
In: Proceedings of the Fifth International Workshop on Network and Operating System Support for Digital
Audio and Video, Durham, NH, April 1995, published in Lecture Notes in Computer Science, T.D.C.
Little and R. Gusella, editors, Volume 1018, pages 64-75, Springer-Verlag, Heidelberg, Germany, 1995.

A Rate-Based Execution Abstraction For
Multimedia Computing*

Kevin Jeffay, David Bennett
University of North Carolina at Chapel Hill

Department of Computer Science
Chapel Hill, NC 27599-3175 USA

{jeffay,bennettd}@cs.unc.edu

Abstract: Process models for multimedia computing must allow applications
to adapt their pattern of execution as resources become scarce or abundant. As
processes adapt, it is natural to express their desired performance in terms of a
processing rate of application-defined data units or events. We propose a process
model wherein processes execute according to a general rate specification of x
process executions every y time units. In addition, a separate parameter is used to
specify the desired response time for the completion of each execution. In all
cases the real-time performance of a rate-based process is predictable. The model
is general enough to encompass or extend many of the existing models proposed
for multimedia systems. Our model of rate-based execution is described along
with an implementation that detects when processes should adapt their execution
rate and minimizes latency in interprocess communication.

1 . Introduction
To be effective, distributed multimedia applications require operating system support
to ensure real-time, low latency acquisition, processing, delivery, and playout of audio
and video streams. Within the domain of process management, numerous proposals
have been made for thread and process models, scheduling algorithms, and IPC
mechanisms for supporting multimedia computing [1-8]. From these discussions,
several themes and preliminary requirements have emerged. These include:

• Deterministic execution. At some level, services must be provided for
applications to execute in a predictable manner. This is typically manifested
in guarantees of bounded response time to events (e.g., interrupts, message
arrivals), or in some form of periodic execution [2, 4, 5].

• Adaptive resource management. Processing and communications resources
can become saturated in the face of the demands of multimedia applications.
Mechanisms for allocating resources to processes must allow applications to
dynamically alter their desired service parameters to optimize their execution
for the current perceived state of the system [2, 6, 7, 8, 13]. (An implicit
assumption here is that applications can provide acceptable user performance
across a range of resource requirements.)

• Feedback on actual performance. To best adapt to changing execution
conditions, applications must be able to determine their actual execution
performance in terms of desired service parameters. Operating systems must

* This work supported by grants from the Intel and IBM corporations.

2

support a mechanism for an application-kernel dialog on performance
parameters [2, 6, 7, 8].

• Integrated resource allocation and IPC. The real-time performance of an
application should not be a function of its process structure. In principle, the
guaranteed real-time performance of an application should be the same when
the application is structured as a set of communicating sequential processes as
when it is a single monolithic process. This implies that when processes
communicate, either on a peer-to-peer or client-server basis, the desired service
parameters of the initiator should be propagated to and inherited by, the
recipient [1, 16]. This is to ensure, for example, that priority inversions do
not occur in interprocess communication.

• High-level specification of service parameters. There is a general desire to
allow applications to specify desired service parameters in a context that is
removed from low-level operating system mechanisms (e.g., priority) and
ideally tied to application or system-level concepts such as a capacity, utility
or added value function for real-time execution [2, 6].

In this note we describe a “new” process model based on the concept of rate-based
execution (RBE) that addresses each of these requirements. In an RBE system,
processes specify their desired rate of progress in terms of the number of events they
desire to process in an interval of specified duration. Examples of rate specifications
include processing two audio frames every 16.6 ms, one video frame every 33 ms, or
30 packets every second. Our RBE model is based on a formal resource allocation
model that indicates both on-line scheduling and admission control algorithms to use.
A process in an RBE system is guaranteed to make progress at at least its specified
rate whenever work exists for the process. When insufficient resource capacity exists
to admit an RBE process, the process can either negotiate with the operating system
for a reduced rate of progress or wait for sufficient resources to become available.
Resources can be made available in two ways. A user can explicitly reduce their
performance expectations for an application and request an application to scale back its
resource usage (e.g., lower the frame rate of a videoconference). Alternatively, the
operating system can request that a process reduce its resource requirements when the
system perceives that the process is continually using less resources than they
reserved.

