero,
token from the source, and the stop event can be identifiedwhich is the case for the 128th pulse received by the SAR
as the enqueuing of a token on the graph'’s output queue. Butgraph. As shown in Figure 4, the 128th pulse arrives at
it is difficult to apply this definition to PGM graphs. As the time 127 and results in the execution of every node in the
SAR graph demonstrates, nodes may add tokens to the datgraph. Pulses 192, 256, 320, 384, all have a latency
stream. Nodes may also reduce the number of tokens in theof 0. The maximum latency value, encountered by the first
data stream (known as data decimation), or the node maypulse, is 127. The first signal received by the graph always
delay some number of tokens and use the delayed tokens irencounters the maximum latency (assuming the queues have
both the current and the subsequent execution aSdieer no initial data). There is, however, another ‘maximum’
Turnnode does in the SAR graph. latency that is of more interest, and that is the maximum
A signal-processing engineer describes latency as the timelatency that occurs after the first execution of every node
delay between the sampling of a signal and the presentationin the graph. In the execution example shown in Figure 4
of the processed signal to the output device (which may for the SAR graph, this maximum latency is encountered by

6. MANAGING LATENCY
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pulses 129, 193, 257, 321,. , which have a latency of 63 NodeRCS Multmust executércsmult-output times before
Notice that there are 126 other unique latency values for this node Output executes. Sinc&comerturn-output = 1, the
simple graph (e.g. the latency for pulge- 1 is (127— j)y). total number of times node@CS Multmust execute is

The latency which a sample encounters under the strong
synchrony hypothesis is dependent on the dataflow attributes ’7

(1-1)-cngRCS + thr(RCS — Iengtr(RCS"

of the graph, the state of the queues (i.e. the number of prd(RCS

tokens on each queue of the graph) when the sample arrives, _ [(1-1)-(256-64) + (256- 128 — (256- 100
and the execution rate of the graph source node. Lemma 6.1 - { 256 —‘
states analytically what these relationships are, and, at any (256 28)

point in time, it also tells us the number of samples that = ’72756—‘ =28

must be produced by nodebefore nodew is eligible for

execution. This number is used by Theorem 6.2 to compute  The third branch of the functiofi,. returns zero when

a lower bound on the latency a sample will encounter when the input queue to node is already over threshold, or when
the source is periodic. other queues in the chain have enough data that the input
queue to nodew will go over threshold without noda

LEMMA 6.1.Let path u—w be a PGM chain, and let i )
executing again.

Fyow = Let u ~ w be a PGM chain such that nodeis a
B periodic source node with period and nodew is an output
max (0, ’VW—D node. Evaluating,.w just before a sample arrives will tell
_ prd(9) us how many more samples are required before the input
if 3¢ :y(@ = (u, w) queue to nodew is over threshold. Thus, the latency a
Foow—1)-cn thr(a) — lenat sample encounters under the strong synchrony hypothesis
max(O, F vow—1) s(qzj+ @ 9 f(q)‘D is max0, (Fyww — 1) - yu). We subtract one fronFyw
. prd(@) before converting it to time units since the latency interval
if 3g:y@ =@ v)Av#w A Fow>0 begins after the sample arrives.
0 if3g:y(@ =@ v)Av#w A Frow=0. THEOREM®6.2.Let u~ w be a PGM chain such that

(8) is a periodic source node with periog andw is an output

) node. Under the strong synchrony hypothesis, the latency a
Nodeu must execut&y-.w times to produce enough tokens  sample encounters is

in order to put the input queue to nodeover threshold.
Proof. See [14]. 0 max@O, (Fuww — 1) - yu). )

