
Efficient Object Sharing in Quantum-Based Real-Time Systems�

James H. Anderson, Rohit Jain, and Kevin Jeffay
Department of Computer Science

University of North Carolina
Chapel Hill, NC 27599-3175

fanderson,jain,jeffayg@cs.unc.edu

Abstract

We consider the problem of implementing shared ob-
jects in uniprocessor and multiprocessor real-time systems
in which tasks are executed using a scheduling quantum.
In most quantum-based systems, the size of the quantum is
quite large in comparison to the length of an object call. As
a result, most object calls can be expected to execute without
preemption. A good object-sharing scheme should optimize
for this expected case, while achieving low overhead when
preemptions do occur. In this paper, we present several new
shared-object algorithms for uniprocessors and multipro-
cessors that were designed based upon this principle. We
also present scheduling analysis results that can be used in
conjunction with these algorithms.

1. Introduction

In many real-time systems, tasks are scheduled for exe-
cution using a scheduling quantum. Under quantum-based
scheduling, processor time is allocated to tasks in discrete
time units called quanta. When a processor is allocated to
some task, that task is guaranteed to execute without preemp-
tion forQ time units, whereQ is the length of the quantum,
or until it terminates, whichever comes first. Many real-time
applications are designed based on scheduling disciplines
such as proportional-share [20] and round-robin scheduling
that are expressly quantum-based. Under proportional-share
scheduling, each task is assigned a share of the processor,
which represents the fraction of processing time that that
task should receive. Quanta are allocated in a manner that
ensures that the amount of processor time each task receives

�Work supported by NSF grant CCR 9510156. The first author was also
supported by a Young Investigator Award from the U.S. Army Research
Office, grant number DAAH04-95-1-0323, by NSR grant CCR 9732916,
and by an Alfred P. Sloan Research Fellowship. The second author was
supported by a UNC Board of Governor’s Fellowship. The third author
was supported by a grant from IBM Corporation.

is commensurate with its share. Round-robin scheduling is
a simpler scheme in which each task has an identical share.

Quantum-based execution also arises when conven-
tional priority-based scheduling disciplines, such as rate-
monotonic (RM) and earliest-deadline-first (EDF) schedul-
ing, are implemented on top of a timer-driven real-time
kernel [14]. In such an implementation, interrupts are
scheduled to occur at regular intervals, and scheduling de-
cisions are made when these interrupts occur. The length of
time between interrupts defines the scheduling quantum.
Timer-driven systems can be seen as a compromise be-
tween nonpreemptive and completely preemptive systems.
In fact, nonpreemptive and preemptive systems abstractly
can be viewed as the extreme endpoints in a continuum
of quantum-based systems: a nonpreemptive system re-
sults when Q = 1 and a fully preemptive system results
when Q = 0. Nonpreemptive systems have several advan-
tages over preemptive systems, including lower scheduling
overheads (if preemptions are frequent) and simpler object-
sharing protocols [8, 13]. Also, timing analysis is simplified
because cache behavior is easier to predict. However, these
advantages come at the potential expense of longer response
times for higher-priority tasks. Quantum-based systems can
be seen as a compromise between these two extremes.

In this paper, we consider the problem of efficiently im-
plementing shared objects in quantum-based real-time sys-
tems. We consider both uniprocessor and multiprocessor
systems. The basis for our results is the observation that,
in most quantum-based systems, the size of the quantum
is quite large compared to the length of an object call.
Indeed, processors are becoming ever faster, decreasing
object-access times, while quantum sizes are not changing.
Even with the technology of several years ago, one could
make the case that object calls are typically short compared
to a quantum. As evidence of this, we cite results from
experiments conducted by Ramamurthy to compute access
times for several common objects [18]. These experiments
were performed on a 25 MHz 68030 machine and involved
objects ranging from queues to linked lists to medium-sized

Published in: Proceedings of the 19th IEEE Real-Time Systems Symposium,
Madrid, Spain, December 1998, pages 346-355.



balanced trees. Both lock-based and lock-free (see below)
object implementations were evaluated. Ramamurthy found
that, even on a slow 25 MHz machine, all object calls com-
pleted within about 100 microseconds, with most taking
much less. In contrast, a quantum in the range 1-100 mil-
liseconds is used in most quantum-based systems.1

These numbers suggest that, in a quantum-based sys-
tem, most object calls are likely to execute without pre-
emption. A good object-sharing scheme should optimize
for this expected case, while achieving low overhead when
preemptions do occur. Clearly, an optimistic object-sharing
scheme is called for here, because pessimistically defend-
ing against interferences on every object call by acquiring a
lock will lead to wasted overhead most of time. In an op-
timistic scheme, objects are accessed in a manner that does
not preclude interferences due to concurrent accesses. If an
operation on an object is interfered with before it is com-
pleted, then it has no effect on the object. Any operation that
is interfered with must be retried in order to complete. Op-
timistic schemes perform well when retries are rare, which
is precisely the situation in quantum-based systems.

In this paper, we show that it is possible to signifi-
cantly optimize retry-based shared-object algorithms by di-
rectly exploiting the relative infrequency of preemptions in
quantum-based systems. The specific assumption we make
throughout this paper regarding preemptions is as follows.2

Preemption Axiom: The quantum is large enough to ensure
that each task can be preempted at most once across two
consecutive object calls. 2

Given the Preemption Axiom, each object call can be
retried at most once, i.e., there is a bound on overall object-
sharing costs. The Preemption Axiom is quite liberal: not
only are object calls of short to medium duration allowed
(the case we most expect and optimize for), but also calls that
are quite long, approaching the length of an entire quantum.