We conjecture that the notion of processing rate is a natural and useful abstraction for
multimedia systems. Our particular RBE model is general enough to encompass the
majority of the traditional real-time task models based on periodic or sporadic tasks, as
well as several of the models previously proposed for multimedia computing.
Moreover, it also allows the specification and integration of soft- and non-real-time
activities with hard-real-time activities. The model has been implemented in an
experimental microkernel and is presently being ported to the Real-Time Mach kernel.
Initial experiences with RBE indicate that it is easy to support and provides a simple
but effective means for applications to communicate, monitor, and adapt their desired
service. While not a panacea, we believe the RBE process model is a simple yet
powerful paradigm of process execution that is suitable for generic real-time
computing in general, and multimedia computing in particular.

3

In the following, we provide an overview of the RBE abstraction and briefly compare
it to existing real-time and multimedia process models. We then discuss how RBE
processes can be used to manage latency in applications and how RBE processes can
adapt their execution rates as resources become scarce or abundant.

2 . The Rate-Based Execution Concept
Our formulation of rate-based execution is designed to integrate three paradigms of
repetitive real-time execution. The first is the concept of software phased-locked
loops as embodied in the Synthesis Kernel [10]. Here the operating system monitors
each process’s event queue and uses a control theoretic scheduling policy to schedule
the processes so as to minimize their event queue length. This mechanism has been
demonstrated to execute processes in soft-real-time. Execution is soft-real-time in the
sense that all resource allocation is best-effort and no guarantees of performance are
possible. The second paradigm is the linear-bounded arrival process (LBAP) model as
defined in the DASH system [5]. Here processes specify a desired execution rate as
the number of messages to be processed per second and the size of a buffer pool used
to store bursts of messages that arrive for the process. When LBAPs are independent
it is possible to state conditions under which a collection of LBAPs will execute at
their desired rate. The third paradigm is the real-time producer/consumer (RTP/C)
process model used in the YARTOS kernel [11]. Here applications are expressed as
networks of processes that execute in response to message arrivals. The arrival rate of
messages is assumed to be uniform in that the difference between the expected
message interarrival time and the minimum interarrival time is small. When this
assumption holds it is possible to state conditions under which RTP/C processes will
execute in real-time (each process will process each message before the next one
arrives).

Our model of rate-based execution takes as its starting point the linear-bounded arrival
process model and generalizes it to include a more generic specification of rate and
adds an independent response time (deadline) parameter to enable more precise real-
time control of the execution of RBE processes. An RBE process is described by
three parameters:

• two rate parameters x and y, where x is a number of events to be processed
and y is the length of an interval in which x events are expected to arrive.

• a response time parameter d which specifies the desired maximum elapsed
time between the delivery of an event to a process and the completion of the
processing of the event.

Informally, an RBE process (x, y, d) will execute at a rate sufficient to ensure that x
events are consumed every y time units and that each event is processed within d time
units after its arrival whenever possible. The actual execution rate of an RBE process
is determined by the rate at which events are actually generated for the process. For
example, if events are generated at the rate of no more than one every x/y time units
or no more than x events are generated in any interval of length y then every event
will be processed within d time units after its arrival. If events are generated at a
higher rate (e.g., an unanticipated burst of work arrives), then in the worst case these

4

events will be processed as if they had arrived at the desired rate. (As is the case with
unexpected bursts of work for LBAPs in DASH.)

More precisely, for all j ≥ 1, if tj is the arrival time of the jth event for an RBE
process, then that event is guaranteed to be processed before a deadline of time T(j),
where

T(j) =
t j + d if 1 ≤ j ≤ x

MAX(t j + d,T(j − x) + y) if j > x




If events are generated at the rate of x events every y time units, then every event will
be processed within d time units after its arrival. If events arrive at a faster rate then
their guaranteed completion time is based on that for the x previous events and not
(directly) on the parameter d.

We have developed a general theory of rate-based execution that gives conditions under
which a set of RBE processes are guaranteed to execute in real-time [14]. Real-time
here means that the jth event for an RBE process is guaranteed to be processed before
time T(j). The theory is used both by the operating system for admission control and
by a programmer to understand which rate specifications are more likely to result in
an admissible process when resources are scarce.

