
Building Rome on a Cloudless Day (ECCV 2010)1 1

Jan-Michael Frahm1, Pierre Georgel1, David Gallup1, Tim Johnson1, Rahul2 2

Raguram1, Changchang Wu1, Yi-Hung Jen1, Enrique Dunn1, Brian Clipp1,3 3

Svetlana Lazebnik1, Marc Pollefeys1,24 4

1University of North Carolina at Chapel Hill, Department of Computer Science5 5
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Abstract. This paper introduces an approach for dense 3D reconstruc-7 7

tion from unregistered Internet-scale photo collections with about 3 mil-8 8

lion of images within the span of a day on a single PC (“cloudless”). Our9 9

method advances image clustering, stereo, stereo fusion and structure10 10

from motion to achieve high computational performance. We leverage11 11

geometric and appearance constraints to obtain a highly parallel imple-12 12

mentation on modern graphics processors and multi-core architectures.13 13

This leads to two orders of magnitude higher performance on an order14 14

of magnitude larger dataset than competing state-of-the-art approaches.15 15

1 Introduction16 16

Fig. 1. Example models of our method from Rome (left) and Berlin (right) computed
in less than 24 hrs from subsets of photo collections of 2.9 million and 2.8 million
images respectively.

Recent years have seen an explosion in consumer digital photography and a17 17

phenomenal growth of community photo-sharing websites. More than 80 million18 18

photos are uploaded to the web every day,1 and this number shows no signs of19 19

slowing down. More and more of the Earth’s cities and sights are photographed20 20

1 http://royal.pingdom.com/2010/01/22/internet-2009-in-numbers
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each day from a variety of cameras, viewing positions, and angles. This has cre-21 21

ated a growing need for computer vision techniques that can provide intuitive22 22

and compelling visual representations of landmarks and geographic locations. In23 23

response to this challenge, the field has progressed quite impressively. Snavely et24 24

al. [1] were the first to demonstrate successful structure from motion (SfM) from25 25

Internet photo collections. Agarwal et al. [2] have performed camera registration26 26

and sparse 3D reconstruction starting with 150,000 images in a day on 62 cloud27 27

computers with 500 cores. Li et al. [3] have presented a system that combines28 28

appearance and multi-view geometry constraints to process tens of thousands29 29

of images in little more than a day on a single computer. There also exist tech-30 30

niques for accurate reconstruction of dense 3D models from community photo31 31

collections [4, 5], but they are currently much slower and more computationally32 32

intensive than the SfM approaches. Overall, existing systems do not measure up33 33

to the needs for reconstruction at city scale as, for example, a query for “Rome”34 34

on Flickr.com returns about 3 million images. This paper proposes a highly effi-35 35

cient system for camera registration combined with dense geometry estimation36 36

for city-scale reconstruction from millions of images on a single PC (no cloud37 37

computers = “cloudless”). The proposed system brings the computation of mod-38 38

els from Internet photo collections on par with state-of-the-art performance for39 39

reconstruction from video [6] by extending the capabilities of each step of the40 40

reconstruction pipeline to efficiently handle the variability and complexity of41 41

large-scale, unorganized, heavily contaminated datasets.42 42

Our method efficiently combines 2D appearance and color constraints with43 43

3D multi-view geometry constraints to estimate the geometric relationships be-44 44

tween millions of images. The resulting registration serves as a basis for dense45 45

geometry computation using fast plane sweeping stereo [7] and a new method46 46

for robust and efficient depth map fusion. We take advantage of the appearance47 47

and geometry constraints to achieve parallelization on graphics processors and48 48

multi-core architectures. All timings in the paper are obtained on a PC with49 49

dual Intel quadcore Xeon 3.33 Ghz processors, four NVidia 295GTX commodity50 50

graphics cards,2 48 GB RAM and a 1 TB solid state hard drive for data storage.51 51