Our work builds upon recent research by us and others
on using lock-free and wait-free shared-object algorithms in
real-time systems [3, 4, 5, 6, 15, 19]. Operations on lock-
free objects are optimistically performed using a user-level
retry loop. Such an operation is atomically validated and
committed by invoking a synchronization primitive such as
compare-and-swap (CAS). The retry loop is executed repeat-
edly until this validation step succeeds. Wait-free shared ob-
jects are required to satisfy an extreme form of lock-freedom
that precludes all waitingdependencies among tasks, includ-

1A quantumof 1-100 milliseconds may not be sufficient for all real-time
applications. For systems that employ a very small quantum, the results of
this paper may not be applicable.

2This axiom can be weakened to allow preemptions by tasks due to
external interrupts, provided that each task can be preempted at most once
across two consecutiveobject calls by other tasks that access shared objects,
and the time spent servicing external interrupts is accounted for when
analyzing schedulability.

ing potentially unbounded operation retries.
The remainder of this paper is organized as follows. In the

first part of the paper (Section 2), we consider the problem
of implementing shared objects in quantum-based unipro-
cessor systems. Our approach is to develop lock-free algo-
rithms that are optimized in accordance with the Preemption
Axiom. The Preemption Axiom ensures that each lock-free
operation is retried at most once. Thus, if an operation is in-
terfered with due to a preemption, then the retry code can be
purely sequential code in which shared data is read and writ-
ten without using synchronization primitives. In short, the
Preemption Axiom automatically converts a lock-free im-
plementation into a wait-free one. In addition to discussing
algorithmic techniques, we also show how to account for
object-sharing costs in scheduling analysis.

In the second part of the paper (Section 3), we consider
the problem of implementing shared objects in quantum-
based multiprocessor systems. In a multiprocessor, a retry
mechanism by itself clearly is not sufficient, because a task
on one processor may be repeatedly interfered with due
to object invocations by tasks on other processors. Our
approach is to use a retry mechanism in conjunction with
a preemptable queue lock [17]. In our approach, a task
performs an operation on an object by first acquiring a lock;
if a task is preempted before its operation is completed,
then its operation is retried. In comparison to previous
preemptable queue-lock algorithms [21, 22], ours is quite
simple. Its simplicity is mostly due to the fact that it was
designed for systems satisfying the Preemption Axiom.

2. Uniprocessor Systems

In this section, we consider the implementation of shared
objects in quantum-based uniprocessor systems. We also
show how to account for object-sharing costs arising from
the proposed implementations in scheduling analysis.

2.1. Implementing Objects

The Preemption Axiom ensures that each lock-free op-
eration is retried at most once. Thus, if an operation is
interfered with due to a preemption, then the retry code can
be optimized to be purely sequential code in which shared
data is accessed without using synchronization primitives.

Implementing read-modify-writes. As an example of an
implementation that is optimized in this way, consider Fig-
ure 1. This figure shows how to implement read-modify-
write (RMW) operations using CAS.3 A RMW operation on
a variable X is characterized by specifying a function f .

3CAS(addr; old; new) is equivalent to the atomic code fragment
h if �addr = old then �addr := new; return true else return false fi i.



procedure RMW(Addr: ptr to valtype; f : function) returns valtype
private variable old; new: valtype
1: old := �Addr;
2: new := f(old);
3: if CAS(Addr; old; new) = false then
4: old := �Addr; =� retry operation �=
5: �Addr := f(old) =� lines 4-5 execute without preemption �=

fi;
6: return old

Figure 1. Uniprocessor read-modify-write im-
plementation.

Informally, such an operation has the effect of the follow-
ing atomic code fragment: hx := X; X := f(x); return
xi. Example RMW operations include fetch-and-increment,
fetch-and-store, and test-and-set.

The implementation in Figure 1 is quite simple. If the
CAS at line 3 succeeds, then the RMW operation atomically
takes effect when the CAS is performed. If the CAS fails,
then the invoking task must have been preempted between
lines 1 and 3. In this case, the Preemption Axiom implies
that lines 4 and 5 execute without preemption. Given this
implementation, we can conclude that, in any quantum-
based uniprocessor system that provides CAS, any object
accessed only by means of reads, writes, and read-modify-
writes can be implemented in constant time. It should be
noted that virtually every modern processor either provides
CAS or instructions that can be used to easily implement
CAS.

Conditional compare-and-swap. Using similar princi-
ples, it is possible to efficiently implement conditional
compare-and-swap (CCAS), which is a very useful prim-
itive when implementing lock-free and wait-free objects.
CCAS has the following semantics.

CCAS(V : ptr to vertype; ver : vertype; X: ptr to wdtype;
old ;new : wdtype) returns boolean

h if �V 6= ver _ �X 6= old then return false fi;
�X := new ;
return true i

The angle brackets above indicate that CCAS is atomic. As
its definitionshows, CCAS is a restrictionof a two-wordCAS
primitive in which one word is a compare-only value. Lock-
free and wait-free objects can be implemented by using a
“version number” that is incremented by each object call
[3, 12]. CCAS is useful because the version number can be
used to ensure that a “late” CCAS operation performed by a
task after having been preempted has no effect.