Beyond LBAPs, our model of rate-based execution is general enough to encompass
traditional real-time process models. For example, when x = 1, events are separated in
time by exactly y time units, and d = y, then the above reduces to the commonly held
definition of a periodic task [9]. The primary distinction between a rate-based process
and a periodic one is that in the rate-based case, no assumptions about the interarrival
times of events are made or required (however, in any implementation of an RBE
process, the set of allowable execution rates for a process would be limited by the
number of event buffers available to the process). A secondary distinction between
the two models is that for a rate-based process, no assumption is made about the
distribution of processes’ execution time within an interval of length y.

RBE processes can be used to emulate software phased-locked loops, however this is
less a function of the RBE model per se and more a function of the implementation of
the model. This is described next.

3 . Supporting Rate-Based Execution
We have implemented RBE processes in the YARTOS (Yet Another Real-Time
Operating System) kernel [4]. Here we describe three interesting aspects of the
implementation: admission control, the use of RBE processes to manage end-to-end
latency, and the paradigms and mechanisms used for adapting execution rate.

Programming Model and Admission Control

YARTOS supports a simple data-flow model of computation. Processes receive
events, process them, and generate events for other processes. We distinguish
between two types of RBE processes in YARTOS: internal and source processes. A
source RBE process is a process that receives events directly from an external device.

5

Its rate parameters are the expected rate at which the device will generate work and are
specified when the process is created. An internal RBE process is a process that
receives events generated by other RBE processes. For example, a server process
would be an internal RBE process. Internal RBE processes are created without a rate
specification and at run-time (transitively) inherit the rate specification of their event
generators. That is, at an internal process, the deadline for processing each event is
computed using the rate specification of the event’s generator. This inheritance of rate
parameters is done to ensure that all internally generated events (and by transitivity,
all externally generated events) are processed at the rates at which they are generated.

A source RBE process is created by specifying:

• a program to execute in response to event arrivals,

• an event type — an input descriptor (port) specifying the logical device that
generate events for this process,

• a rate specification — the parameters x, y, and d,

• an optional event queue length — the number of buffers allocated for events,

• an execution cost — the estimated worst case execution time for processing
an event,

• a rate adaptation callback — a function called by the kernel to suggest that the
process either speed up or slow down.

There is an event queue for each source process that contains events to be processed.
By default, for a process that executes at the rate of x events every y time units, the
queue will have x entries. If events for this process are never generated at a higher rate
than x events every y time units, then events will never be lost. If event generators
(devices) are expected to be ill-behaved, then larger queues can be specified.

An internal RBE process is created by specifying:

• a program to execute in response to event arrivals,

• an event type — an input descriptor (port) specifying the other R B E
process(es) that generate events for this process,

• an execution cost — the estimated worst case execution time for processing
an event.

The port descriptors of processes are used by the kernel to construct a directed graph of
interprocess communication that is used for admission control. When a new process
is created a topological sort is performed on the graph and each internal process (an
internal node in the graph) is assigned a rate equal to the sum of the rates of all its
immediate predecessors in the graph. The resulting set of rate specifications along
with the execution cost parameters of all processes are then used as input to the
schedulability test described in [14]. If the result of the test is positive then the RBE
process is created. If the result is negative then the creator must either reduce the rate
specification (in the case of a source RBE process) or reduce the rate specification of a
source RBE process that will generate events for the process to be created.

6

In general, two useful strategies for gaining admission of a rejected process are to (1)
relax (lengthen) the response time parameter of either the process itself (for source
processes), or that of a source RBE process that will generate events for the rejected
process, or to (2) reduce execution rate of either the process or its event generators.
When a process is rejected, the kernel can provide hints to the calling process in the
form of possible reduced rates or relaxed response times.

Finally, we support non-real-time processing by allowing processes to be created with
event queue lengths of zero. In this case the system will enqueue events for the
process on a space-available basis and schedule the process so as to minimize its event
queue length. As the event queue grows for an adaptive RBE process, the system
increases the rate at which the process executes (if possible); as the queue shrinks, the
rate is decreased. The size and frequency of rate manipulations is controlled by a
simple control theoretic model borrowed from the Synthesis Kernel [10].

