The Effects of Active Queue Management on Web Performance

Long Le Jay Aikat

Kevin Jeffay

F. Donelson Smith

Department of Computer Science
University of North Carolina at Chapel Hill

http://www.cs.unc.edu/Research/dirt

ABSTRACT

We present an empirical study of the effects of active queue man-

agement (AQM) on the distribution of response times experienced

by a population of web users. Three prominent AQM schemes are
considered: the Proportional Integrator (PI) controller, the Random

Exponential Marking (REM) controller, and Adaptive Random

Early Detection (ARED). The effects of these AQM schemes were

studied alone and in combination with Explicit Congestion Notifi-

cation (ECN). Our major results are:

1. For offered loads up to 80% of bottleneck link capacity, no
AQM scheme provides better response times than simple drop-
tail FIFO queue management.

2. For loads of 90% of link capacity or greater when ECN is not
used, PI results in a modest improvement over drop-tail and the
other AQM schemes.

3. With ECN, both PI and REM provide significant response time
improvement at offered loads above 90% of link capacity. More-
over, at a load of 90% PI and REM with ECN provide response
times competitive to that achieved on an unloaded network.

4. ARED with recommended parameter settings consistently re-
sulted in the poorest response times which was unimproved by
the addition of ECN.

We conclude that without ECN there is little end-user performance

gain to be realized by employing the AQM designs studied here.

However, with ECN, response times can be significantly im-

proved. In addition it appears likely that provider links may be

operated at near saturation levels without significant degradation in
user-perceived performance.

Categories and Subject Descriptors
C.2.2 [Computer Systems Organization]: Computer Communi-
cation Networks — Network Protocols.

General Terms
Algorithms, Measurement, Performance, Experimentation.

Keywords

Congestion control, Active queue management, Web performance.

1 INTRODUCTION AND MOTIVATION

The random early detection (RED) algorithm, first described ten
years ago [7], inspired a new focus for congestion control research
on the area of active queue management (AQM). The common
goal of all AQM designs is to keep the average queue size small in
routers. This has a number of desirable effects including (1) pro-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIGCOMM’03, August 25-29, 2003, Karlsruhe, Germany, pp. 265-276.
COPYRIGHT 2003 ACM 1-58113-735-4/03/0008...$5.00.

viding queue space to absorb bursts of packet arrivals, (2) avoiding
lock-out and bias effects from a few flows dominating queue
space, and (3) providing lower delays for interactive applications
such as web browsing [3].

All AQM designs function by detecting impending queue buildup
and notifying sources before the queue in a router overflows. The
various designs proposed for AQM differ in the mechanisms used
to detect congestion and in the type of control mechanisms used to
achieve a stable operating point for the queue size. Another dimen-
sion that has a significant impact on performance is how the con-
gestion signal is delivered to the sender. In today’s Internet where
the dominant transport protocol is TCP (which reacts to segment
loss as an indicator of congestion), the signal is usually delivered
implicitly by dropping packets at the router when the AQM algo-
rithm detects queue buildup. An IETF proposed standard adds an
explicit signalling mechanism, called explicit congestion notifica-
tion (ECN) [12], by allocating bits in the IP and TCP headers for
this purpose. With ECN a router can signal congestion to an end-
system by “marking” a packet (setting a bit in the header).

In this work we report the results of an empirical evaluation of
three prominent examples of AQM designs. These are the Propor-
tional Integrator (PI) controller [8], the Random Exponential
Marking (REM) controller [2] and a contemporary redesign of the
classic RED controller, Adaptive RED [6] (here called ARED).
While these designs differ in many respects, each is an attempt to
realize a control mechanism that achieves a stable operating point
for the size of the router queue. Thus a user of each of these
mechanisms can determine a desired operating point for the control
mechanism by simply specifying a desired target mean queue size.
Choosing the desired queue size may represent a tradeoff between
link utilization and queuing delay — a short queue reduces latency
at the router but setting the target queue size too small may reduce
link utilization by causing the queue to drain needlessly.

Our goal in this study was first and foremost to compare the per-
formance of control theoretic AQM algorithms (PI and REM) with
the more traditional randomized dropping found in RED. For per-
formance metrics we chose both user-centric measures of perform-
ance such as response times for the request-response transactions
that comprise Web browsing, as well as more traditional metrics
such as achievable link utilization and loss rates. The distribution
of response times that would be experienced by a population of
web users is used to assess the user-perceived performance of the
AQM schemes. Link utilization is used to assess the impact on
network resources. Of particular interest was the implication of
ECN support on performance. ECN requires the participation of
end-systems in the AQM scheme and hence it is important to
quantify the performance gain to be had at the expense of a more
complex protocol stack and migration issues for the end-system.

Our experimental platform was a laboratory testbed consisting of a
large collection of computers arranged to emulate a peering point
between two ISPs operated at 100 Mbps (see Figure 1). We emu-
lated the Web browsing behavior of tens of thousands of users
whose traffic transits the link connecting the ISPs and investigated
the performance of each AQM scheme in the border-routers con-
necting the ISPs. Each scheme was investigated both with and
without ECN support across a variety of AQM parameter settings
that represented a range of target router-queue lengths. For each
target queue length we varied the offered load on the physical link
connecting the ISPs to determine how (or if) AQM performance
was affected by load.

Our results were that for offered loads up to 80% of the bottleneck
link capacity, no AQM scheme provided better response time per-
formance than simple drop-tail FIFO queue management. In addi-
tion, all schemes resulted in similar loss rates and link utilization.
For offered loads above 80% of link capacity there was an advan-
tage to employing control theoretic AQM. When ECN is not used,
at offered loads of 90% of link capacity, PI resulted in a modest
improvement over drop-tail and the other AQM schemes. Web
browsing response time was improved for responses requiring
more than approximately 400 milliseconds to complete but at the
cost of slightly lower achievable link utilization (compared to
drop-tail). Of particular note was the fact that without ECN, PI
gave performance superior to REM.

Our most striking result is that with ECN, both REM and PI sig-
nificantly outperform drop-tail at 90% load and provide response
time performance that is competitive to that achieved on an un-
loaded network. The improved response time performance, how-
ever, comes at some loss of achievable link utilization. In light of
these results, an additional striking result was the fact that the ad-
dition of ECN did not improve ARED performance. ARED con-
sistently resulted in the poorest response time performance across
all offered loads and resulted in the lowest link utilizations.

We conclude that without ECN there is little end-user or provider
performance gain to be realized by employing the AQM algo-
rithms studied here. However, with ECN performance can be sig-
nificantly improved. In addition, our experiments provide evidence
that provider links may be operated at near saturation levels (90%
average utilization with bursty traffic sources) without significant
degradation in user-perceived performance and with only very
modest decreases in link utilization (when compared to drop-tail).
Thus unlike a similar earlier study [4] which was negative on the
use of AQM, we view the ECN results as a significant indicator
that the stated goals of AQM can be realized in practice.

While the results of this study are intriguing, the study was none-
theless limited. The design space of AQM schemes is large with
each algorithm typically characterized by a number of independent
parameters. We limited our consideration of AQM algorithms to a
comparison between two classes of algorithms: those based on
control theoretic principles and those based on the original ran-
domized dropping paradigm of RED. Moreover, we studied a link
carrying only Web-like traffic. More realistic mixes of HTTP and
other TCP traffic as well as traffic from UDP-based applications
need to be examined.

The following section reviews the salient design principles of cur-
rent AQM schemes and reviews the major algorithms that have
been proposed. Section 3 presents our experimental methodology
and discusses the generation of synthetic Web traffic. Section 4

presents our results for AQM with packet drops and Section 5
presents our results for AQM with ECN. The results are discussed
in Section 6. We conclude in Section 7 with a summary of our
major results.