Equation (8) defines a recursive function that determines Proof. By Lemma 6.1,F,.w executions of source node
the number of times node must execute before the input ~ are required before output nodeis eligible for execution.
queue to nodew is over threshold. The first branch of !f Fuww = 0, the sample’s latency is 0 and Equation (9)
the function handles a path of length one where node returns O as desired. Wy.w = 1, the next sample will
is attached to nodev. For example, consider the chain encounter an latency of 0 since output nadeill execute as
Azimuth IFFT» Outputin the SAR graph of Figure 1 whose ~ S00n as the sample arrives. In this cesg.w — 1) - yu = 0
length is one. Assumintgngthimage = 0, nodeAzimuth as desired. IfFyw > 1, the next sample will encounter

IFFT must execute a latency of(Fyww — 1) - yu time units since(Fyww — 1)
additional executions of source nodare required after the
FpzimuthIFFFOutput sample arrives before output nodeexecutes. Therefore,
thr(Image — lengthimage under the strong synchrony hypothe_5|s, if source noldas
= max( 0, 1 a period ofy,, a sample’s latency will béFy.w — 1) - yu
prd(mage time units. O
128—-0
| 128 |~ The latency defined by Theorem 6.2 provides a lower

bound on the latency any sample will encounter—even on an
times before nod®utputexecutes. The second branch of infinitely fast machine. We call this latenayherent latency
the functionF,,.\ recursively references itself when applied because it is inherently defined by the dataflow attributes of
to a path whose length is reduced by one (until the path is of the graph. Using Theorem 6.2 we find, as expected, that the
length one). Thus, by recursively invokidg. ., the second  inherent latency of the first pulse received by the SAR graph
branch returns the number of times the current source nodeis 127y. Recall from Theorem 5.1 that the most tokens queue
u must execute in order for the node attached to it, ngde ¢ can hold without being over thresholdWaxUnderThrq)
to executeFy.,w times (which is the number of times node and the minimum possible humber of tokens on qugue
v must execute in order to put the input queue to nade  after its sink node has fired once MinTokengq). When
over threshold). For example, lehgthRCS = 256 x 100 all of the queues in the graph contaiaxUnderThtq)
andlengthlq) = O for the rest of the queues in the graph. tokens, as is the case just before pulses 288 320, .. .,
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FIGURE 5. Latency for the SAR graph. A light arrow represents a node’s release under the strong synchrony hypothesis. A dark arrow
represents the actual release time, and the node’s execution is represented by a box.

the next sample’s latency will be 0—just as Figure 4 shows.

variables in the function. To determine a sample’s latency in

Evaluating Equation (9) when each queue in the SAR graph an implementation of the graph, we need to provide a value

containsMinTokengq) tokens, we get a sample latency of
63y—just as Figure 4 shows for pulses 129 and 193.

6.2. Latency in an implementation

for eachd; in the RBE task set. Realizing thdt affects
latency, what should it be? How doésaffect latency?

We start by observing that¥i : 1 <i <n,d; = y; and
the graph is not schedulable (i.e. Condition (7) returns a neg-
ative result) then the processor is overloaded since Condition

Moving from the strong synchrony hypothesis to an actual (7) reduces to the Liu and Layland feasibility test [18] and
implementation, we assume each node in the graph iswegetl< Y ;(x;-e;)/y;. We also observe thatincreasing
implemented as a RBE task that is released wheneverd; > y; will notimprove latency and, as we will show later,

its input queue is over threshold. To simplify the

increases buffer requirements. Hence, we will et y;

presentation of managing latency and buffer requirements inand see how this affects the upper bound for latency values.
an implementation, we make a change in notation. For the Figure 5 shows an execution of the SAR graph with

rest of the paper, we assume nodes in a chain are numbered; = y;.

sequentially such that the first node is labeMgoand the last
node is labeledv, 1. Queues are numbered sequentially
such that the output queue of nodg is labeledQo and
the input queue to nod&,;1 is labeledQ,. Node Ny
represents an external input device and ngle; represents
an external output device. Neither nod&§ nor N, 1
require CPU time. Without loss of generality, the chain from
nodeNg to nodeN, is represented &~ n. In Section 7
we assume the output device (nollg,1) consumes data
as soon as nod#/, produces data, which is the case for