The major steps of our method are:52 52

1) Appearance-based clustering with small codes (Sec. 3.1): Similarily to53 53

Li et al. [3] we use the gist feature [8] to capture global image appearance. The54 54

complexity of the subsequent geometric registration is reduced by clustering the55 55

gist features to obtain a set of canonical or iconic views [3]. In order to be able to56 56

fit several million gist features in GPU-memory, we compress them to compact57 57

binary strings using a locality sensitive scheme [9–11]. We then cluster them58 58

based on Hamming distance with the k-medoids algorithm [12] implemented59 59

on the GPU. To our knowledge, this is the first application of small codes in60 60

the style of [11] outside of proof-of-concept recognition settings, and the first61 61

demonstration of their effectiveness for large-scale clustering problems.62 62

2 By the time of ECCV this will correspond to two graphics cards of the next gener-
ation that will then be available, making this a state-of-the-art gaming computer.
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2) Geometric cluster verification (Sec. 3.2) is used to identify in each cluster63 63

a “core” set images with mutually consistent epipolar geometry using a fast64 64

RANSAC method [13]. All other cluster images are verified to match to either of65 65

the “core” images, and the ones found to be inconsistent are removed. Finally,66 66

we select a single iconic view as the best representative of the cluster. Given that67 67

geo-location is available for many images in the Internet photo collection, we are68 68

typically able to geo-locate a large fraction of our clusters (> 50%).69 69

3) Local iconic scene graph reconstruction (Sec. 3.3) establishes the skele-70 70

ton registration of the iconic images in the different locations. We use vocabulary71 71

tree search [14] and clustering based on geo-location and image appearance to72 72

identify neighboring iconics. Both of these strategies typically lead to sets of lo-73 73

cally connected images corresponding to the different geographically separated74 74

sites of the city. We dub these sets local iconic scene graphs. These graphs are75 75

extended by registering additional views from the iconic clusters. Our registra-76 76

tion method uses incremental SfM combined with periodic bundle adjustment77 77

to mitigate errors.78 78

5) Dense model computation (Sec. 3.4) uses all registered views in the local79 79

iconic scene graphs to obtain dense scene geometry for the captured sites. Tak-80 80

ing advantage of the initial appearance-based image grouping, we deploy fast81 81

plane sweeping stereo to obtain depth maps from each iconic cluster. To mini-82 82

mize the computational load we perform visibility-based view selection for the83 83

dense depth map computation. Then we apply a novel extension to a depthmap84 84

fusion method to obtain a watertight scene representation from the noisy but85 85

redundant depth maps.86 86

87 87

2 Previous Work88 88

Our method is the first system performing dense modeling from Internet photo89 89

collections consisting of millions of images. Systems for urban reconstruction90 90

from video have been proposed in [15, 6], with [6] achieving real-time dense 3D91 91

reconstruction. However, modeling from video is inherently much more efficient92 92

as it takes advantage of spatial proximity between the camera positions of suc-93 93

cessive frames, whereas the spatial relationships between images in a community94 94

photo collection are unknown a priori, and in fact, 40% to 60% of images in such95 95

collections turn out to be irrelevant clutter [3].96 96

The first approach for organizing unordered image collections was proposed97 97

by Schaffalitzky and Zisserman [16]. Sparse 3D reconstruction of landmarks from98 98

Internet photo collections was first addressed by the Photo Tourism system [17],99 99

which achieves high-quality results through exhaustive pairwise image matching100 100

and frequent global bundle adjustment. Neither one of these steps is very scal-101 101

able, so in practice, the Photo Tourism system can be applied to a few thousand102 102

images at most. Aiming at scalability, Snavely et al. [18] construct skeletal sets of103 103

images whose reconstruction approximates the full reconstruction of the whole104 104

dataset. However, computing these sets still requires initial exhaustive pairwise105 105