2 BACKGROUND AND RELATED WORK

The original RED design uses a weighted-average queue size as a
measure of congestion. When this weighted average is smaller than
a minimum threshold (min,), no packets are marked or dropped.
When the average queue length is between the minimum threshold
and the maximum threshold (max,,), the probability of marking or
dropping packets varies linearly between 0 and a maximum drop
probability (max,, typically 0.10). If the average queue length ex-
ceeds max,,, all packets are marked or dropped. (The actual size of
the queue must be greater than max,, to absorb transient bursts of
packet arrivals.) A modification to the original design introduced a
“gentle mode” in which the mark or drop probability increases
linearly between max, and 1 as the average queue length varies
between max,, and 2 x max,. This fixes a problem in the original
RED design caused by the non-linearity in drop probability (in-
creasing from max, to 1.0 immediately when max,, is reached).

A weakness of RED is that it does not take into consideration the
number of flows sharing a bottleneck link [5]. Given the TCP con-
gestion control mechanism, a packet mark or drop reduces the
offered load by a factor of (1 — 0.51™") where n is the number of
flows sharing the bottleneck link. Thus, RED is not effective in
controlling the queue length when n is large. On the other hand,
RED can be too aggressive and can cause under-utilization of the
link when 7 is small. Feng et al. concluded that RED needs to be
tuned for the dynamic characteristics of the aggregate traffic on a
given link [5]. They proposed a self-configuring algorithm for
RED by adjusting mazx, every time the average queue length falls
out of the target range between min,, and max,. When the average
queue length is smaller than min,,, max, is decreased multiplica-
tively to reduce RED’s aggressiveness in marking or dropping
packets; when the queue length is larger than max,, max, is in-
creased multiplicatively. Floyd et al. improved upon this original
adaptive RED proposal by replacing the MIMD (multiplicative
increase multiplicative decrease) approach with an AIMD (additive
increase multiplicative decrease) approach [6]. They also provided
guidelines for choosing min,,, max,, and the weight for computing
a target average queue length. The RED version that we imple-
mented and studied in our work (referred to herein as “ARED”)
includes both the adaptive and gentle refinements to the original
design. It is based on the description given in [6].

In [11], Misra et al. applied control theory to develop a model for
TCP and AQM dynamics and used this model to analyze RED.
They pointed out two limitations in the original RED design: (1)
RED is either unstable or has slow responses to changes in net-
work traffic, and (2) RED’s use of a weighted-average queue
length to detect congestion and its use of loss probability as a feed-
back signal to the senders were flawed. Because of this, in over-
load situations, flows can suffer both high delay and a high packet
loss rate. Hollot et al. simplified the TCP/AQM model to a linear
system and designed a Proportional Integrator (PI) controller that
regulates the queue length to a target value called the “queue refer-
ence,” ¢, [8]. The PI controller uses instantaneous samples of the
queue length taken at a constant sampling frequency as its input.
The drop probability is computed as

p(KT) = a x (q(kT) = q,,) = b x (q((k-D)T) - q,,) + p(k=1)T)

where p(kT) is the drop probability at the k" sampling interval,
q(kT) is the instantaneous sample of the queue length and T is
1/sampling-frequency. A close examination of this equation shows
that the drop probability increases in sampling intervals when the
queue length is higher than its target value. Furthermore, the drop
probability also increases if the queue has grown since the last
sample (reflecting an increase in network traffic). Conversely, the
drop probability in a PI controller is reduced when the queue
length is lower than its target value or the queue length has de-
creased since its last sample. The sampling interval and the coeffi-
cients in the equation depend on the link capacity, the maximum
RTT and the expected number of active flows using the link.

In [2], Athuraliya et al. proposed the Random Exponential Mark-
ing (REM) AQM scheme. REM periodically updates a congestion
measure called “price” that reflects any mismatch between packet
arrival and departure rates at the link (i.e., the difference between
the demand and the service rate) and any queue size mismatch (i.e.,
the difference between the actual queue length and its target
value). The measure (p) is computed by:

p(@) =max(0, p(-1) + y x (o x (¢(t) = G,) + x() = ©))

where c is the link capacity (in packet departures per unit time),
p(1) is the congestion measure, ¢(f) is the queue length, and x(z) is
the packet arrival rate, all determined at time 7. As with ARED and
PI, the control target is only expressed by the queue size.

The mark/drop probability in REM is defined as prob(f) = 1 — ¢*?,
where ¢ > 1 is a constant. In overload situations, the congestion
price increases due to the rate mismatch and the queue mismatch.
Thus, more packets are dropped or marked to signal TCP senders
to reduce their transmission rate. When congestion abates, the
congestion price is reduced because the mismatches are now nega-
tive. This causes REM to drop or mark fewer packets and allows
the senders to potentially increase their transmission rate. It is easy
to see that a positive rate mismatch over a time interval will cause
the queue size to increase. Conversely, a negative rate mismatch
over a time interval will drain the queue. Thus, REM is similar to
PI because the rate mismatch can be detected by comparing the
instantaneous queue length with its previous sampled value. Fur-
thermore, when drop or mark probability is small, the exponential
function can be approximated by a linear function [1].

3 EXPERIMENTAL METHODOLOGY

For our experiments we constructed a laboratory network that
emulates the interconnection between two Internet service provider
(ISP) networks. Specifically, we emulate one peering link that
carries web traffic between sources and destinations on both sides
of the peering link and where the traffic carried between the two
ISP networks is evenly balanced in both directions.

The laboratory network used to emulate this configuration is
shown in Figure 1. All systems shown in this figure are Intel-based
machines running FreeBSD 4.5. At each edge of this network are a
set of 14 machines that run instances of a Web request generator
(described below) each of which emulates the browsing behavior
of thousands of human users. Also at each edge of the network is
another set of 8 machines that run instances of a Web response
generator (also described below) that creates the traffic flowing in
response to the browsing requests. A total of 44 traffic generating
machines are in the testbed. In the remainder of this paper we refer
to the machines running the Web request generator simply as the
“browser machines” (or “browsers”) and the machines running the

@ Network Monitor
="

O
=" ISP1 ISP2 =
Ethernet Router Router Ethernet
Switches @
=Y = : =N
: G!} Ghj :

. 100 ps ps 100 .
Mbps Mbps
=% =
ISP1 Network ISP2
Browsers/Servers Monitor ==, Browsers/Servers

Figure 1: Experimental network setup.

Web response generator as the “server machines” (or “servers”).
The browser and server machines have 100 Mbps Ethernet inter-
faces and are attached to switched VLANs with both 100 Mbps
and 1 Gbps ports on 3Com 10/100/1000 Ethernet switches.

At the core of this network are two router machines running the
ALTQ extensions to FreeBSD. ALTQ extends IP-output queuing
at the network interfaces to include alternative queue-management
disciplines [10]. We used the ALTQ infrastructure to implement
PI, REM, and ARED. The routers are 1 GHz Pentium IIIs with
over 1 GB of memory. Each router has one 1000-SX fiber Gigabit
Ethernet NIC attached to one of the 3Com switches. Each router
also has three additional Ethernet interfaces (a second 1000-SX
fiber Gigabit Ethernet NIC and two 100 Mpbs Fast Ethernet NICs)
configured to create point-to-point Ethernet segments that connect
the routers as shown in Figure 1. When conducting measurements
to calibrate the traffic generators on an un-congested network,
static routes are configured on the routers so that all traffic uses the
full-duplex Gigabit Ethernet segment. When we need to create a
bottleneck between the two routers, the static routes are reconfig-
ured so that all traffic flowing in one direction uses one 100 Mbps
Ethernet segment and all traffic flowing in the opposite direction
uses the other 100 Mbps Ethernet segment.' These configurations
allow us to emulate the full-duplex behavior of the typical wide-
area network link.