In this figure, the light arrows represent the
release time foV; under the strong synchrony hypothesis
and the dark arrows represent the actual release time. We
see from Figure 5 that taskero Fill is released at times O,
Yo, 2yo, 3yo, ... and the deadlines corresponding to each
release time areo, 2yo, 3yo, ..., Sinced; = y1 = yo.
Due to scheduling and execution times, however, the task
Window Datais not released until times @ e1, yo + e1,

2y0 + e1, 3yo + e1, ... and the corresponding deadlines are
O+e1+4d2 = yo+e1, 2y0+e1, 3yo+ei, . . .. Inthis example,

the first execution of taskzimuth IFFTis released at time

the SAR graph. Thus, since the output device requires nowhich is after 128o. Its deadline is + 64yo, which is after
CPU time and is assumed to consume data as soon as it i€492yg. Also note that the 256th execution of ta&kimuth

produced, latency will be computed using the ch@inn.

IFFT completes execution by time 193¢—well before its

Scheduling an implementation of the graph results in deadline.

an upper and lower bound for each of the latency values

The release times shown in Figure 5 for the tagém Fill

identified with the strong synchrony hypothesis. In other andWindow Dataare the earliest possible release times. As
words, we get latency intervals rather than precise latencywe have noted, the tagkzimuth IFFTcompletes its 256th
values for a given sample. The lower bound for a sample’s execution by time 19y even though the deadline for the
latency is a function of the scheduling algorithm and, as first release oAzimuth IFFTis not untilz + 64yo. This was
shown in Section 6.1, the graph attributes. The lower bound no accident. All of the first 256 executionsAtzimuth IFFT

for the latency interval is the latency value derived using will be released and complete execution betweenyd 2nd
Equation (9) plus the sum of the execution times for the 191yp. To see this, we must look at the earliest possible

nodes in the chain.
greater than or equal tdFo,n — 1) - yo + Z}’:l e;.

That is, a sample’s latency must berelease time for the first execution dzimuth IFFT and

the schedulability Condition (7). From Theorem 6.2, we

The upper bound for a sample’s latency is dependent onknow that the first release of tagkzimuth IFFT cannot
the scheduling algorithm, dataflow attributes and deadline occur before 12yy. An affirmative result from Condition (7)
values. Generally, the deadline parameters are the only freemeans that there exists enough processor capacity for nodes
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Nip throughNg, 1 < i < k < n, to execute(yx/y;) - xi As long as the scheduler ensures that a task only executes
times during an interval of length,. This means that 64  when its input queue is over threshold, it does not matter if
executions o¥Zero Fill, Window DataRange FFTandRCS nodenN; ;1 executes before nodé . When the RBE task set
Mult, one execution ofCorner Turnand 256 executions is specified such that < d;1, a release of nodd;1 will

of Azimuth FFT Kernel Mult and Azimuth IFFT will all never be assigned a deadline earlier than a release of node
complete execution within 64 time units even when they  N;, even when logical release times are used. Moreover, the
are all released at the same instant (i.e. wHero Fill is latency bound of Theorem 6.3 holds even when a release of
first released). We will exploit this fact, similarly to the way nodeN; 1 executes before a release of ndge which may
Jeffay did in [19], to bound a sample’s latency. occur when both are assigned the same deadline. The EDF