Figure 2 shows how to implement CCAS using CAS on
a quantum-based uniprocessor. The implementation works
by packing a task index into the words being accessed. The

type wdtype = record val: valtype; task: 0::N end
=� all fields of wdtype are stored in one word; task indices : : : �=

=� : : : range over 1::N ; the task field should be 0 initially �=

procedure CCAS(V : ptr to vertype; ver: vertype;
W : ptr to wdtype; old, new: wdtype; p: 1::N) returns boolean

private variable w: wdtype
=� p is assumed to be the identify of the invoking task �=

1: w := �W ;
2: if w:val 6= old:val then return false fi;
3: if �V 6= ver then return false fi;
4: if CAS(W; w; (old:val; p)) then
5: if �V 6= ver then
6: w := �W ; =� lines 6-8 execute without preemption �=
7: �W := (w:val;0);
8: return false

fi;
9: if CAS(W; (old:val; p); (new:val; 0)) then return true fi

fi;
=� lines 10-13 execute without preemption �=

10: if W�>val 6= old:val then return false fi;
11: if �V 6= ver then return false fi;
12: �W := (new:val; 0);
13: return true

procedure Read(W : ptr to wdtype) returns wdtype
private variable w: wdtype

14: w := �W ;
15: if w:task = 0 then return w:val

else
16: CAS(W; w; (w:val; 0)); =� lines 16-19 are rarely executed �=
17: w := �W ;
18: CAS(W; w; (w:val; 0));
19: return w:val

fi

Figure 2. CCAS implementation. Code for
reading a word accessed by CCAS is also
shown.

task index field is used to detect preemptions. It is clearly
in accordance with the semantics of CCAS for a task Ti to
return from line 2 or 3. To see that the rest of the algorithm
is correct, observe that a task Ti can find �V 6= ver at line 5
only if it was preempted between lines 3 and 5. Similarly, the
CAS operations at lines 4 and 9 can fail only if a preemption
occurs. By the Preemption Axiom, this implies that lines
6-8 and 10-13 execute without preemption. It is thus easy
to see that these lines are correct. The remaining possibility
is that a task Ti returns from line 9. Ti can return here only
if the CAS operations performed by Ti at lines 4 and 9 both
succeed. The first of these CAS operations only updates the
task index field of W ; the second updates the value field.
We claim that Ti’s CAS at line 9 is successful only if no
task performs a Read operation on word W or assigns W
within its CCAS procedure between the execution of lines 4
and 9 by Ti — note that this property implies that Ti’s CCAS



can be linearized to its execution of line 5. To see that this
property holds, observe that if some other task updates W
in its CCAS procedure, then W�>task 6= i is established,
implying that Ti’s CAS at line 9 fails. Also, if some task
Tj performs a Read operation on W when W�>task = i

holds, then it must establish W�>task = 0, causing Ti’s
CAS at line 9 to fail. To see this, note that, by the Preemption
Axiom, Tj’s execution of the Read procedure itself can be
preempted at most once. By inspecting the code of this
procedure, it can be seen that this implies that Tj must
establish W�>task = 0 during the same quantum as when
it reads the value of W .

It is important to stress that our objective here is to design
object implementations that perform very well in the absence
of preemptions and that are still correct when preemptions
do occur. If the code in Figure 2 is never preempted when
executed by any task, then lines 6-8, 10-13, and 16-19 are
never executed. Thus, in the expected case, this object
implementation should perform well.

In the full paper [1], an implementation of a multi-word
CAS (MWCAS) object is presented that is based on techniques
that are similar to those described above; this implementa-
tion is not included here due to lack of space. The semantics
of MWCAS generalizes that of CAS to allow multiple words
to be accessed simultaneously. MWCAS is a useful primi-
tive for two reasons. First, it simplifies the implementation
of many lock-free objects; queues, for instance, are easy
to implement with MWCAS, but harder to implement with
single-word primitives. Second, it can be used to imple-
ment multi-object operations. For example, an operation
that dequeues an item off of one queue and enqueues it onto
another could be implemented by using MWCAS to update
both queues. Our MWCAS implementation is a bit more
involved than those described above, and thus may be of
interest to readers interested in techniques for implementing
more complicated objects.

2.2. Scheduling Analysis

We now turn our attention to the issue of accounting for
object-sharing costs in scheduling analysis when object im-
plementations like those proposed in the previous subsection
are used. We consider scheduling analysis under the rate-
monotonic (RM) and earliest-deadline-first (EDF) schedul-
ing schemes. We also very briefly consider proportional-
share (PS) scheduling.

We begin by considering the RM and EDF schemes. In
both of these schemes, a periodic task model is assumed.
We call each task invocation a job. For brevity, we limit our
attention to systems in which each task’s relative deadline
equals its period (extending our results to deal with systems
in which a task’s relative deadline may be less than its period
is fairly straightforward). In our analysis, we assume that

each job is composed of distinct nonoverlapping computa-
tional fragments or phases. Each phase is either a compu-
tation phase or an object-access phase. Shared objects are
not accessed during a computation phase. An object-access
phase consists of exactly one retry loop. We assume that
tasks are indexed such that, if a job of task Ti can preempt
a job of task Tj , then i < j (such an indexing is possible
under both RM and EDF scheduling). The following is a
list of symbols that will be used in our analysis.

� N - The number of tasks in the system. We use i,
j, and l as task indices; each is universally quantified
over f1; : : : ; Ng.

� Q - The length of the scheduling quantum.

� pi - The period of task Ti.

� wi - The number of phases in a job of task Ti. The
phases are numbered from 1 towi. We use u and v to
denote phases.

� xi - The number of object-access phases in a job of
task Ti.

� cvi - The worst-case computational cost of thevth phase
of taskTi, where 1 � v � wi, assuming no contention
for the processor or shared objects. We denote total
cost over all phases by ci =

Pwi
v=1 c

v
i .

� rvi - The cost of a retry if the vth phase of task Ti
is interfered with. For computation phases, rvi = 0.
For object-access phases, we usually have rvi < cvi ,
because retries are performed sequentially. We let
ri = maxv(rvi ).

� mv
i (j; t) - The worst-case number of interferences in

Ti’s vth phase due to Tj in an interval of length t.