Another important factor in emulating this network is the effect of
end-to-end latency. We use a locally-modified version of the dum-
mynet [9] component of FreeBSD to configure out-bound packet
delays on browser machines to emulate different round-trip times
on each TCP connection (giving per-flow delays). This is accom-
plished by extending the dummynet mechanisms for regulating per-
flow bandwidth to include a mode for adding a randomly-chosen
minimum delay to all packets from each flow. The same minimum
delay is applied to all packets in a given flow (identified by IP
addressing 5-tuple). The minimum delay in milliseconds assigned
to each flow is sampled from a discrete uniform distribution on the
range [10, 150] (a mean of 80 milliseconds). The minimum and
maximum values for this distribution were chosen to approximate
a typical range of Internet round-trip times within the continental
U.S. and the uniform distribution ensures a large variance in the
values selected over this range. We configured the dummynet de-
lays only on the browser’s outbound packets to simplify the ex-
perimental setup. Most of the data transmitted in these experiments
flow from the server to the browser and the TCP congestion con-

' We use two 100 Mbps Ethernet segments and static routes to separate the
forward and reverse path flows in this configuration so we can use Ethernet
hubs to monitor the traffic in each direction independently. Traffic on the
Gigabit link is monitored using passive fiber splitters to monitor each di-
rection independently.

trol loop at the server (the one AQM causes to react) is influenced
by the total RTT, not by asymmetry in the delays relative to the
receiver’s side. Because these delays at the browsers effectively
delay the ACKs received by the servers, the round-trip times expe-
rienced by the TCP senders (servers) will be the combination of
the flow’s minimum delay and any additional delay introduced by
queues at the routers or on the end systems. (End systems are con-
figured to ensure no resource constraints were present hence delays
there are minimal, ~1 millisecond.) A TCP window size of 16K
bytes was used on all the end systems because widely used OS
platforms, e.g., most versions of Windows, typically have default
windows this small or smaller.

The instrumentation used to collect network data during experi-
ments consists of two monitoring programs. One program monitors
the router interface where we are examining the effects of the
AQM algorithms. It creates a log of the queue size (number of
packets in the queue) sampled every 10 milliseconds along with
complete counts of the number of packets entering the queue and
the number dropped. Also, a link-monitoring machine is connected
to the links between the routers (through hubs on the 100 Mbps
segments or fiber splitters on the Gigabit link). It collects (using a
locally-modified version of the fcpdump utility) the TCP/IP head-
ers in each frame traversing the links and processes these in real-
time to produce a log of link utilization over selected time intervals
(typically 100 milliseconds).

3.1 Web-Like Traffic Generation

The traffic that drives our experiments is based on a recent large-
scale analysis of web traffic [13]. The resulting model is an appli-
cation-level description of the critical elements that characterize
how HTTP/1.0 and HTTP/1.1 protocols are used. It is based on
empirical data and is intended for use in generating synthetic Web
workloads. An important property of the model is that it reflects
the use of persistent HTTP connections as implemented in many
contemporary browsers and servers. Further, the analysis presented
in [13] distinguishes between Web objects that are “top-level”
(typically an HTML file) and those that are embedded objects
(e.g., an image file). At the time these data were gathered, ap-
proximately 15% of all TCP connections carrying HTTP protocols
were effectively persistent (were used to request two or more ob-
jects) but more than 50% of all objects (40% of bytes) were trans-
ferred over these persistent connections.

The model is expressed as empirical distributions describing the
elements necessary to generate synthetic HTTP workloads. The
elements of the model that have the most pronounced effects on
generated traffic are summarized in Table 1. Most of the behav-
ioral elements of Web browsing are emulated in the client-side
request-generating program (the “browser”). Its primary parameter
is the number of emulated browsing users (typically several hun-
dred to a few thousand). For each user to be emulated, the program
implements a simple state machine that represents the user’s state
as either “thinking” or requesting a web page. If requesting a web
page, a request is made to the server-side portion of the program
(executing on a remote machine) for the primary page. Then re-
quests for each embedded reference are sent to some number of
servers (the number of servers and number of embedded references
are drawn as random samples from the appropriate distributions).
The browser also determines the appropriate usage of persistent
and non-persistent connections; 15% of all new connections are
randomly selected to be persistent. Another random selection from
the distribution of requests per persistent connection is used to

Table 1: Elements of the HTTP traffic model.

Element Description

Request size HTTP request length in bytes

HTTP reply length in bytes (top-level & embedded)

Response size

Page size Number of embedded (file) references per page
Think time Time between retrieval of two successive pages
Persistent con- Number of requests per persistent connection
nection use

Number of unique servers used for all objects in a
page

Consecutive page| Number of consecutive top-level pages requested
retrievals from a given server

Servers per page

determine how many requests will use each persistent connection.
One other parameter of the program is the number of parallel TCP
connections allowed on behalf of each browsing user to make em-
bedded requests within a page. This parameter is used to mimic the
parallel connections used in Netscape (typically 4) and Internet
Explorer (typically 2).

For each request, a message of random size (sampled from the
request size distribution) is sent over the network to an instance of
the server program. This message specifies the number of bytes the
server is to return as a response (a random sample from the distri-
bution of response sizes depending on whether it is a top-level or
embedded request). The server sends this number of bytes back
through the network to the browser. The browser is responsible for
closing the connection after the selected number of requests have
completed (1 request for non-persistent connections and a random
variable greater than 1 for persistent connections). For the experi-
ments reported here, the server’s “service time” is set to zero so the
response begins as soon as the request message has been received
and parsed. This very roughly models the behavior of a Web server
or proxy having a large main-memory cache with a hit-ratio near 1.
For each request/response pair, the browser program logs its re-
sponse time. Response time is defined as the elapsed time between
either the time of the socket connect() operation (for a non-
persistent connection) or the initial request (on a persistent con-
nection) or the socket write() operation (for subsequent requests on
a persistent connection) and the time the last byte of the response is
returned. Note that this response time is for each element of a page,
not the total time to load all elements of a page.

When all the request/response pairs for a page have been com-
pleted, the emulated browsing user enters the thinking state and
makes no more requests for a random period of time sampled from
the think-time distribution. The number of page requests the user
makes in succession to a given server machine is sampled from the
distribution of consecutive page requests. When that number of
page requests has been completed, the next server to handle the
next top-level request is selected randomly and uniformly from the
set of active servers. The number of emulated users is constant
throughout the execution of each experiment.

3.2 Experiment Calibrations

Offered load for our experiments is defined as the network traffic
resulting from emulating the browsing behavior of a fixed-size
population of web users. It is expressed as the long-term average
throughput (bits/second) on an un-congested link that would be
generated by that user population. There are three critical elements
of our experimental procedures that had to be calibrated before
performing experiments:

1. Ensuring that no element on the end-to-end path represented a
primary bottleneck other than the links connecting the two
routers when they are limited to 100 Mbps,

2. The offered load on the network can be predictably controlled
using the number of emulated users as a parameter to the traffic
generators, and

3. Ensuring that the resulting packet arrival time-series (e.g.,
packet counts per millisecond) is long-range dependent as ex-
pected because the distribution of response sizes is a heavy-
tailed distribution [13].