We can use the release point derived with the strong scheduling algorithm does not specify how to break ties.
synchrony hypothesis and add to get the time at which  Hence, a variant of EDF may break ties based on topological
N; will have completed execution—even if this time is less sorting rather than actual release times, which may result in
than the actual release time pljs We call thisrelease-time nodeN; .1 executing before nodd; whend; = d;11. Al-
inheritance When the deadline for each node is greater than though latency is not affected by the tie breaking algorithm,
or equal to its predecessor’s relative deadline, release-timebuffer bounds are. We address this issue in Section 7.
inheritance can be used to minimize latency. Under release
time-inheritance, nod#; is assigned a logical release time
(at the time of its actual release) that is equal to the logical
release time of the nod¥,_;. Deadline assignment function If the latency bounds derived usiny = y; do not meet
(6) then uses the logical release times rather than the actuathe application’s latency requirements, we can evaluate
release times to assign deadlines for the completion of nodethe latency with smaller deadlines. As long as we keep
execution. Theorem 6.3 uses release-time inheritance tod; < d;11, Theorem 6.3 can be used to evaluate new
provide a lower and upper bound for any sample’s latency. latency bounds. A simple technique to reduce the maximum
latency any signal will encounter (for a graph executing
on a uniprocessor) is to iteratively decrease the maximum
deadline(s) to the maximum such that; < maxd;}inthe
graph. For example, after a positive result from Condition
(7) with d, = y,, we would setd, = y,_1, assuming
n Yn—1 < yn, Otherwise we would sef,_1 = d, = y,—2.

6.3. Reducing latency further

THEOREM6.3.Given Ry = (1, yo) and a schedulable
graph inwhichvi : 1 <1 < n :: d; < d;+1, a sample’s
latency under EDF scheduling with release-time inheritance
and deadline-assignment functi(®) is bounded such that

(Foon—21) - yo+ Z e; < Sample Latency When Condition (7) finally returns a negative result we have
i=1 found a ‘breaking point’. We can either use the deadlines
<(Fown—1) -yo+d, from the previous iteration or finthe ‘breaking point’ (for

. . , . this technique), which lies between the deadline values used
where Fo-.n is evaluated just before the sample’s arrival. . . .
in the last two iterations.

Proof. By Theorem 6.2, a sample’s latency in an implemen-
tation of the graph cannot be less théfy.n — 1) - yo 7. MANAGING BUFFER REQUIREMENTS
since this is the latency on an infinitely fast machine. The
minimum latency for a signal occurs when each node in This section shows how to bound and manage the buffer
the chain must only execute once after nddg delivers requirements of chains executed under the RBE model
the additional( Fo-.n — 1) - prd(Qp) tokens. Therefore the  with release time inheritance. Using logical release times
sample’s latency must be greater than or equaRo.., — rather than actual release times, creates deadline ties during
1) - yo+ >/ qei. Letsample; be the sample for which  execution. These ties can then be broken based on topology
we are bounding latency. When tli&,n — 1)th sample to reduce the buffer requirements from what they would be if
after sampley arrives, every node in the graph will fire at the ties were broken arbitrarily. To simplify the presentation
least once before nodé, produces data. Using release time of the buffer bounds (by shortening equations), another
inheritance, every task released (either directly or indirectly) change in notation is made. Lgt = prd(Q)), ¢; = cngQ)),
from this last sample will have a deadline less than or equal r; = thr(Q;) andr; = MaxUnderTh(Q).
to d, time units from the arrival of the last signal. Therefore  Since N,41 represents an external device and is not
if the graph is schedulable, nodé, will execute within scheduled, we cannot give an upper boundXn One may
(Fosn — 1) - yo + d,, time units of the arrival ofampley. assume the device takes data as it is produced and bound
Hence, a sample’s latency is bounded such that the buffer space fo@,, with p, (i.e. prd(Qn)). Or assuming
double buffering techniques (common in I/O interfaces), one
might bound the buffer space ag,2 In either case, the
bound is platform specific and not considered in the total
buffer bounds presented here.

= (Fown — 1) - yo+dy Recall from Theorem 5.1 that = MaxUnderThtQ;)
whereFp-,n is evaluated just before the sample’s arrival, and is the greatest number of token®; can hold without
Theorem 6.3 holds. | being over threshold. AfteQ; goes over threshold, the

n
(Foon—1) - yo+ Z e; < Sample Latency
i=1
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FIGURE 6. A scheduling graph.

number of tokens that can accumulate on the queue is a

function of dataflow attributes, deadlines and the scheduling
algorithm. Here we assume dataflow attributes are fixed by

the signal-processing engineer and use deadline parameters

and scheduling algorithms to manage buffer requirements of
the application.