� fvi - An upper bound on the number of interferences
of the retry loop in the vth phase of Ti during a single
execution of that phase.

A simple bound on interference costs. The simplest way
to account for object interference costs is to simply inflate
each task Ti’s computation time to account for such costs.
This can be done by solving the following recurrence.

c0i = ci + min[xi; (

�
c0i
Q

�
� 1)] � ri (1)

c0i is obtained here by inflating ci by ri for each quantum
boundary that is crossed, up to a maximum of xi such
boundaries (since Ti accesses at most xi objects in total).
If task Ti accesses objects with widely varying retry costs,
then the above recurrence may be too pessimistic. Let ri;1
be the maximum retry cost of any of Ti’s object-access



phases, let ri;2 be the next-highest cost, and so on. Also, let
vi = min[xi; (dc0i=Qe � 1)]. Then, we can more accurately
inflate ci by solving the following recurrence.

c0i = ci +

viX
k=1

ri;k (2)

Once such c0i values have been calculated, they can be
used within scheduling conditions that apply to indepen-
dent tasks. A condition for the RM scheme is given in the
following theorem.

Theorem 1: In an RM-scheduled quantum-based unipro-
cessor system, a set of tasks with objects implemented using
the proposed retry algorithms is schedulable if the following
holds for every task Ti, where Bi = min(Q;maxj>i(c0j)).

(9t : 0 < t � pi :: Bi +
Pi

j=1

l
t
pj

m
c0j � t) 2

In the above expression, Bi is a blocking term that arises
due to the use of quantum-based scheduling [14].4 The next
theorem gives a scheduling condition for the EDF scheme.

Theorem 2: In an EDF-scheduled quantum-based unipro-
cessor system, a set of tasks with objects implemented using
the proposed retry algorithms is schedulable if the following
holds.
PN

i=1
c0i
pi � 1 ^

(8i : 1 � i � N :: (8t : p1 < t < pi :: min(Q; c0i)+Pi�1
j=1b

t�1
pj

cc0j � t)) 2

The above condition is obtained by adapting the condi-
tion given by Jeffay et al. in [13] for nonpreemptive EDF
scheduling. Note that this condition reduces to that of Jef-
fay et al. when Q = 1 and to that for preemptive EDF
scheduling [16] when Q = 0.

Bounding interference costs using linear programming.
Anderson and Ramamurthy showed that when lock-free ob-
jects are used in a uniprocessor system, object interference
costs due to preemptions can be more accurately bounded
using linear programming [4]. Given the Preemption Ax-
iom, we show that it is possible to obtain bounds that are
tighter than those of Anderson and Ramamurthy.

Our linear programming conditions make use of a bit of
additional notation. If a job of Tj interferes with the vth

4In [14], it is assumed that timer interrupts are spaced apart by a constant
amount of time. If a task completes execution between these interrupts,
then the processor is allocated to the next ready task, if such a task exists.
This newly-selected task will execute for a length of time that is less than
a quantum before possibly being preempted. In our work, we assume that
whenever the processor is allocated to a task, that task executes for an
entire quantum (or until it terminates) before possibly being preempted.
Nonetheless, the blocking calculations due to quantum-based scheduling
are the same in both models.

phase of a job of Ti, then an additional demand is placed
on the processor, because another execution of the retry-
loop iteration in Ti’s vth phase is required. We denote this
additional demand by svi (j). Formally, svi (j) is defined as
follows.

Definition 1: Let Ti and Tj be two distinct tasks, where
Ti has at least v phases. Let zj denote the set of objects
modified by Tj , and avi denote the set of objects accessed in
the vth phase of Ti. Then,

svi (j) =

�
rvi if j < i ^ avi \ zj 6= ;
0 otherwise.

Give the above definition of svi (j), we can state an exact
expression for the worst-case interference cost in tasks T1

through Ti in any interval of length t.

Definition 2: The total cost of interferences in jobs of tasks
T1 throughTi in any interval of length t,denotedEi(t), is de-

fined as follows: Ei(t) �
Pi

j=1

Pwj
v=1

Pj�1
l=1 m

v
j (l; t)s

v
j (l).
2

The term mv
j (l; t) in the above expression denotes the

worst-case number of interferences caused in Tj’s vth phase
by jobs of Tl in an interval of length t. The term svj (l)
represents the amount of additional demand required if Tl
interferes once with Tj’s vth phase. The expression within
the leftmost summation denotes the total cost of interfer-
ences in a task Tj over all phases of all jobs of Tj in an
interval of length t.

ExpressionEi(t) accurately reflects the worst-case addi-
tional demand placed on the processor in an interval I of
length t due to interferences in tasksT1 throughTi. Precisely
evaluating this expression is computationally expensive, so
we instead will try to obtain a bound onEi(t) that is as tight
as possible. We do this by viewing Ei(t) as an expression
to be maximized. The mv

j (l; t) terms are the “variables”
in this expression. These variables are subject to certain
constraints. We obtain a bound for Ei(t) by using linear
programming to determine a maximum value of Ei(t) sub-
ject to these constraints. We now explain how appropriate
constraints on the mv

j (l; t) variables are obtained. In this
explanation, we focus on the RM scheme. Defining similar
constraints for the EDF scheme is fairly straightforward. We
impose six sets of constraints on the mv

i (j; t) variables.