4 ECCV-10 submission ID 342

image matching. Agarwal et al. [2] parallelize the matching process and use ap-106 106

proximate nearest neighbor search and query expansion [19] on a cluster of 62107 107

machines each one comparable to our single PC. With that single PC, we tackle108 108

an order of magnitude more data in the same amount of time.109 109

The speed of our approach is a result of efficient early application of 2D110 110

appearance-based constraints, similarly to the approach of Li et al. [3]. But111 111

our system extends [3] to successfully process two orders of magnitude more112 112

data by parallelizing the computation on graphics processors and multi-core113 113

architectures. We summarize the dataset and select iconic images using 2D image114 114

appearance as a prerequisite for efficient camera registration. This is the opposite115 115

of the approach of Simon et al. [20], who treat scene summarization as a by-116 116

product of 3D reconstruction and select canonical views through clustering the117 117

3D camera poses. While our method of image organization is initially looser than118 118

that of [20], it provides a powerful pre-selection mechanism for advancing the119 119

reconstruction efficiency significantly.120 120

After selecting the iconic images, the next step of our system is to discover the121 121

geometric relationships between them and register them together through SfM.122 122

Li et al. [3] deployed a vocabulary tree [14] to rapidly find related iconics. Our123 123

system can use a vocabulary tree in the absence of geo-location information for124 124

the iconics. If this information is available, we use it to help identify possible links125 125

between iconics. The latter approach is more efficient since it avoids building126 126

the vocabulary tree. Note that the methods of [21, 22] are also applicable to127 127

discovering spatial relationships in large collections of data.128 128

To perform SfM on the set of iconic images, Li et al. [3] partitioned the129 129

iconic scene graph into multiple connected components and performed SfM on130 130

each component. In contrast, we do not cut the iconic scene graph, as such131 131

an approach is prone to excessive fragmentation of scene models. Instead, we132 132

use a growing strategy combined with efficient merging and periodic bundle133 133

adjustment to obtain higher-quality, more complete models. Our method is open134 134

to use techniques for out-of-core bundle-adjustment [23], which take advantage135 135

of the uneven viewpoint distribution in photo collections.136 136

Given the registered viewpoints recovered by SfM, we next perform multi-137 137

view stereo to get dense 3D models. The first approach demonstrating dense138 138

modeling from photo collections was proposed by Goesele et al. [4]. It uses per-139 139

pixel view selection and patch growing to obtain a set of surface elements, which140 140

are then regularized into a Poisson surface model. However, this approach does141 141

not make it easy to provide textures for the resulting models. Recently, Furukawa142 142

et al. [24] proposed a dense reconstruction method from large-scale photo collec-143 143

tions using view clustering to initialize the PMVS approach [25]. This method144 144

computes a dense model from approximately 13,000 images in about two days on145 145

a single computer assuming known camera registration. Our proposed method146 146

uses an extended version of Yang and Pollefeys stereo [7] combined with novel147 147

multi-layer depth map fusion [26]. While achieving comparable quality, it com-148 148

putationally outperforms [4, 24] by achieving modeling on a single PC within149 149

less than an hour instead of multiple days.150 150
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3 The Approach151 151

In this section we will describe our proposed method. Section 3.1 discusses the152 152

initial appearance-based clustering, and Section 3.2 discusses our method for effi-153 153

cient geometric verification of the resulting clusters. Section 3.3 explains our SfM154 154

scheme, and Section 3.4 explains our stereo fusion that leverages the appearance-155 155

based clustering for dense 3D model generation.156 156

3.1 Appearance-Based Clustering with Small Codes157 157

Similarily to Li et al. [3], we begin by computing a global appearance descriptor158 158

for every image in the dataset. We generate a gist feature [8] for each image by159 159

computing oriented edge responses at three scales (with 8, 8 and 4 orientations,160 160

respectively), aggregated to a 4×4 spatial resolution. To ensure better grouping161 161

of views for our dense reconstruction method, we concatenate the gist with a162 162

subsampled RGB image at 4× 4 spatial resolution. Both the gist and the color163 163

parts of the descriptor are rescaled to have unit norm. The combined descriptor164 164

has 368 dimensions, and it is computed on the 8 GPU cores at a rate of 781Hz3.165 165