Minimizing Response Time

A second benefit to having internal processes inherit the rate specifications of their
event generators is that it enables the kernel to minimize its guarantees of worst case
response time for the processing of events that propagate through a chain of RBE
processes.

Response time guarantees for event processing are based on the response time
parameters of source RBE processes and are contingent upon the accuracy of the rate
specifications of these processes. If a source RBE process S is admitted into the
system with rate and response time parameters (x, y, d), then so long as events arrive
at S no faster than x events every y time units, each event is guaranteed to be
processed by S within d time units of its arrival.

The response time guarantees for internal RBE processes are determined as follows. If
whenever S receives an event e, it generates an event e′ for an internal RBE process I,
then the processing of events e and e′ is guaranteed to be completed within d time
units of the arrival of e at S. That is, the worst case guaranteed response time for
processing events that propagate through processes S and I is the same as the worst
case guaranteed response time would be at a process S′ that combined the functions of
processes S and I and had RBE parameters (x, y, d). Thus, the guaranteed response
time for an event that propagates through S and I is given by the response time
parameter of S. In the general case, the worst case guaranteed response time for an
event that propagates through a chain of RBE processes is not a function of the length
of the chain; only of the response time parameter of the source RBE process at the
head of the chain.

Note that strictly speaking, this technique of minimizing response time is orthogonal
to the concept of rate-based execution. It has been applied to other non-rate-based
systems [1, 16] and is related to the concept of priority inheritance. We have
demonstrated, however, that it is also applicable in a rate-based framework.
Minimizing response time is particularly important in a rate-based system as it is
important to be able to control throughput and response time independently.

7

Adapting Execution Rate

Once admitted, RBE processes are guaranteed to execute at a rate that is sufficient to
process their events in real-time. Here the interpretation of “real-time” is ultimately
given by a set of rate specifications that describe the expected behavior of processes
external to the computer. Whenever the external environment deviates significantly
from these rate specifications, source RBE processes should adapt their execution rates
to reflect the changes in the environment.

If work is being generated faster than a source RBE process’s rate specification, its
event queue will overflow and events will be lost. When an event queue overflows
the system can use the source process’s callback function to suggest that the process
increase its execution rate. Rate adjustments are performed by the affected processes
since the interpretation of a rate for each process is application dependent. Rate
decreases are always accepted (provided that the response time parameter is not
reduced), however, rate increases are subject to the admissibility test and thus are not
guaranteed to succeed.

The system can monitor the execution rate of a source process by simply keeping a
count of the number of times the process has been scheduled in the recent past (a
system parameter). Whenever an RBE process cannot be admitted into the system,
the kernel can check if there exists a source process with a rate specification that is
higher than the rate at which work is currently being generated for the process (i.e.,
the process is executing below its rate specification because of a lack of events). The
process can be contacted and requested to reduce its rate specification. Since internal
RBE processes are reactive, no mechanism is needed to adapt their execution rate.

These rate re-negotiations naturally handle the case where processes need to adapt the
rate of input processing. A slightly different form of rate adaptation is required when
output cannot be performed at a fast enough rate to satisfy RBE processes. For
example, consider a videoconferencing system. At some point in time video frames
may be generated by a camera at a faster rate than they can be transmitted across the
network because of network congestion. The symptom of such a problem is the same
as in the input case — a queue overflows — however, because of the way output
must be handled in a real-time system, the queue is not an event queue.

In a predictable real-time system, it is not possible, in general, to synchronize
individual output devices with input devices. For example, a video digitizer for
NTSC video will generate one video frame every 33 ms. For an application such as
videoconferencing, ideally one would like to transmit 1 video frame every 33 ms.
However, on current local-area networks, one cannot guarantee that this will be
possible at all times. Thus, given the variability of sustainable network transmission
rates and the determinism of the NTSC video generation process, it is not possible to
synchronize the camera with the network so that video frames are transmitted as they
are generated. That is, events generated by the camera cannot be guaranteed to be
processed by the network in real-time. Therefore, events generated by the camera
cannot be treated as events for a network process.