To perform these calibrations, we first configured the network
connecting the routers to eliminate congestion by running at 1
Gbps. All calibration experiments were run with drop-tail queues
having 2,400 queue elements (the reasons for this choice are dis-
cussed in Section 4). We ran one instance of the browser program
on each of the browser machines and one instance of the server
program on all the server machines. Each browser was configured
to emulate the same number of active users and the total active
users varied from 7,000 to 35,000 over several experiments. Figure
2 shows the aggregate traffic on one direction of the 1 Gbps link as
a function of the number of emulated users. The load in the oppo-
site direction was measured to be essentially the same and is not
plotted in this figure. The offered load expressed as link through-
put is a linear function of the number of emulated users indicating
there are no fundamental resource limitations in the system and
generated loads can easily exceed the capacity of a 100 Mbps link.
With these data we can determine the number of emulated users
that would generate a specific offered load if there were no bottle-
neck link present. This capability is used in subsequent experi-
ments to control the offered loads on the network. For example, if
we want to generate an offered load equal to the capacity of a 100
Mbps link, we use Figure 2 to determine that we need to emulate
approximately 19,040 users (9,520 on each side of the link). Note
that for offered loads approaching saturation of the 100 Mbps link,
the actual link utilization will, in general, be less than the intended
offered load. This is because as response times become longer,
users have to wait longer before they can generate new requests
and hence generate fewer requests per unit time.

A motivation for using Web-like traffic in our experiments was the
assumption that properly generated traffic would exhibit demands
on the laboratory network consistent with those found in empirical
studies of real networks, specifically, a long-range dependent
(LRD) packet arrival process. The empirical data used to generate
our web traffic showed heavy-tailed distributions for both user
“think” times and response sizes [13]. (Figures 3-4 compare the
cumulative distribution function (CDF), F(x) = Pr[X =< x], and
complementary cumulative distribution function (CCDF), 1 — F(x),
of the generated responses in the calibration experiments with the
empirical distribution from [13]. Note from Figure 3 that while the
median response size in our simulations will be approximately
1,000 bytes, responses as large as 10° bytes will also be generated.)

That our web traffic showed heavy-tailed distributions for both
think times (OFF times) and response size (ON times), implies that
the aggregate traffic generated by our large collection of sources
should be LRD [14]. To verify that such LRD behavior is indeed
realized with our experimental setup, we recorded fcpdumps of all
TCP/IP headers during the calibration experiments and derived a
time series of the number of packets and bytes arriving on the 1
Gbps link between the routers in 1 millisecond time intervals. We
used this time series with a number of analysis methods (aggre-
gated variance, Whittle, Wavelets) to estimate the Hurst parameter.

2e+08
1.8e+08 X
1.6e+08
é 1.4e+08 Z
=1 g
2 1.2e+08 A
< p
g e
<] 1e+08
£ e
€ 8e+07
3 /
6e+07
der07 * Measured —+— |
10457.7012 * X + 423996 ---x---
2e+07 ! L i L
2000 4000 6000 8000 10000 12000 14000 16000 18000

Browsers

Figure 2: Link throughput v. number of emulated browsing users
compared to a straight line.

0.9
0.8

0.7 /
0.6
0.5

/
0.3

0.2 /
/ |

Empirical distribution
‘Genere‘ﬁed response §izes ———————

Cumulative probability

1 10 100 1000 10000 100000 1e+06 1le+07 le+08 le+09
Response size (bytes)

Figure 3: CDF of empirical v. generated response sizes.

1

2z 0.1
=
2
] 0.01
S
[
2 0.001
<
=]
E 0.0001
o
>
8 le-05
=4
2 \
k) 1le-06 -
£ 3]
§ 1e-07 N
Empirical distribution
Generated response sizes -------
le-08 L L L 1 I !

10 100 1000 100001000001e+06 le+07 1e+08 le+09
Response size (bytes)

Figure 4: CCDF of empirical v. generated response sizes.

In all cases the 95% confidence intervals for the estimates fell in
the range 0.8 to 0.9 which indicates a significant LRD component
in the time series.

3.3 Experimental Procedures

Each experiment was run using the following automated proce-
dures. After initializing and configuring all router and end-system
parameters, the server programs were started followed by the
browser programs. Each browser program emulated an equal num-
ber of users chosen, as described above, to place a nominal offered
load on an unconstrained network. The offered loads used in the

experiments were chosen to represent user populations that could
consume 80%, 90%, 98%, or 105% of the capacity of the 100
Mbps link connecting the two router machines (i.e., consume 80,
90, 98 or 105 Mbps, respectively). It is important to emphasize
again that terms like “105% load” are used as a shorthand notation
for “a population of web users that would generate a long-term
average load of 105 Mbps on a 1 Gbps link.” Each experiment was
run for 120 minutes to ensure very large samples (over 10,000,000
request/response exchanges in each experiment) but data were
collected only during a 90-minute interval to eliminate startup
effects at the beginning and termination synchronization anomalies
at the end. Each experiment for a given AQM schemes was re-
peated three times with a different set of random number seeds for
each repetition. To facilitate comparisons among different AQM
schemes, experiments for different schemes were run with the
same sets of initial seeds for each random number generator (both
those in the traffic generators for sampling various random vari-
ables and in dummynet for sampling minimum per-flow delays).

The key indicator of performance we use in reporting our results
are the end-to-end response times for each request/response pair.
We report these as plots of the cumulative distributions of response
times up to 2 seconds.’ In these plots we show only the results
from one of the three repetitions for each experiment (usually there
were not noticeable differences between repetitions; where there
were, we always selected the one experiment most favorable to the
AQM scheme under consideration for these plots). We also report
the fraction of IP datagrams dropped at the link queues, the link
utilization on the bottleneck link, and the number of re-
quest/response exchanges completed in the experiment. These
results are reported in Table 2 where the values shown are means
over the three repetitions of an experiment.

4 AQM EXPERIMENTS WITH PACKET DROPS

For both PI and REM we chose two target queue lengths to evalu-
ate: 24 and 240 packets. These were chosen to provide two oper-
ating points: one that potentially yields minimum latency (24) and
one that potentially provides high link utilization (240). The values
used for the coefficients in the control equations above are those
recommended in [1, 8] and confirmed by the algorithm designers.
For ARED we chose the same two target queue lengths to evaluate.
The calculations for all the ARED parameter settings follow the
guidelines given in [6] for achieving the desired target delay
(queue size). In all three cases we set the maximum queue size to a
number of packets sufficient to ensure tail drops do not occur.

To establish a baseline for evaluating the effects of using various
AQM designs, we use the results from a conventional drop-tail
FIFO queue. In addition to baseline results for drop-tail at the
queue sizes 24 and 240 chosen for AQM, we also attempted to find
a queue size for drop-tail that would represent a “best practice”
choice. Guidelines (or “rules of thumb”) for determining the “best”
allocations of queue size have been widely debated in various ven-
ues including the IRTF end2end-interest mailing list. One guide-
line that appears to have attracted a rough consensus is to provide
buffering approximately equal to 2-4 times the bandwidth-delay
product of the link. Bandwidth in this expression is that of the link
and the delay is the mean round-trip time for all connections shar-
ing the link — a value that is, in general, difficult to determine.
Other mailing list contributors have recently tended to favor buff-

2 Because of space restrictions, only plots of summary results are shown
for105% load.

ering equivalent to 100 milliseconds at the link’s transmission
speed. FreeBSD queues are allocated in terms of a number of
buffer elements (mbufs) each with capacity to hold an IP datagram
of Ethernet MTU size. For our experimental environment where
the link bandwidth is 100 Mbps and the mean frame size is a little
over 500 bytes, this implies that a FIFO queue should have avail-
able about 2,400 mbufs for 100 milliseconds of buffering.