We have derived buffer bounds for preemptive EDF
scheduling and two variations of EDF: breadth-first EDF
(BF-EDF) and depth-first EDF (DF-EDF). The names for

for Q; is the same for all EDF variant scheduling algorithms
that use release-time inheritance to schedule PGM graphs.
The case ofl; ;1 > d; prevents deadline ties from occurring;
hence, the tie breaking algorithm has no impact on the buffer
bound forQ;. Whend;11 > d; andd;+1 > yo, we can
bound the buffer requirements @f; independently of the
number of tokens that may accumulate@n.;.

LEMMA 7.1.For EDF scheduling algorithms with re-
lease time inheritance, iRo = (1, yo) andd;y1 > d; A
dj11 > yo, the maximum buffer space required By of a
schedulable graph is less than or equal to

Bepr(Qi) =
——‘ ~p0)+ro ifi=0

(%
i

dit1]

X Pi) +ri
Vi
if (>0A (dig1>di N yo<diy1 <)

Vv (di <yi £diy1)))

dit1

- -xi'Pi>+ri

L Yi |
if(i>0/\yi§di<di+1).

Proof. See [14]. O

these EDF variants become apparent when one looks at a The EDF scheduling algorithm does not specify how

possible scheduling graph, which is used to break deadline
ties. A scheduling graph is a topologically-sorted graph
of vertices representing releases of RBE tasks with the
same deadline. The graph is sorted with respect to the
dataflow graph and all jobs in the graph have the same
deadline. Consider the scheduling graph in Figure 6—a
possible snapshot of the ready queue for the SAR graph
after Pulse 128 has been processed byCiher Turnnode.

The BF-EDF scheduling algorithm performs a breadth-first
search of eligible jobs, beginning at the left-most side of
each level. Hence, the BF-EDF algorithm would select
the Azimuth FFTtask followed by the left-most release of
Kernel Mult Using the labels, b, ¢, d ande to refer

to the tasks releases in Figure 6, BF-EDF would schedule
them in order:a, b, ¢, d, d’, e ande* whered’ represents
the new release dfernel Mult caused by the execution of
Azimuth FFT ande* represents the new releases\afmuth
IFFT which result from executions &fernel Mult The DF-
EDF scheduling algorithm performs a depth-first search of
eligible jobs by traversing down the left-most side of the tree
until it reaches a leaf. In this case, DF-EDF would select
the Azimuth IFFTtask to execute followed by the left-most
release oKernel Mult A DF-EDF schedule, starting with
the schedule graph of Figure 6, would beb, ¢/, ¢, ¢”, d,

e”, a wheree', ¢ ande’” are new releases éfzimuth IFFT
caused by the executionsiéérnel Mult

7.1. Buffer bounds for EDF scheduling

We begin the process of bounding the buffer requirements of
a graph by observing that whehp, 1 > d;, the buffer bound

deadline ties are broken, and the buffer requirements of a
gueue are greatest when breadth-first scheduling is used to
break deadline ties between two eligible nodes. Thus, to

bound a queue’s buffer requirements, we must assume that
whenever a deadline tie is possible it may be broken by

performing a breadth-first search of the scheduling graph.

LEMMA 7.2.For EDF scheduling algorithms with re-
lease time inheritance that may break ties using a breadth-
first search of the scheduling graph, By = (1, yo), the
maximum buffer space required by;, Vi > 0, of a
schedulable graph is less than or equal to

Ber(Qi) =

<_%—‘.po>+ro ifi=0
(

(
(

Proof. See [14].