Because of this (generic) inability to synchronize input and output devices, somewhere
between the camera and the network there must exist a set of buffers that are written

8

by a process whose execution rate is derived from events generated from the
camera/digitizer (e.g., vertical blanking interrupts) and read by processes whose
execution rate is derived from events generated by the network (e.g., transmission
complete interrupts). (Operations on this buffer must be non-blocking to ensure
response time guarantees are met.) It is this buffer that overflows when frames are
produced faster than they can transmitted. Since this buffer cannot serve as the event
queue for a network process, a separate mechanism is required to detect and respond to
overflows of this buffer.

In general it is difficult to systematize these interactions. The buffer can either be
constructed to return its current length when items are deposited or removed, in which
case processes can learn of rate mis-matches themselves, or system processes (e.g.,
device drivers) can be designed to report buffer overflows to the operating system
which can in turn notify the appropriate processes.

Finally, applications themselves may choose to adapt their execution rates on their
own. For example, a videoconferencing application that is able to sustain a sub-
optimal frame transmission rate may attempt to increase the frame rate in hopes of
producing a higher quality conference. Similarly, the application may receive
application-level feedback from a conference receiver that data is being lost in the
network and thus the application may elect to reduce its frame transmission rate [12].

4 . Using Rate-Based Execution
Our RBE system has been used to re-implement a desktop videoconferencing system
[12, 13]. The original system used a more traditional hard-real-time process model
based on sporadic tasks [4]. In that system, events were required to have a minimum
inter-arrival time in order to guarantee real-time performance. Since conferences
spanned internetworks made up of existing local-area networks, it was not possible in
general to guarantee that network packets containing conference data arrived at a
receiver with a non-zero minimum interarrival time. Therefore, to ensure that packet
processing did not consume all available processing cycles, the system effectively
polled the network interface for packet arrivals using a variation of the periodic server
concept [17].

There were two immediate benefits to using RBE processes in this application. First,
the RBE system resulted in substantially lower latency media playout in times of
severe network congestion. Figure 1 compares the latency of media playout in a
simulated conference using RBE processes to read data from the network interface
versus a periodic server. A trace of packet arrival times was recorded during an actual
conference and used to simulate the arrival of events at conference receiver based on
RBE processes and one using a periodic server and sporadic application tasks. Both
systems were executed under a variety of system loads. The conference processes in
both cases consumed approximately 25% of the processor. In the RBE system, the
rate specification for the network’s source process was 10 arrivals every 550 ms with
a response time parameter of 550 ms. In the periodic server based system, the server
executed with a period of 55 ms. No rate adaptation in the RBE system, and no
period adaptation in the periodic server based system was used.

9

Latency
in ms.

A AA A
A
A
AA A A

A
A

AA
AA A

A AA
AA A

A

0

200

400

600

800

1000

1200

1400

1600

1800

30 40 50 60 70 80 90 100

Minimum latency

Average Latency

Maximum Latency

CPU utilization (%)

(a) Latency in a periodic server based system.

Latency
in ms.

A AA
AA

A
A A AA A A

A
A AA A A

AA
A A

0

200

400

600

800

1000

1200

1400

1600

1800

30 40 50 60 70 80 90 100

Minimum latency

Average Latency

Maximum Latency

CPU utilization (%)

(b) Latency under rate-based execution.

Figure 1

The performance of the periodic server based system was consistent across system
loads. Average latency was approximately 1 second with significant deviation. The
relatively high latency is due to the fact that a periodic server can only serve its event
queue at a constant rate. Thus, once a queue builds up, if work continues to arrive at
the expected rate then the server can never work off its backlog of work. In this
environment, there were several periods of bursty arrivals that led to the formation of
a queue of packets at the server. In fact, the queue overflowed on several occasions
resulting in approximately 4% of all packets being lost.

In the RBE system, the average latency was well below the desired response time of
550 ms, however, as the CPU utilization reached approximately 70%, arrival rates
that exceeded the rate specification caused some events to be processed with latencies
of close to 1 second. No packets were lost in the RBE system.