Constraint Set 1: (8i; j : j < i ::
Pwi

v=1 m
v
i (j; t) �l

t+1
pj

m
). 2

Constraint Set 2: (8i ::
Pi

j=1

Pwj
v=1

Pj�1
l=1 m

v
j (l; t) �Pi�1

j=1

l
t+1
pj

m
). 2

Constraint Set 3: (8i; v ::
Pi�1

j=1 m
v
i (j; t) �

l
t+1
pi

m
fvi ). 2



Constraint Set 4: (8i; v :: fvi � 1). 2

Constraint Set 5: (8i ::
Pi�1

j=1

Pwj
v=1 m

v
i (j; t) � (

�
c0i
Q

�
�

1) �
l
t+1
pi

m
). 2

Constraint Set 6: (8i ::
Pi�1

j=1

Pwj

v=1 m
v
i (j; t) � xi �l

t+1
pi

m
). 2

There first three constraint sets were given previously by
Anderson and Ramamurthy [4]. The first set of constraints
follows because the number of interferences in jobs ofTidue
toTj in an interval I of length t is bounded by the maximum
number of jobs of Tj that can be released in I. The second
set of constraints follows from a result presented in [6],
which states that the total number of interferences in all jobs
of tasks T1 throughTi in an interval I of length t is bounded
by the maximum number of jobs of tasks T1 through Ti�1

released in I. In the third set of constraints, the term fvi is an
upper bound on the number of interferences of the retry loop
in the vth phase of Ti during a single execution of that phase.
The reasoning behind this set of constraints is as follows. If
at most fvi interferences can occur in the vth phase of a job
of Ti, and if there are n jobs of Ti released in an interval
I, then at most nfvi interferences can occur in the vth phase
of Ti in I. In Anderson and Ramamurthy’s paper, the fvi
terms are calculated by solving an additional set of linear
programming problems. In our case, they can be bounded as
shown in the fourth set of constraints.5 This is because, by
the Preemption Axiom, each object access can be interfered
with at most once. The last two constraint sets arise for
precisely the same reasons as given when recurrence (1)
was explained. The c0i term in the fifth constraint set can be
calculated by solving recurrence (1) or (2).

We are now in a position to state scheduling conditions
for the RM and EDF schemes. Recall thatEi(t) is the actual
worst-case cost of interferences in jobs of tasks T1 through
Ti in any interval of length t. We let E0

i(t) denote a bound
on Ei(t) that is determined using linear programming as
described above. For RM scheduling, we have the following.

Theorem 3: In an RM-scheduled quantum-based unipro-
cessor system, a set of tasks with objects implemented using
the proposed retry algorithms is schedulable if the following
holds for every task Ti, where Bi = min(Q;maxj>i(c0j)).

(9t : 0 < t � pi :: Bi +
Pi

j=1

l
t
pj

m
cj +E0

i(t� 1) � t) 2

5It is actually possible to eliminate Constraint Set 4, because the linear
programming solver will always maximize each fv

i
term to be 1. Further-

more, when substituting 1 for fv
i

in Constraint Set 3, the resulting set of
constraints implies those given in Constraint Set 6, so these constraints can
be removed as well. We did not minimize the constraint sets in this way
because we felt that this would make them more difficult to understand,
especially when comparing them against those in [4].

This condition is obtained by modifyingone proved in [4]
by including a blocking factor for the scheduling quantum.
For EDF scheduling, we have the following.

Theorem 4: In an EDF-scheduled quantum-based unipro-
cessor system, a set of tasks with objects implemented using
the proposed retry algorithms is schedulable if the following
holds.

(8t ::
PN

j=1

j
t
pj

k
cj +E0

N (t� 1) � t) 2

This condition was also proved in [4]. Since t is checked
beginning at time 0, a blocking factor is not required. As
stated, the expression in Theorem 4 cannot be verified be-
cause the value of t is unbounded. However, there is an
implicit bound on t. In particular, we only need to consider
values less than or equal to the least common multiple of
the task periods. (If an upper bound on the utilization avail-
able for the tasks is known, then we can restrict t to a much
smaller range [9].)

Note that, in a quantum-based system, no object access by
a task that is guaranteed to complete within the first quantum
allocated to a job of that task can be interfered with. Thus,
such an access can be performed using a less-costly code
fragment that is purely sequential. All of the scheduling
conditions presented in this subsection can be improved by
accounting for this fact.

In the full paper [1], we show how object-sharing over-
heads arising from algorithms as proposed here affect lag-
bound calculations in proportional-share (PS) scheduled
systems. In the PS scheduling literature, the term “client” is
used to refer to a schedulable entity. Each client is assigned
a share of the processor, which represents the fraction of
processing time that that client should receive. Quanta are
allocated in a manner that ensures that the amount of proces-
sor time each client receives is commensurate with its share.
The lag of a client is the difference between the time a client
should have received in an ideal system with a quantum ap-
proaching zero, and the time it actually receives in a real
system. Stoica et al. showed that optimal lag bounds can
be achieved by using earliest-eligible-virtual-deadline-first
(EEVDF) scheduling [20]. As we show in the full paper,
the lag bounds of Stoica et al. can be applied in a system
in which our shared-object algorithms are used by simply
inflating the cost of a client’s request by the cost of one retry
loop for every quantum boundary it crosses.