Figures 5-7 give the response-time performance of a drop-tail
queue with 24, 240 and 2,400 queue elements for offered loads of
80%, 90%, and 98% compared to the performance on the un-
congested 1 Gbps link. Loss rates and link utilizations are given in
Table 2. At 80% load (80 Mbps on a 100 Mbps link) the results for
any queue size are indistinguishable from the results on the un-
congested link. At 90% load we see some significant degradation
in response times for all queue sizes but note that, as expected, a
queue size of 24 or 240 elements is superior for responses that are
small enough to complete in under 500 milliseconds. For the
longer queue of 2,400 elements performance is somewhat better
for the longer responses. At a load of 98% there is a severe per-
formance penalty to response times but, clearly, a shorter queue of
240 elements is more desirable than one of 2,400 elements. In
Figure 7 we also see a feature that is found in all our results at high
loads where there are significant numbers of dropped packets (see
Table 2). The flat area in the curves for 24 and 240 queue sizes
shows the impact of RTO granularity in TCP — most responses
with a timeout take at least 1 second. In this study we made no
attempt to empirically determine the “optimal” queue size for the
drop-tail queue in our routers (which is likely to be somewhere
between 300 and 2,000 elements). Finding such a drop-tail queue
size involves a tradeoff between improving response times for the
very large number of small objects versus the small number of
very large objects that consume most of the network’s capacity.
Instead, we use a drop-tail queue of 240 elements as a baseline for
comparing with AQM mechanisms because it corresponds to one
of the targets selected for AQM and provides reasonable perform-
ance for drop-tail.

4.1 Results for PI with Packet Drops

Figure 8 gives the results for PI at target queue lengths of 24 and
240, and offered loads of 80%, 90%, and 98%. At 80% load, there
is essentially no difference in response times between the two tar-
get queue lengths, and their performance is very close to that ob-
tained on the un-congested network. At 90% load, the two target
queue sizes provide nearly identical results except for the 10% of
responses requiring more than 500 milliseconds to complete. For
these latter requests, the longer target size of 240 is somewhat
better. At 98% load, the shorter queue target of 24 is a better
choice as it improves response times for shorter responses but does
not degrade response times for the longer responses.

4.2 Results for REM with Packet Drops

Figure 9 gives the results for REM at target queue lengths of 24
and 240, and offered loads of 80%, 90%, and 98%. At 80% load,
there is essentially no difference in response times between the two
target queue lengths, and their performance is very close to that
obtained on the un-congested network. At 90% load, a queue refer-
ence of 24 performs much better than a target queue of 240. At
98% load, a queue reference of 24 continues to perform slightly
better than 240. Overall, REM performs best when used with a
target queue reference of 24.

100 ——

W
i
Jf

0 Il
0 500 1000 1500 2000
Response time (ms)

Cumulative probability (%)

Uncongested network
drop-tail - glen=24
drop-tail - glen=240
drop-tail - qlenf2400

o x X +

Figure 5: Drop-tail performance, 80% offered load.

100 o — S I
Mﬁ@@‘q
ﬁ
S
S
2
S 60
Q
o
S
g //I/
E) /// /
=]
£
=1
(8]

20 Uncongested network ~ + n
drop-tail - glen=24 x
drop-tail - glen=240 x

‘ drop-tail-qlen‘=2400 o
0
0 500 1000 1500 2000

Response time (ms)

Figure 6: Drop-tail performance, 90% offered load.

100 ———
30 / E/M
E)
S 60
Q
o
a
: / / /
P / // /
S
£
3
O
20 Uncongested network +]
drop-tail - glen=24 X
drop-tail - glen=240 x*
‘ drop-tail—qlen‘=2400 o
0
0 500 1000 1500 2000

Response time (ms)

Figure 7: Drop-tail performance, 98% offered load.

4.3 Results for ARED with Packet Drops

Figure 10 gives the results for ARED at the two target queue
lengths, and offered loads of 80%, 90%, and 98%. These results
are all quite surprising. In contrast to drop-tail, PI, and REM, the
results at 80% load show some degradation relative to the results
on the un-congested link. At this load there is essentially no differ-
ence in response times between the two target queue lengths. At
90% load, there is still little difference in performance among the
two target queues for ARED but the overall degradation from an
un-congested link is more substantial. At 98% load, the two set-

100 e e S Nl uwo s
80 /
S e@
: vl
2 60
Q
°
o
2 //W
E 40
g Uncongested network ~ +
=1 Pl 80load - gref=24 X
o Pl 80load - qref=240 x
20 Pl 90load - qref=24 @ |
Pl 90load - gref=240 =
Pl 98load - gref=24 o
Pl 98load - qrgf:240 .
0
0 500 1000 1500 2000
Response time (ms)
Figure 8: PI performance with packet drops.
100 H—prx
[B/E/E/Ew
I/"’/H
Lg— W
80 ﬁ *//
= | m—e— R
&
Se—e
2
T 60 fall
Q
o
s
S // ///
g 40
2 Uncongested network ~ +
3 REM 80load - gref=24 x
o REM 80load - qref=240 %
20 REM 90load - qref=24 o]|
REM 90load - qref=240 =
REM 98load - qref=24 o
BEM 98load - qrgf:240 .
0
0 500 1000 1500 2000
Response time (ms)
Figure 9: REM performance with packet drops.
100 T W
A 5=
e e
2 -
e o a—8—
2 %
8 60
=}
o
s
g // %
E 40
g Uncongested network +
=1 ARED 80load - thmin=12 thmax=36 w=1/8192 X
o ARED 80load - thmin=120 thmax=360 w=1/8192 *
20 - ARED 90load - thmin=12 thmax=36 w=1/8192 @]|
ARED 90load - thmin=120 thmax=360 w=1/8192 u
ARED 98load - thmin=12 thmax=36 w=1/8192 o
ARED 9§Ioad - thmin:129 thmax=360 w:‘l/8192 .
0
0 500 1000 1500 2000

Response time (ms)

Figure 10: ARED performance with packet drops.

tings for ARED are again almost indistinguishable from each other
and response times, overall, are very poor.

Because of the consistently poor performance of ARED, we tried
several different sets of parameters. We tried the recommended
settings for our network capacity of min,, at 60, max,, at 180 and w,
at 1/16384. We also tried varying the parameter w, from 1/1024 up
to 1/16384, but none of the settings yielded results that were better
than the ones presented here. We cannot recommend a setting for
ARED based on our experiments since the performance for all of
them are very close to each other, and yet, unsatisfactory.

100 W e ES -+
WM./‘———I’—'
; % s
2 /./'
S 60
Qo
=}
a
2 / /
E 40
3
£
3
o Uncongested network ~ +
20 - drop-tail 90load - glen=240 x 7
Pl 90load - qref=240 *
REM 90load - gqref=24 ©
ARED 99Ioad - thmin:129 thmax=360 W::!./8192 =
0
0 500 1000 1500 2000

Response time (ms)

Figure 11: Comparison of all schemes at 90% load.

100

/“/-/r_/ '

80
60 /
40

20

-

%%

Cumulative probability (%)

Uncongested network

drop-tail 98load - glen=240

Pl 98load - gref=24

REM 98load - gref=24

AREQ 98load - thmin:}z thmax=36 W:Z!./8192

WO ¥ X +

o
[

00 1000 1500 2000
Response time (ms)

Figure 12: Comparison of all schemes at 98% load.
100

//r '
N S T=N =N
80 / e v =
;\o\ -
= o ==
E 60 S A
Qo
o
s
$
E 40
3
S
=
© Uncongested network ~ +
20 | drop-tail 105load - glen=240 x|
Pl 105load - qref=24 x*
REM 105load - gqref=24 o
ARED :ILO5Ioad - thmin:|12 thmax=36 W:Z!./8192 L
0

0 500 1000 1500 2000
Reponse time (ms)

Figure 13: Comparison of all schemes at 105% load.