In the periodic server based system, the processing of events that arrive in a burst are
spread out over time as if the events arrived periodically. In contrast, the RBE system
schedules all events (assigns them deadlines) when they arrive. Thus, it is possible

10

for events with deadlines far off in the future to actually be processed well before the
time at which a periodic server would first see the event.

The second benefit of using RBE processes was a less pessimistic admission control
policy. Typically, to achieve low response times for events one must configure a
periodic server to execute at a higher rate than work is expected to arrive. The excess
CPU capacity that is reserved for the server but rarely used, cannot be allocated to
other processes. In the RBE system, by specifying the desired aggregate processing
rate, a process reserves only the capacity that it expects to actually use.

5 . Related Work
Our model of rate-based execution borrows concepts from several other systems
including, RT-Mach [1, 2, 7], DASH [5], Synthesis [10], and Concord [15]. Thus,
while our system is an amalgam of others, we believe our primary contribution to be
a demonstration that RBE processes are a simple and effective primitive for
constructing multimedia systems and conjecture that the same holds for generic real-
time applications. The RBE model encompasses those in each of the related works.
Moreover, it has a formal underlying model of resource allocation that accommodates
interprocess communication and synchronization.

We also believe the RBE to be a more natural and easy to use abstraction than those
previously proposed. For example, the reserve abstraction for a task proposed by
Mercer et al. [2], is essentially a specification of the processor utilization of a task.
We claim that unlike the concept of execution rate, the notion of a reserve is
inherently not a natural (or portable across hardware platforms) application-level
concept.

Our work represents a counter-point to the work on imprecise computation by Lin et
al. [15]. The imprecise model of computation was developed to primarily deal with
the case of insufficient processing resources. The model provides a framework for
real-time tasks to dynamically control which sections of their code are executed when
the system is overloaded. By executing only fragments of the complete task, an
“imprecise,” but nonetheless useful, partial result can be obtained in a statically
defined interval. Rather than directly controlling the execution of task code, an RBE
system manipulates the interval in which task executes.

6 . Summary and Conclusions
Process models for multimedia computing must allow applications to adapt their
pattern of execution to make the best use of the resources currently available to them
while not sacrificing their ability to execute predictably in time. Moreover,
applications should be able to express their desired performance in terms of
application-defined data units or events. We have proposed a new process model
wherein processes execute according to a general rate specification of x process
executions every y time units. In addition, a separate parameter is used to specify the
desired response time for the completion of each execution. The model is general
enough to encompass or extend many of the existing models proposed for multimedia
systems.

11

We have implemented a prototype of processes that adhere to this rate-based execution
(RBE) model. In the implementation, the system identifies processes whose input
events are arriving at a faster or slower rate than expected and requests these processes
to modify their rate specification. Moreover, interprocess communication is
implemented so that the response time guaranteed for processing an event in the worst
case is not a function of the number of processes involved in processing the event.

Preliminary experiences with rate-based execution in the YARTOS kernel indicate that
an RBE rate specification provides a convenient means of expressing the desired
performance of a videoconferencing system and allows the system to easily adapt its
execution in response to changes in its environment such as changes in network
congestion. We conjecture that the same will hold for other multimedia applications.
A comparison of the performance of RBE processes and traditional periodic processes
shows that the RBE model offers significant advantages in terms of both accuracy of
admission control and average and worst case response time for the processing of
events.

We presently have a primitive rate-based process model implemented in the Real-Time
Mach kernel and are working on expanding the implementation and comparing RBE
processes (threads in Mach) to the real-time threads already present in Mach in an
effort to confirm our initial findings of RBE performance.

7 . References
[1] Integrated Management of Priority Inversion in Real-Time Mach, Nakajima, T.,

Kitayama, T., Arakawa, H., Tokuda, H., Proc. 14th IEEE Real-Time Systems
Symp., Durham, NC, December 1993, pp. 120-130.

[2] Processor Capacity Reserves: Operating System Support for Multimedia
Applications, Mercer, C.W., Savage, S., Tokuda, H., IEEE Intl. Conf. on
Multimedia Computing and Systems, Boston, MA, May 1994.