Experimental Comparison. In order to compare the
retry-cost estimates produced by the linear programming
methods proposed in this paper and in [4], we conducted
a series of simulation experiments involving randomly-
generated task sets scheduled under the RM scheme. Each
task set in these experiments was defined to consist of ten
tasks that access up to ten shared objects. 120 task sets



2 Old Condition New Condition

0

20

40

60

80

100

120

140

160

180

Task
1

���
Task

2

���
Task

3

�
��

Task
4

�

��

Task
5

�

��

Task
6

�

��

Task
7

�

��

Task
8

�

��

Task
9

�

��

Task
10

�

��

�

�

�

��

Figure 3. Comparison of linear programming
scheduling conditions. Each task’s average
estimated retry cost is shown.

were generated in total, and for each task set, a retry cost
was computed for each task using the two methods being
compared. Due to space limitations, the exact methodology
we used in generating task sets is not described here; see [1]
for details. The results of these experiments are depicted
in Figure 3. This figure shows the average retry cost of
each task over all generated task sets as computed by each
method. As before, tasks are indexed in order of increasing
periods. Thus, T1 has highest priority in all experiments,
and as a result, its retry cost is estimated to be zero under
both methods. It can be seen in Figure 3 that the method
of this paper yields retry-cost estimates for higher-priority
tasks that are about 10% to 20% lower than those produced
by the method of [4]. In addition to determining retry-cost
estimates, we also kept track of how long each schedulabil-
ity check took to complete. On average, the schedulability
check proposed in this paper took 11.7 seconds per task set,
while the one proposed in [4] took 235 seconds. This is
because of the complicated procedure invoked to compute
fv
i values in the method of [4].

3. Multiprocessor Systems

In this section, we describe a new approach to imple-
menting shared objects in quantum-based multiprocessor
systems. Using this retry mechanism, scheduling analysis
can be performed on each processor using the uniprocessor
scheduling conditions considered in the previous section. In

Section 3.1, we describe this retry mechanism in detail. In
Section 3.2, we present results from experiments conducted
to evaluate our approach.

3.1. Implementing Objects

In a multiprocessor system, a retry mechanism by itself
is not sufficient, because a task on one processor may be re-
peatedly interfered with due to object invocations performed
by tasks on other processors. Our approach is to use a retry
mechanism in conjunction with a preemptable queue lock.
A queue lock is a spin lock in which waiting tasks form a
queue [17]. Queue locks are useful in real-time systems
because waiting times can be bounded. With a preempt-
able queue lock, a task waiting for or holding a lock can
be preempted without impeding the progress of other tasks
waiting for the lock. Given such a locking mechanism, any
preempted operation can be safely retried. As before, we can
appeal to the Preemption Axiom to bound retries, because
retries are caused only by preemptions, not by interferences
across processors. The Preemption Axiom is still reasonable
to assume if we focus on systems with a small to moderate
number of processors (the cost an operation depends on the
spin queue length, which in turn depends on the number of
processors in the system). We believe that it is unlikely that
a real-time application would be implemented on a large
multiprocessor, and even if it were, it is unlikely that one
object would be shared across a large number of processors.

Queue locks come in two flavors: array-based locks,
which use an array of spin locations [7, 11], and list-based
locks, in which spinning tasks form a linked list [17]. List-
based queue locks have the advantage of requiring only
constant space overhead per task per lock. In addition,
list-based queue locks exist in which all spins are local if
applied on multiprocessors either with coherent caches or
distributed shared memory [17]. In contrast, with existing
array-based locks, spins are local only if applied in a system
with coherent caches.

All work known to us on preemptable queue locks in-
volves list-based locks [21, 22]. This is probably due to
the advantages listed in the previous paragraph that (non-
preemptable) list-based locks have over array-based ones.
However, correctly maintaining a linked list of spinning
tasks in the face of preemptions is very trick. Wisniewski et
al. handle such problems by exploitinga rather non-standard
kernel interface that has the ability to “warn” tasks before
they are preempted so that they can take appropriate action
in time [22]. In the absence of such a kernel interface, list
maintenance becomes quite hard, leading to complicated al-
gorithms. For example, a list-based preemptable queue lock
proposed recently by Takada and Sakamura requires a total
of 63 executable statements [21]. Our preemptable queue
lock is an array-based lock and is quite simple, consisting



of only 17 lines of code. In addition, all that we require the
kernel to do is to set a shared variable whenever a task is
preempted indicating that that task is no longer running. As
with other array-based locks, our algorithm has linear space
overhead per lock and requires coherent caches in order for
spins to be local. However, most modern workstation-class
multiprocessors have coherent caches. Also, in many appli-
cations, most objects are shared only by a relatively small
number tasks, so having linear space per lock shouldn’t be a
severe problem. In any event, these disadvantages seem to
be far outweighed by the fact that our algorithm is so simple.

Our algorithm is shown in Figure 4. For clarity, the
lock being implemented has been left implicit. In an actual
implementation, the shared variables Tail, State, and Pred
would be associated with a particular lock and a pointer to
that lock would be passed to acquire lock and release lock.

The State array consists of 2N “slots”, which are used
as spin locations. A task Ti alternates between using slots
i and i + N . Ti appends itself onto the end of the spin
queue by performing a fetch and store operation on the Tail
variable (line 5). It then spins until either it is preempted,
its predecessor in the spin queue is preempted, or its prede-
cessor releases the lock (line 9). In a system with coherent
caches, this spin is local. If Ti stops spinning because its
predecessor is preempted, then Ti takes its predecessor’s
predecessor as its new predecessor (lines 12-13). If Ti is
preempted before acquiring the lock, then (when it resumes
execution) it stops spinning and re-executes the algorithm
using its other spin location (line 2). Note that the Preemp-
tion Axiom ensures that Ti will not be preempted when it
re-executes the algorithm. In addition, by the time Ti ac-
quires the lock and then releases it to another task, no task is
waiting on either of its two spin locations, i.e., they can be
safely reused when Ti performs future lock accesses. With-
out the Preemption Axiom, correctly “pruning” a preempted
task from the spin queue would be much more complicated.
(For multiprocessors, the Preemption Axiom can be relaxed
to state that a task can be preempted at most once across two
consecutive attempts to complete the same object call. If our
lock algorithm is used by tasks on P processors, then a task
that is preempted may have to wait for P � 1 tasks on other
processors to complete their object calls when it resumes
execution. Thus, the Preemption Axiom is tantamount to
requiring that the quantum is long enough to contain P + 1
consecutive object calls in total on the P processors across
which the object is shared.)