(div1]
Vi
if (i
vV (i>0Ad <y <di1)

'xi'Pi)+"i

>0 A diy1>di A yo<dit1<yi)

diy1

-x,-~p,')+ri
Yi |
if (>0A y <di <di1)

Bgr(Qi-1) — Ti-1
Ci—-1

J + 1) - pi +ri otherwise

(10)
O
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Since EDF does not specify how ties are broken, we needd;, Vi : 0 < i < n, the maximum buffer space required is
to sumBgp(Q;) over all of the queues in the chain to bound < 8, where
a graph’s simultaneous buffer requirements.

= Ber(Qo)
THEOREM 7.3.For EDF scheduling with release time P BF(Q

inheritance, ifRo = (1, yo) anddj11 > d;,¥i :0<i < n, +maxX(Ber(Qk) — 7k |V k = ?l ot >.O Ak <nj}
the maximum buffer space required is less than or equal to +maxXBer(Qk)—rk |[Vk=2i —1:i>0 A k <n}

Y173 Ber(Q0). het
. . +Y ni. (11)
Proof. From Lemma 7.2, the maximum spaeg will ]
require isBgr(Q;). Since EDF does not specify how ties are
broken, we need to suBgr(Q;) over all of the queuesinthe  Proof. See [14]. O

cI;am ;o bouhndagrgph’s st,)ln;fultaneous buffgr rdequ:remerr:ts. Depending on thei; values, we may be able to use
Therefore, the maximum buffer space required is less than, ., iations of the techniques shown in this section to get

or equal toy /- Ber(Q)). tighter buffer bounds for a specific graph than either

If deadline ties are broken in a deterministic manner Theorem 7.3 or Theorem 7.4. We leave open the problem
specified by the deadline driven scheduling algorithm, we of finding a tight buffer bound for generic chains executed
can get a much tighter bound on buffer requirements. with the BF-EDF scheduling algorithm.

7.2. Buffer bounds for BF-EDF scheduling 7.3. Buffer bounds for DF-EDF scheduling

The BF-EDF scheduling algorithm is an EDF algorithm in The DF-EDF scheduling algorithm is an EDF algorithm

which deadline ties are broken by performing a breadth- in which deadline ties are broken by performing a depth-

first search of the scheduling graph. The functiyr(Q;), first search of the scheduling graph. For some applications,

Equation (10), returns the maximum number of tokens the breaking deadline ties with a depth-first search of the

ith queue will ever hold when deadline tigsmybe broken  scheduling graph rather than a breadth-first search results in

with a breadth-first search of the scheduling graph. The BF- a lower upper bound on buffer requirements for the graph.

EDF algorithmalwaysbreaks ties with a breadth-first search The function Bpr(Q;) returns the maximum number of

of the scheduling graph, so we can ugg(Q;) to bound the tokensQ; will ever hold when the graph is scheduled with

memory needs of); when a schedulable graph is executed release inheritance and DF-EDF. This function is used in

under BF-EDF scheduling. Wheh < d;y1, Vi > 0, no Theorem 7.6 to bound the total buffer space required for the

deadline tie is possible and Theorem 7.3 bounds the graph’sgraph to execute with DF-EDF scheduling.

buffer requirements for BF-EDF scheduling as well as EDF - gyya 7.5 For the depth-first EDF scheduling algo-

sghedullng. When th_ere exist consecutive nodes in the Chalnrithm with release time inheritance, if the graph is schedu-

with the same deadline, however, we can reduce the bufferIalole Ro = (L yo), anddi1 > d;. Vi : 0 < i < n, the

bounds for the graph. maxi’muom buf‘f7eyros’ ace ré%iﬂed ll@ is Iéss_than or’e ual
Consider the case whah = d;y1, Vi > 0. Since P q q