[3] Scheduling and IPC Mechanisms for Continuous Media, Govindan, R.,
Anderson, D.P., Proc. ACM Symp. on Operating Systems Principles, ACM
Operating Systems Review, Vol. 25, No. 5, October 1991, pp. 68-80.

[4] Kernel Support for Live Digital Audio and Video, K. Jeffay, D.L. Stone, F.D.
Smith, Computer Communications, Vol. 15, No. 6, (July/August 1992) pp.
388-395.

[5] Support for Continuous Media in the DASH System, Anderson, D.P., Tzou,
S.-Y., Wahbe, R., Govindan, R., Andrews, M., Proc. Tenth Intl. Conf. on
Distributed Computing Systems, Paris, France, May 1990, pp. 54-61.

[6] Adaptive Real-Time Resource Management Supporting Modular Composition
of Digital Multimedia Services, M.B. Jones, in Network and Operating System
Support for Digital Audio and Video, Proceedings, Fourth Intl. Workshop,
Lancaster, UK, November 1993, D. Shepherd, et al. (Eds.). Lecture Notes in
Computer Science, Vol. 846, pp. 21-28, Springer-Verlag, Heidelberg, 1994.

[7] Dynamic QOS Control Based on Real-Time Threads, H. Tokuda, T. Kitayama,
in Network and Operating System Support for Digital Audio and Video,
Proceedings, Fourth Intl. Workshop, Lancaster, UK, November 1993, D.

12

Shepherd, et al. (Eds.). Lecture Notes in Computer Science, Vol. 846, pp. 124-
137, Springer-Verlag, Heidelberg, 1994.

[8] System Support for Time-Critical Applications, J.D. Northcutt, E.M. Kuerner,
in Network and Operating System Support for Digital Audio and Video,
Proceedings, Second Intl. Workshop, Heidelberg, Germany, November 1992,
R.G. Herrtwich (Ed.). Lecture Notes in Computer Science, Vol. 614, pp. 242-
254, Springer-Verlag, Heidelberg, 1992.

[9] Scheduling Algorithms for Multiprogramming in a Hard-Real-Time
Environment, Liu, C.L., Layland, J.W., Journal of the ACM, Vol. 20, No. 1,
(January 1973), pp. 46-61.

[10] Fine-Grain Adaptive Scheduling Using Feedback, H. Massalin, C. Pu,
Computing Systems, Vol. 3, No. 1, (Winter 1990) pp. 139-173.

[11] The Real-Time Producer/Consumer Paradigm: A paradigm for the construction
of efficient, predictable real-time systems, K. Jeffay, Proc. 1993 ACM/SIGAPP
Symposium on Applied Computing, Indianapolis, IN, ACM Press, February
1993, pages 796-804.

[12] Two-Dimensional Scaling Techniques For Adaptive, Rate-Based Transmission
Control of Live Audio and Video Streams, T.M. Talley, K. Jeffay, Proc. Second
ACM International Conference on Multimedia, San Francisco, CA, October
1994, pp. 247-254.

[13] Transport and Display Mechanisms For Multimedia Conferencing Across
Packet-Switched Networks, K. Jeffay, D.L. Stone, F.D. Smith, Computer
Networks and ISDN Systems, Vol. 26, No. 10, (July 1994) pp. 1281-1304.

[14] A Theory of Rate-Based Scheduling, K. Jeffay, University of North Carolina,
Department of Computer Science, Technical Report, in submission.

[15] Imprecise Results: Utilizing Partial Computations in Real-Time Systems, Lin,
K.-J., Natarajan, S., Liu, J.W.-S., Proc. of the Eighth IEEE Real-Time
Systems Symp., San Jose, CA, December 1987, pp. 210-217.

[16] On Latency Management in Time-Shared Operating Systems, K. Jeffay, Proc.
11th IEEE Workshop on Real-Time Operating Systems and Software, Seattle,
WA, May 1994, pp. 86-90.

[17] Enhanced Aperiodic Responsiveness in Hard Real-Time Environments, J.P.
Lehoczky, L. Sha, J.K. Strosnider, Proc. of the Eighth IEEE Real-Time
Systems Symp., San Jose, CA, December 1987, pp. 261-270.