We have depicted the algorithm assuming that each task
performs its object access as a critical section with interrupts
turned off (see lines 14 and 17). Instead, object accesses
could be performed using lock-free code, in which case the
entire implementation would be preemptable. It can be seen
in Figure 4 that the code fragment at lines 5-6 is required to
be executed without preemption. This ensures that the

shared variable
Tail: 0::2N � 1 initially 0;
State: array[0::2N � 1] of fWAITING;DONE; PREEMPTEDg

initially DONE;
Pred: array[0::N � 1] of 0::2N � 1

private variable =� local to task Tp �=
pred: 0::2N � 1;
slot: fp; p+ Ng initially p
=� slot is assumed to retain its value across procedure invocations �=

procedure acquire lock()
1: while true do =� can only loop at most twice �=
2: slot := (slot +N) mod 2N ;
3: State[slot] := WAITING;
4: disable interrupts;
5: pred := fetch and store(&Tail; slot); =� join end of spin queue �=
6: Pred[slot mod N ] := pred;
7: enable interrupts;
8: while State[slot] 6= PREEMPTED do
9: while State[slot] = WAITING ^

State[pred] = WAITING do =� spin �= od;
=�
� after the spin, State[slot] = PREEMPTED or
� State[pred] = PREEMPTED or State[pred] = DONE
�=

10: if State[slot] 6= PREEMPTED then
11: if State[pred] = PREEMPTED then
12: pred := Pred[pred mod N ]; =� predecessor is preempted �=
13: Pred[slot mod N ] := pred; =� get new predecessor �=

else =� State[pred] = DONE �=
14: disable interrupts;
15: if State[slot] = WAITING then return =� lock acquired �=

else enable interrupts
fi

fi
fi

od
od

procedure release lock()
16: State[slot] := DONE;
17: enable interrupts

Figure 4. Preemptable spin-lock algorithm for
quantum-based multiprocessors. In this fig-
ure, task indices are assumed to range over
f0; : : : ; N � 1g.

predecessor of a preempted task can always be determined.
As an alternative to disabling interrupts, if a preemption
occurs between lines 5 and 6, then the kernel could roll the
preempted task forward one statement when saving its state.
This alternative would be necessary in systems in which
tasks do not have the ability to disable interrupts.

When a task Ti is preempted while waiting for the lock,
the kernel must establish State[slot] = PREEMPTED. It is
not necessary for the kernel to scan state information per
lock to do this. The appropriate variable to update can be
determined by having a single shared pointer Stateptr[i] for



each task Ti that is used across all locks. Prior to assigning
“State[slot] := WAITING” in line 3, Ti would first update
Stateptr[i] to point to State[slot]. By reading Stateptr[i], the
kernel would know which state variable to update upon a
preemption. (If locks can be nested, then multiple Stateptr
variables would be required per task.)

3.2. Experimental Comparison

We have conducted performance experiments to com-
pare our preemptable queue lock algorithm to a preemptable
queue lock presented last year by Takada and Sakamura
[21]. Their lock is designated as the “SPEPP/MCS algo-
rithm” in their paper, so we will use that term here (SPEPP
stands for “spinning processor executes for preempted pro-
cessors”; MCS denotes that this lock is derived from one
published previously by Mellor-Crummey and Scott [17]).
The SPEPP/MCS algorithm was the fastest in the face of pre-
emptions of several lock algorithms tested by Takada and
Sakamura. Our experiments were conducted using the Pro-
teus parallel architecture simulator [10]. Using a simulator
made it easy to provide the kernel interface needed by each
algorithm. The simulator was configured to simulate a bus-
based shared-memory multiprocessor, with an equal number
of processors and memory modules. The simulated system
follows a bus-based snoopy protocol with write-invalidation
for cache coherence. Tasks are assigned to processors and
are not allowed to migrate. On each processor, tasks are
scheduled for execution using a quantum-based round-robin
scheduling policy. The scheduling quantum in our simula-
tion was taken to be 10 milliseconds.

Figure 5 presents the results of our experiments. In this
figure, the average time is shown for a task to acquire the
lock, execute its critical section, and release the lock. These
curves were obtained with a multiprogramming level of five
tasks per processor, with each task performing 50 lock ac-
cesses. The execution cost of the critical section was fixed
at 600 microseconds. Each task was configured to perform a
noncritical section between lock accesses, the cost of which
was randomly chosen between 0 and 600 microseconds. The
simulations we conducted indicate that only the number of
processors in the system affects relative performance; simu-
lations for different numbers of lock accesses and multipro-
gramming levels resulted in similar graphs. The curves in
Figure 5 indicate that the time taken to acquire the lock in our
algorithm is up to 25% less than that for the SPEPP/MCS
algorithm (the time taken to acquire the lock is obtained
by subtracting the critical section execution time from the
values in Figure 5). We also instrumented the code to mea-
sure the time taken to acquire the lock in the best case.
For each algorithm, the time taken by a task to acquire the
lock is minimized when that task is at the head of the spin
queue. The best-case time for acquiring the lock was 100

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

1 2 3 4 5 6 7 8 9 10
A

c
c
e

s
s
 T

im
e

Processors

"Proposed"
"SPEPP/MCS"

Figure 5. Experimental comparison of pre-
emptable spin-lock algorithms. Curves show
average access times (in microseconds).

microseconds for our algorithm, and 200 microseconds for
the SPEPP/MCS algorithm.

4. Concluding Remarks

We have presented a new approach to implementing
shared objects in quantum-based real-time uniprocessor and
multiprocessor systems. In the proposed object implemen-
tations, object calls are performed using an optimistic retry
mechanism coupled with the assumption that each task can
be preempted at most once across two consecutive object
calls. We have presented experimental evidence that such
implementations should entail low overhead in practice.