4.4 Comparing all Schemes with Packet Drops

At 80% load, all schemes but ARED perform comparably to an un-
congested network, and are barely distinguishable from each other.
Figures 11-14 compare the best settings, based on the overall dis-
tribution of response times, for each AQM scheme for offered
loads of 90%, 98%, and 105%. In comparing results for two AQM
schemes, we claim that the response time performance is better for
one of them if its CDF is clearly above the other’s in some sub-

0.01 \

0.001
\4\

0.0001 N

N
N

1e-06

Complementary cumulative probability (%)

+ Uncongested network
x drop-tail 98load - glen=240
1e-07 b * Pl 98load - gref=24 ,
o REM 98load - gref=24
1e-08 u ARED 98lgad - thmiq:12 thmax‘:36 W=l/8‘l
e-

10 100 1000 10000 100000 1e+06 le+07
Reponse time (ms)

Figure 14: CCDF of all schemes without ECN, 98% load.

stantial range of response times and comparable in the remaining
range. At 90% load, PI, REM, and drop-tail all provide reasonable
performance for the 80% of responses that can be completed in
400 milliseconds or less. For the remaining 20% of responses, PI
with a target queue length of 240 is better than the other schemes.
Overall, PI with a target queue of 240 provides very good perform-
ance at this load. At 98% load, PI is again somewhat superior to
the other schemes but note that the best performance is obtained
with a target queue length of 24 and that overall, no AQM scheme
can offset the performance degradation at this extreme load. At
105% load performance for all schemes degrades uniformly from
the 98% case. Table 2 also presents the link utilization, loss ratios,
and the number of completed requests for each experiment for each
AQM scheme. At 90% and 98% offered loads, drop-tail with a
queue of 240 gives slightly better link utilization than any of the
AQM schemes. It also completes slightly more request-response
exchanges than the other schemes at the same load. Drop-tail does,
however, have higher loss ratios than the other schemes. PI has
better loss ratios than REM, completes more requests, and has
better link utilization at all loads.

Figures 11-12 show that at least 90% of all responses complete in
under 2 seconds for the best AQM schemes. Figure 14 shows the
remainder of the distribution at 98% load. The conclusions drawn
from Figures 11-13 also hold for responses that experience re-
sponse times up to approximately 50 seconds (~99.95% of all re-
sponses). The remaining responses perform best under drop-tail.
Eventually ARED performance approaches that of drop-tail and is
superior to PI and REM but only for a handful of responses.

5 AQM EXPERIMENTS WITH ECN

AQM schemes drop packets as an indirect means of signaling con-
gestion to end-systems. The explicit congestion notification (ECN)
packet marking scheme was developed as a means of explicitly
signaling congestion to end-systems [12]. To signal congestion a
router can “mark” a packet by setting a specified bit in the TCP/IP
header of the packet. This marking is not modified by subsequent
routers. Upon receipt of a marked data segment, a TCP receiver
will mark the TCP header of its next outbound segment (typically
an ACK) destined for the sender of the original marked segment.
Upon receipt of this marked segment, the original sender will react
as if a single segment had been lost within a send window. In ad-
dition, the sender will mark its next outbound segment (with a
different marking) to confirm that it has reacted to the congestion.

Table 2: Loss, completed requests, and link utilizations.

. Completed .].“in]?
Offered Loss ratio requests utilization/
Load (%) (millions) throughput
(Mbps)
N N N
EC(I)\I ECN EC(I)\I ECN EC(I)\I ECN

Uncongested 80% 0 13.2 80.6
1 Gbps 90% 0 15.0 91.3
network
(drop-tail) 98% 0 16.2 98.2

105% 0 17.3 105.9
drop-tail 80% 0.2 13.2 80.3
queue size = 90% 2.7 14.4 88.4

2 98% | 65 14.9 o1.1

105% | 9.1 15.0 91.8
drop-tail 80% 0.04 13.2 80.6
queue size = 90% 1.8 14.6 89.9

240 ™08 6.0 15.1 92.0

105% 8.8 15.0 92.4
drop-tail 80% 0 13.1 80.4
queue size = 90% 0.1 14.7 88.6

2:400 ™08 3.6 15.1 91.3

105% | 7.9 15.0 91.1
PI 80% 0 0 133 132 | 802 793
Grer =24 90% 13 03 | 144 146 | 879 886

98% 3.9 1.8 | 151 149 | 893 894

105% | 6.5 25 | 151 150 | 89.9 89.5
PI 80% 0 0 131 13.1 | 80.1 80.1
Gy = 240 90% 0.1 0.1 | 147 147 | 872 882

98% 3.7 1.7 | 149 151 | 900 89.6

105% | 69 23 | 150 152 | 90.5 90.8
REM 80% | 0.01 0 132 131 | 79.8 80.1
Gryy =24 90% 1.8 0.1 | 144 146 | 864 882

98% 5.0 1.7 | 145 149 | 87.6 89.6

105% | 7.7 24 | 146 149 | 875 893
REM 80% 0 0 132 132 | 793 803
Grer =240 90% 33 02 | 140 147 | 833 886

98% 5.4 1.6 | 144 151 | 862 904

105% | 7.3 23 | 146 151 | 877 904
ARED 80% | 002 003 | 13.0 129 | 794 788
i = 12 90% 1.5 13 | 13.8 138 | 855 855
Z::l /3861 0 98% 4.1 41 | 140 139 | 874 88.0

105% | 5.1 51 | 141 141 | 873 877
ARED 80% | 002 002 | 13.0 13.1 | 802 805
th,, =120 90% 1.4 1.2 140 141 | 855 86.2
ifqz T/;’?gz 98% 48 47 | 142 141 | 879 882

105% | 6.8 63 | 139 139 | 852 858

We repeated each of the above experiments with PI, REM, and
ARED using packet marking and ECN instead of packet drops. Up
to 80% offered load, ECN has no effect on response times of any
of the AQM schemes. Figures 15-20 show the results for loads of
90% and 98%. At 90% load, with target queue length of 24, PI
performs better with ECN, however, with a target queue length of
240, there is little change in performance. At 98% load, ECN sig-

nificantly improves performance for PI at both target queue
lengths. REM shows the most significant improvement in perform-
ance with ECN. Although PI performed better than REM when
used without ECN at almost all loads, at 90% and 98% loads PI
and REM with ECN give very similar performance, and ECN has a
significant effect on PI and REM performance in almost all cases.
Overall, and contrary to the PI and REM results, ECN has very
little effect on the performance of ARED at all tested target queue
lengths at all loads.

Table 2 again presents the link utilization, loss ratios, and the
number of completed requests for each ECN experiment. PI with
ECN clearly seems to have better loss ratios, although there is little
difference in link utilization and number of requests completed.
REM’s improvement when ECN is used derives from lowered loss
ratios, increases in link utilization, and increases in number of
completed requests. With ARED, there is very little improvement
in link utilization or number of completed requests. Its loss ratios
are only marginally better with ECN.

5.1 Comparisons of PI, REM, & ARED with ECN

Recall that at 80% load, no AQM scheme provides better response
time performance than a simple drop-tail queue. This result is not
changed by the addition of ECN. Here we compare the best set-
tings for PI, REM, and ARED when combined with ECN for loads
of 90%, 98%, and 105%. The results for drop-tail (queue length
240) are also included as a baseline for comparison. Figures 21-23
show these results. At 90% load, both PI and REM provide re-
sponse time performance that is both surprisingly close to that on
an un-congested link and is better than drop-tail. At 98% load there
is noticeable response time degradation with either PI or REM,
however, the results are far superior to those obtained with drop-
tail. Further, both PI and REM combined with ECN have substan-
tially lower packet loss rates than drop-tail and link utilizations that
are only modestly lower. At 105% load the performance of PI and
REM is virtually identical and only marginally worse than was
observed at 98% load. This is an artifact of our traffic generation
model wherein browsers generate requests less frequently as re-
sponse times increase. Table 2 shows that few additional request-
response exchanges are completed at 105% load than at 98% load.
For ARED, even when used with ECN, response time performance
at all load levels is significantly worse than PI and REM except for
the shortest 40% of responses where performance is comparable.