EDF does not specify how ties are broken, we had to sum

Ber(Q;) over all of the queues in the chain to bound a Bor(0;) =

graph’s simultaneous buffer requirements. With BF-EDF, d

however, we know tha¥ j > i > 1, any release aW; will ([—1—‘ -[)0) +ro ifi=0

execute before a release/f whennN; andN; both have the Yo

same deadline. WheN; executes, it reads data fro@®y_1 dis1

and writes data taQ;—using both queues simultaneously. ([7—‘ Xi - Pi) +ri

By the time N;;1 executes, howeverQ;_; will be under

threshold and will hold at most_; tokens. Much of the

Vi
if(>0Adt1>di A yo<dit1<Yi)

space that was used b¥;_1 when N; was executing can vV (i >0Adi <yi<di1)

be reclaimed and used Ig¥; ;1 to hold the data produced by 4 12

Ig\zliﬂ._Therefore the total buffer space requiredfpr 1 and ({ ly+1J xi- Pi) +r 12)
i+11S i

if ( >0A y <d <dit+1)

max Ber(Qi-1)—ri-1, Ber(Qi+1) —rita} + ri—1 + rit1.
- . L Bpr(Qi-1) — ti—1

Theorem 7.4 divides the queues into two disjoint sets and ——— |+1)-pitri

. . . Ci—1
uses this technique to bound the total buffer space required fis0Ad <dr <
by the chain when all of the nodes have the same deadline ! +1 =)0

values. pi +ri otherwise.
THEOREM7.4.For the BF-EDF scheduling algorithm
with release time inheritance, Ry = (1, yo) andd;+1 = Proof. See [14]. O
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FIGURE 7. Six-node chain scheduled with the DF-EDF algorithm.

TABLE 1. Maximum buffer space required per queue evaluated
with Bgr(Q;) and Bpr(Q;).

Bgr(Q;) Bpr(Qi) Ber(Qi) Bpr(Q))
Queue di=yo di=yo di=y; di =y
Range 118 118 118 118
Fill 256 256 256 256
Window 256 256 256 256
RFFT 256 256 256 256
RCS 32,768 32,768 48,896 48,896
Azimuth 32,768 32,768 32,768 32,768
AFFT 32,768 128 32,768 128
Mult 32,768 128 32,768 128

THEOREM7.6.For DF-EDF scheduling with release
time inheritance, ifRp = (1, yo) andd;+1 > d;, Vi : 0 <
i < n, the maximum buffer space required is less than or
equal to} ;~g Bor(Qx).-

Proof. From Lemma 7.5, the maximum spaeg; will
require isBpr(Qk). Therefore, the maximum buffer space
required is less than or equal Y87 —5 Bor(Qx). O

When the graph is scheduled with the BF-EDF algorithm
anddiz1 = di, Vi 0 < i < n, Theorem 7.4

7.4.1. EDF and BF-EDF scheduling with = yo

To bound the graph’s buffer needs when it is executed with
either canonical EDF or BF-EDF scheduling, we first need to
bound the buffer requirements of each queue usig Q;),
Equation (10). These results are summarized in Table 1.

By Theorem 7.3, the total buffer space required to execute
the SAR graph with EDF scheduling wheh = yp
3.6 ms is less than or equal @j,’f;(} Ber(Q;) = 131,958.

By Theorem 7.4, if BF-EDF scheduling is used whin=
yo = 3.6 ms, the required buffer spaced is less than or equal
to B8 where

B = Ber(Qo)
+ max{Ber(Qx) — 1 |Vk=2i:i >0 A k <n}
+ max{Ber(Qx)—ry |IVk=2i —1:i >0 A k <n}
n—1
+ Y ri =118+ 32768+ 32768+ 32,512
i=1
= 98116

7.4.2. DF-EDF scheduling with; = yo

To bound the graph’'s buffer needs when it is executed
with DF-EDF scheduling, we first need to bound the buffer
requirements of each queue usiBgr(Q;), Equation (12).

provides a tighter bound on the buffer space required by These results are summarized in Table 1. By Theorem 7.6,
the graph than Theorem 7.3 by reclaiming unused buffer the total buﬁerspgce required to executethg SAR graph with
space. Unfortunately we cannot use the same techniqueDF-EDF scheduling whed; = yo = 3.6 ms is less than or

when the graph is scheduled with the DF-EDF algorithm

to get a tighter bound than Theorem 7.6 provides. To see

this, consider the graph of Figure 7 and Rt = (1, yo).
Under DF-EDF scheduling, every tind& executesQ3 will
require space for four tokens. At the same tie will
require space for six tokens (nat = 0 as it does with BF-

equal toY """+ Bpr(Q;) = 66,678.