In a recent related paper, Anderson, Jain, and Ott pre-
sented a number of new results on the theoretical foundations
of wait-free synchronization in quantum-based systems [2].
It was shown in that paper that the ability to achieve wait-
free synchronization in quantum-based systems is a function
of both the “power” of available synchronization primitives
and the size of the scheduling quantum. We hope the results
of [2] and this paper will spark further research on synchro-
nization problems arising in quantum-based systems.

Acknowledgement: We are grateful to Alex Blate for his help
in running simulation experiments. We also acknowledge David
Koppelman for his help with the Proteus simulator.



References

[1] J. Anderson, R. Jain, and K. Jeffay Efficient
Object Sharing in Quantum-Based Real-Time Sys-
tems (expanded version of this paper). Available at
http://www.cs.unc.edu/�anderson/papers.html.

[2] J. Anderson, R. Jain, and D. Ott. Wait-free synchro-
nization in quantum-based multiprogrammed systems.
In Proceedings of the 12th International Symp. on
Distributed Computing (to appear). Springer Verlag,
1998.

[3] J. Anderson, R. Jain, and S. Ramamurthy. Wait-
free object-sharing schemes for real-time uniproces-
sors and multiprocessors. In Proceedings of the 18th
IEEE Real-Time Systems Symp., pp. 111–122. 1997.

[4] J. Anderson and S. Ramamurthy. A framework for
implementing objects and scheduling tasks in lock-
free real-time systems. In Proceedings of the 17th
IEEE Real-Time Systems Symp., pp. 92–105. 1996.

[5] J. Anderson, S. Ramamurthy, and R. Jain. Imple-
menting wait-free objects in priority-based systems.
In Proceedings of the 16th ACM Symp. on Principles
of Distributed Computing, pp. 229–238. 1997.

[6] J. Anderson, S. Ramamurthy, and K. Jeffay. Real-
time computing with lock-free objects. ACM Trans.
on Computer Systems, 15(6):388–395, 1997.

[7] T. Anderson. The performance of spin lock alternatives
for shared-memory multiprocessors. IEEE Trans. on
Parallel and Distributed Systems, 1(1):6–16, 1990.

[8] N. C. Audsley, I. J. Bate, and A. Burns. Putting fixed
priority scheduling into engineering practice for safety
critical applications. In Proceedings of the 1996 IEEE
Real-Time Technology and Applications Symp., pp. 2–
10, 1996.

[9] S. Baruah, R. Howell, and L. Rosier. Feasibility prob-
lems for recurring tasks on one processor. Theoretical
Computer Science, 118:3–20, 1993.

[10] E. Brewer, C. Dellarocas, A. Colbrook, and W. Weihl.
Proteus: A high-performance parallel-architecture
simulator. Technical Report MIT/LCS/TR-516, MIT,
Cambridge, Massachusetts, 1992.

[11] G. Graunke and S. Thakkar. Synchronization al-
gorithms for shared-memory multiprocessors. IEEE
Computer, 23:60–69, 1990.

[12] M. Greenwald and D. Cheriton. The synergy between
non-blocking synchronization and operating system
structure. In Proceedings of the USENIX Associa-
tion Second Symp. on Operating Systems Design and
Implementation, pp. 123–136, 1996.

[13] K. Jeffay, D. Stanat, and C. Martel. On non-preemptive
scheduling of periodic and sporadic tasks. In Proceed-
ings of the 12th IEEE Symp. on Real-Time Systems, pp.
129–139. 1991.

[14] D. Katcher, H. Arakawa, and J.K. Strosnider. Engi-
neering and analysis of fixed priority schedulers. IEEE
Trans. on Software Engineering, 19(9):920–934,1993.

[15] H. Kopetz and J. Reisinger. The non-blocking write
protocol nbw: A solution to a real-time synchroniza-
tion problem. In Proceedings of the 14th IEEE Symp.
on Real-Time Systems, pp. 131–137. 1993.

[16] C. Liu and J. Layland. Scheduling algorithms for mul-
tiprogramming in a hard real–time environment. Jour-
nal of the ACM, 30:46–61, 1973.

[17] J. Mellor-Crummey and M. Scott. Algorithms for scal-
able synchronization on shared-memory multiproces-
sors. ACM Trans. on Computer Systems, 9(1):21–65,
1991.

[18] S. Ramamurthy. A Lock-Free Approach to Object Shar-
ing in Real-Time Systems. PhD thesis, University of
North Carolina, Chapel Hill, North Carolina, 1997.

[19] S. Ramamurthy, M. Moir, and J. Anderson. Real-time
object sharing with minimal support. In Proceedings
of the 15th ACM Symp. on Principles of Distributed
Computing, pp. 233–242. 1996.

[20] I. Stoica, H. Abdel-Wahab, K. Jeffay, S. Baruah, J.
Gehrke, and C. Plaxton. A proportional share re-
source allocation algorithm for real-time, time-shared
systems. In Proceedings of the 17th IEEE Real-Time
Systems Symp., pp. 288–299. 1996.

[21] H. Takada and K. Sakamura. A novel approach to
multiprogrammed multiprocessor synchronization for
real-time kernels. In Proceedings of the 18th IEEE
Real-Time Systems Symp., pp. 134–143. 1997.

[22] R. Wisniewski, L. Kontothanassis, and M. Scott. High
performance synchronization algorithms for multipro-
grammed multiprocessors. In Proceedings of the Fifth
ACM Symp. on Principles and Practices of Parallel
Programming, pp. 199–206. 1995.