Figure 24 shows the tails of the response time distribution at 98%
load. For AQM with ECN, drop-tail again eventually provides
better response time performance, however, the crossover point
occurs earlier, at approximately 5 seconds. The 1% of responses
experiencing response times longer than 5 seconds receive better
performance under drop-tail. ARED performance again eventually
approaches that of drop-tail for a handful of responses.

6 DISCUSSION

Our experiments have demonstrated several interesting differences
in the performance of Web browsing traffic under control theoretic
and pure random-dropping AQM. Most striking is the response
time performance achieved under PI and REM with ECN at loads
of 90% and 98%. In particular, at 90% load response time per-
formance surprisingly approximates that achieved on an un-
congested network. Approximately 90% of all responses complete
in 500 milliseconds or less whereas only approximately 95% of
responses complete within the same threshold on the un-congested
network.

100

Cumulative probability (%)

Uncongested network

80

L

40

20 /%/ drop-tail 90load - qlen=g40
Pl 90load - qref=24

Pl 90load - qref=240
PI/ECN 90load - qref=24
PI/‘ECN 90load - qrgf:240

0 500 1000 1500 2000
Response time (ms)

oOmO ¥ X +

Figure 15: PI performance with/without ECN, 90% load.
100

A= B o o]|
s
% '%WD/Z/E
3
2 /Z/
S 60
Qo
[}
s
g / W
'EB» 40
g
S Uncongested network ~ +
o drop-tail 90load - glen=240 x
20 REM 90load - gref=24 %]|
REM 90load - qref=240 O
REM/ECN 90load - qref=24 =
REM/‘ECN 90load - qr§f=240 o
0

0 500 1000 1500 2000
Response time (ms)

Figure 17: REM performance with/without ECN, 90% load.

100 ———— ; —
80
%&Hﬁ%

AN
N4

20

Cumulative probability (%)

Uncongested network

drop-tail 90load - glen=240

ARED 90load - thmin=12 thmax=36 w=1/8192

ARED 90load - thmin=120 thmax=360 w=1/8192
ARED/ECN 90load - thmin=12 thmax=36 w=1/8192
ARED/ECN 99I0ad - thmin=129 thmax=360 w=:‘l./8192

O mOx X+

0 500 1000 1500 2000
Response time (ms)

Figure 19: ARED performance with/without ECN, 90% load.

To better understand PI's distributions of response times and the
positive impact of ECN, Figures 25-26 show scatter plots of re-
sponse size versus response time for PI at 98% load. (In interpret-
ing these plots it is important to remember that the median re-
sponse size is under 1,000 bytes and the 90™ percentile response is
slightly over 10,000 bytes (see Figure 3).) For small responses,
strong banding effects are seen at multiples of 1 second represent-
ing the effects of timeouts. Of special interest is the density of the
band at 6 seconds representing the effects of a dropped SYN seg-
ment. While it appears that PI forces a large number of small re-
sponses to experience multi-second response times, PI in fact does
better in this regard than all the other AQM schemes. With the
addition of ECN, the number of timeouts is greatly reduced and PI

10

100

1=
1
/

0 500 1000 1500 2000
Response time (ms)

Cumulative probability (%)

Uncongested network
drop-tail 98load - glen=240
Pl 98load - qref=24

Pl 98load - qref=240
PI/ECN 98load - qref=24
PII‘ECN 98load - qrgf=240

o mO X X +

Figure 16: PI performance with/without ECN, 98% load.

100

T M
W e =

L -
Il cmna il

Cumulative probability (%)

O m0OX X+

20 REM 98load - qref=24
0 REM/‘ECN 98load - qrgf:240

60 / %
40
REM 98load - qref=240
0 500 1000 1500 2000

Uncongested network
drop-tail 98load - glen=240
REM/ECN 98load - gref=24

Response time (ms)

Figure 18: REM performance with/without ECN, 98% load.

100
) / ///
60 |-

40

"

e

Cumulative probability (%)

Uncongested network
drop-tail 98load - glen=240

20 ARED 98load - thmin=12 thmax=36 w=1/8192
ARED 98load - thmin=120 thmax=360 w=1/8192
ARED/ECN 98load - thmin=12 thmax=36 w=1/8192
ARED/ECN 9§Ioad - thmin:129 thmax=360 W::‘I./8192

O mO XX+

0 500 1000 1500 2000
Response time (ms)

Figure 20: ARED performance with/without ECN, 98% load.

enables the vast majority of all responses to experience response
times proportional to their RTT divided by their window size. This
is seen in Figure 26 by observing the dense triangle-shaped mass
of points starting at the origin and extending outward to the points
(100,000, 6,000) and (100,000, 500). (Note as well the existence of
similar triangles offset vertically by multiples of 1 second — the
canonical packet loss timeout.)

The second most striking result is that performance varied sub-
stantially between Pl and REM with packet dropping and this per-
formance gap was closed through the addition of ECN. A prelimi-
nary analysis of REM’s behavior suggests that ECN is not so much
improving REM’s behavior as it is ameliorating a fundamental

100 o e R e
. %ﬁﬁ I—

S

S

Cumulative probability (%)

Uncongested network

+
20 drop-tail 90load - glen=240 x|
PI/ECN 90load - qref=24 x
REM/ECN 90load - qref=24 a}
ARED/ECN 99Ioad - thminzlzp thmax=360 W=:‘L/8192 L]
0
0 500 1000 1500 2000

Response time (ms)

Figure 21: Comparison of all schemes with ECN, 90% load.

100

A ' N M =
/M e
e
80 7
g L
>
= [-
3 60 "
Q
o
s
g
E 40
3
S
3
o Uncongested network -+
20 - drop-tail 98load - glen=240 x 7
PI/ECN 98load - gref=24 x
REM/ECN 98load - gref=24 O
ARED/ECN 98load - thmin:}z thmax=36 w:}/8192 L]
0
0 500 1000 1500 2000

Response time (ms)

Figure 22: Comparison of all schemes with ECN, 98% load.

100 —— —t -
8 é e
S
2
% 60 e m R
Q
o
IS
L
g 40
=]
£
=1
o Uncongested network ~ +
20 drop-tail 105load - glen=240 x 7]
PI/ECN 105load - gqref=24 *
REM/ECN 105load - gref=24 o
ARED/ECN ‘105I0ad - thmin:‘12 thmax=36 W::!./8192 =
0
0 500 1000 1500 2000

Reponse time (ms)

Figure 23: Comparison of all schemes with ECN, 105% load.

design problem. Without ECN, REM consistently causes flows to
experience multiple drops within a source’s congestion window,
forcing flows more frequently to recover the loss through TCP’s
timeout mechanism rather than its fast recovery mechanism. When
ECN is used, REM simply marks packets and hence even if multi-
ple packets from a flow are marked within a window the timeout
will be avoided. Thus ECN appears to improve REM’s perform-
ance by mitigating the effects of its otherwise poor (compared to
PI) marking/dropping decisions.