7.4.3. Scheduling with; = y;
Now consider what happens to the buffer bounds when
Vi > 0:d; = y;. Table 1 shows the values returned from

EDF scheduling). We leave open the problem of finding a Ber(Q;) and Bpr(Q;) for each queue in the SAR graph

tight buffer bound for generic chains executed with the DF-
EDF scheduling algorithm.

7.4. Buffer bounds for the SAR graph

with d; = y;. Notice that only the queue label&®ICSis
affected by the new deadline values. This is because the
Corner Turnnode acts as a gating node in which its deadline
is 64 times greater than tfCS Multnode, but the deadline
values for the remaining nodes are the same aftraer

This section develops buffer bounds for the SAR graph (see Turnnode. Sincé > 0 andy; < d; < di+1, Ber(Q;) and

Figure 1) using different; values and scheduling algorithms

Bpr(Q;) for the queue labeleBCSare evaluated with the

by applying Theorems 7.3, 7.4 and 7.6. We begin by finding same expression:

the minimum buffer space required to execute the graph.

This occurs when we sel = yg, Vi > 0, assuming we

have a fast enough CPU that the graph is schedulable with

these deadline values. Observe that= yo, Vi > 0,

also minimizes the latency any sample will encounter. Let

RyRange= (1, 3.6 ms), as before, and eagh= 3.6 ms.

Ber(Q4 = RCY = Bpr(Q4 =RCS
= Bepr(Q4 = RC3

dCorner Turn
— |  XRCS Mult" PRCS | + 'RCS
YRCS Mult
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- (LMJ 1. 256) + (256- 127) memory can reduce latency. Suppose the deadlines have
3.6 ms been reduced such that the fikstodes in the chain all have

= (64- 256) + (256- 127 deadlines equal to their rate interval (i&. = y;,V i :

— 256.191= 48,896 1 < i < k), and the last(n — k) nodes have deadline

values ofdy, but the latency bound is still too high; and

By Theorem 7.3, the total buffer space required for the lowering the deadline parameters for the last- k) nodes
graph to execute with EDF or BF-EDF scheduling is less Yields a negative result from Equation (7). We may be able
than or equal to 148,086 tokens. Sindg1 # d;, V i, to reduce the latency bound further by setting all of the
Theorem 7.4 is not applicable. By Theorem 7.6, the total deadline parameterstatencyRequiremest(Fo~.n—1)-yo.
buffer space required to execute the SAR graph with DF- This increases the buffer requirements of the firsiodes,
EDF scheduling wherl; = y; is less than or equal to but may produce enough slack in the schedule such that
Z?;ol Bpr(Q;) = 82,806. the graph is now schedulable even though the deadline

Theorems 7.3, 7.4 and 7.6 are upper bounds on bufferparameters of the last — k) nodes have been reduced to
needs for the graph, depending on deadline values andachieve the desired latency bound. Should the graph become
scheduling algorithms. For some graphs, these may evenschedulable with these new deadline parameters, but require
be least upper bounds. However, these are not tight boundg00 much memory, the system engineer can make cost trade
for the SAR graph. The buffer bounds derived here can be Offs: more memory, faster CPU or relaxed requirements.
reduced further by taking advantage of specific attributes of ~ Since our driving application has the topology of a chain,

the SAR graph and features of the scheduling algorithms, asfor space consideration we have restricted our analysis to
shown in [14]. chains. Many of the results presented in this paper have been

extended to general PGM graphs in [4, 10, 20].
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