11

l
) 0.1 \\ i &\\
3 .
[0.01
E =l
o
n 0.001
=
= \\
E 0.0001
£ \ “\\Sk
o
> le-05
8
8
g le-06 - Uncongested network I
S x drop-tail 98load - glen=240
€ 1e07} * PVECN 98load - gref=24 i
O o REM/ECN 98load - gref=24

m ARED/ECN 98load - thmin=12 thmax=36 w1 2
le_08 1 1 1 1 1
10 100 1000 10000 100000 1e+06 le+07

Reponse time (ms)

Figure 24: CCDF of all schemes with ECN, 98% load.

The final point of note is the difference in performance between
ARED and the other AQM schemes, in particular, the fact that
response time performance is consistently worse with ARED than
with drop-tail. The exact reasons for the observed differences re-
mains the subject of continued study, however, the experiments
reported here and others lead us to speculate that there are three
primary factors influencing these results. First, PI and REM oper-
ate in “byte mode” by default — they monitor the queue length in
bytes rather than packets. While ARED also has a byte mode,
“packet mode” is the recommended setting. Byte mode allows for
finer grain queue measurements but more importantly, in PI and
REM the marking/dropping probability for an individual packet is
biased by a factor equal to the ratio of the current packet size to the
average (or maximum) packet size. This means that in PI and
REM, SYNs and pure ACKs experience a lower drop probability
than data segments arriving at the router at the same time and
hence fewer SYNs and ACKs are dropped than under ARED.

Second, in ARED’s “gentle mode,” when the average queue size is
between max,, and 2xmax,, ARED drops ECN-marked packets,
following the ECN guidelines that state packets should be dropped
when the AQM scheme’s queue length threshold is exceeded in
this manner. The motivation for this rule is to more effectively
deal with potential non-responsive flows that are ignoring conges-
tion indications [12]. Our analysis indicates that this rule is in fact
counter-productive and explains much of ARED’s inability to
benefit from ECN.

Finally, PI and REM periodically sample the (instantaneous) queue
length when deciding to mark packets. ARED uses a weighted
average. We believe that the reliance on the average queue length
significantly limits ARED’s ability to react effectively in the face
of highly bursty traffic such as the Web traffic generated herein.
Of note was the fact that changing ARED’s weighting factor for
computing average queue length by an order of magnitude had no
effect on performance.

7 CONCLUSIONS

From the results reported above we draw the following conclu-
sions. These conclusions are based on a premise that user-
perceived response times are the primary yardstick of performance
and that link utilization and packet loss rates are important but
secondary measures.

10000 |
8000
6000 M

4000

Response time (ms)

L 1
0 20000 40000 60000 80000
Response size (bytes)

100000

Figure 25: Scatter plot of PI performance without ECN, 98% load.

¢ For offered loads up to 80% of bottleneck link capacity, no
AQM scheme provides better response time performance than
simple drop-tail FIFO queue management. Further, the response
times achieved on a 100Mbps link are not substantially different
from the response times on a 1 Gbps link with the same number
of active users that generate this load. This result is not changed
by combining any of the AQM schemes with ECN.

* For loads of 90% of link capacity or greater, PI results in a mod-
est improvement over drop-tail and the other AQM schemes
when ECN is not used.

¢ With ECN, both PI and REM provide significant response time
improvement at offered loads at or above 90% of link capacity.
Moreover, at a load of 90%, PI and REM with ECN provide per-
formance on a 100 Mbps link competitive with that achieved
with a 1 Gbps link with the same number of active users.

* ARED with recommended parameter settings consistently re-
sulted in the poorest response time performance. This result was
not changed with the addition of ECN.

We conclude that without ECN there is little end-user performance
gain to be realized by employing any of the AQM schemes studied
here. However, with ECN performance can be significantly im-
proved at near-saturation loads with either PI or REM. Thus, it
appears likely that provider links may be operated at 80% of ca-
pacity even when not deploying any AQM (with or without ECN).
Further, providers may be able to operate their links at even higher
load levels without significant degradation in user-perceived per-
formance provided PI or REM combined with ECN is deployed in
their routers and ECN is implemented in TCP/IP stacks on the end-
systems.

8 ACKNOWLEDGEMENTS

We are indebted to Sanjeewa Athuraliya, Sally Floyd, Steven Low,
Vishal Misra, and Don Towsley, for their assistance in performing
the experiments described herein. In addition, we are grateful for
the constructive comments of the anonymous referees and for the
help of our shepherd, Dina Katabi.

This work was supported in parts by the National Science Founda-
tion (grants ITR-0082870, CCR-0208924, and EIA-0303590),
Cisco Systems Inc., and the IBM Corporation.

12

Response time (ms)

10000

8000

6000
4000 HM

2000 E

I
80000

0 20000

40000 60000
Response size (bytes)

100000

Figure 26: Scatter plot of PI performance with ECN, 98% load.

9 REFERENCES

(1]

(2]

(3]

(4]

(31

(6]

(71

(8]

(91

[10]

(11]

[12]

[13]

(14]

S. Athuraliya, A Note on Parameter Values of REM with Reno-like
Algorithms, http://netlab.caltech.edu, March 2002.

S. Athuraliya, V. H. Li, S.H. Low, Qinghe Yin, REM: Active Queue
Management, IEEE Network, Vol. 15, No. 3, May 2001, pp. 48-53.

B. Braden, et al, Recommendations on Queue Management and Con-
gestion Avoidance in the Internet, RFC 2309, April, 1998.

M. Christiansen, K. Jeffay, D. Ott, and F.D. Smith, Tuning RED for
Web Traffic, Proc., ACM SIGCOMM 2000, Sept. 2000, pp. 139-150.

W. Feng, D. Kandlur, D. Saha, K. Shin, A Self-Configuring RED
Gateway, Proc., INFOCOM ‘99, March 1999, pp. 1320-1328.

S. Floyd, R. Gummadi, S. Shenker, Adaptive RED: An Algorithm for
Increasing the Robustness of RED’s Active Queue Management,
http:/lwww.icir.org/floyd/papers/ adaptiveRed.pdf, August 1, 2001.

S. Floyd, and V. Jacobson, Random Early Detection Gateways for
Congestion Avoidance, IEEE/ACM Transactions on Networking,
Vol. 1 No. 4, August 1993, p. 397-413.

C.V. Hollot, V. Misra, W.-B. Gong, D. Towsley, On Designing Im-
proved Controllers for AOM Routers Supporting TCP Flows, Proc.,
IEEE INFOCOM 2001, April 2001, pp. 1726-1734

L. Rizzo, Dummynet: A simple approach to the evaluation of network
protocols, ACM CCR, Vol. 27, No. 1, January 1997, pp. 31-41.

C. Kenjiro, A Framework for Alternate Queueing: Towards Traffic
Management by PC-UNIX Based Routers, Proc., USENIX 1998 An-
nual Technical Conf., New Orleans LA, June 1998, pp. 247-258.

V. Misra, W.-B. Gong,, D. Towsley, Fluid-based Analysis of a Net-
work of AOM Routers Supporting TCP Flows with an Application to
RED, Proc., ACM SIGCOMM 2000, pp. 151-160.

K. Ramakrishnan, S. Floyd, D. Black, The Addition of Explicit Con-
gestion Notification (ECN) to IP, RFC 3168, September 2001.

F.D. Smith, F. Hernandez Campos, K. Jeffay, D. Ott, What TCP/IP
Protocol Headers Can Tell Us About the Web, Proc. ACM SIGMET-
RICS 2001, June 2001, pp. 245-256.

W. Willinger, M.S. Taqqu, R. Sherman, D. Wilson, Self-similarity
through high variability: statistical analysis of ethernet LAN traffic at
the source level, IEEE/ACM Transactions on Networking, Vol. 5, No.
1, February 1997, pp. 71-86.