The next step is to cluster the gist descriptors to obtain groups of images166 166

consistent in appearance. For efficiency in the clustering we aim at a GPU-based167 167

implementation, given the inherent parallelism in the distance computation of168 168

clustering algorithms like k-means and k-medoids. Since it is impossible to cluster169 169

up to 2.8 million 368-dimensional double-precision vectors in the GPU memory170 170

of 768 MB, we have chosen to compress the descriptors to much shorter binary171 171

strings, such that the Hamming distances between the compressed strings ap-172 172

proximate the distances between the original descriptors. To this end, we have173 173

implemented on the GPU the locality sensitive binary code (LSBC) scheme of174 174

Raginsky and Lazebnik [10], in which the ith bit of the code for a descriptor175 175

vector x is given by ϕi(x) = sgn[cos(x · ri + bi) + ti], where r ∼ Normal(0, γI),176 176

bi ∼ Unif[0, 2π], and ti ∼ Unif[−1, 1] are randomly chosen code parameters.177 177

As shown in [10], as the number of bits in the code increases, the normal-178 178

ized Hamming distance (i.e., Hamming distance divided by code length) be-179 179

tween two binary strings ϕ(x) and ϕ(y) approximates (1 − K(x,y))/2, where180 180

K(x,y) = e−γ‖x−y‖2/2 is a Gaussian kernel between x and y. We have compared181 181

the LSBC scheme with a simple locality sensitive hashing (LSH) scheme for unit182 182

norm vectors where the ith bit of the code is given by sgn(x · ri) [9]. As shown183 183

in the recall-precision plots in Figure 2, LSBC does a better job of preserving184 184

the distance relationships of our descriptors.185 185

We have found that γ = 4.0 works well for our data, and that the code length186 186

of 512 offers the best tradeoff between approximation accuracy and memory187 187

usage. To give an idea of the memory savings afforded by this scheme, at 32188 188

bytes per dimension, each original descriptor takes up 11,776 bytes, while the189 189

corresponding binary vector takes up only 64 bytes, thus achieving a compression190 190

factor of 184. With this amount of compression, we can cluster up to about191 191

3 code in preparation for release
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Fig. 2. Comparison of LSH coding scheme [9] and LSBC [10] scheme with different set-
tings for γ and code size on Rome data (left) and Berlin data (right). These phots show
the recall and precision of nearest-neighbor search with Hamming distance on binary
codes for retrieving the “true” k nearest neighbors according to Euclidean distance on
the original gist features (k is our average cluster size, 28 for Rome and 26 for Berlin).
For our chosen code size of 512, the LSBC scheme with γ = 4 outperforms LSH.

Fig. 3. Images closest to the center of one cluster from Rome.

4 million images on our memory budget of 768 MB, vs. only a few hundred192 192

thousand images in the original GIST representation. An example of a gist cluster193 193

is shown in Figure 3.194 194

For clustering the binary codevectors with the Hamming distance, we have195 195

implemented the k-medoids algorithm [12] on the GPU. Like k-means, k-medoids196 196

alternates between updating cluster centers and cluster assignments, but unlike197 197

k-means, it forces each cluster center to be an element of the dataset. For every198 198

iteration, we compute the Hamming distance matrix between the binary codes199 199

of all images and those that correspond to the medoids. Due to the size of the200 200

dataset and number of cluster centers, this distance matrix must be computed201 201

piecewise, as it would require roughly 1050 GB to store on the GPU.202 202

A generally open problem for clustering in general is how to initialize the203 203

cluster centers, as the initialization can have a big effect on the end results. We204 204
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found that images with available geo-location information (typically 10 − 15%205 205

of our city-scale datasets) provide a good sampling of the points of interest (see206 206

Figure 4). Thus, we first cluster the codevectors of images with available geo-207 207

location into kgeo clusters initialized randomly. Then we use the resulting centers208 208

together with additional krand random centers to initialize the clustering of the209 209

complete dataset (in all our experiments kgeo = krand). From Table 2 it can210 210

be seen that we gain about 20% more geometrically consistent images by this211 211

initialization strategy.212 212

Fig. 4. Geo-tag density map for Rome (left) and Berlin (right).

3.2 Geometric Verification213 213

The clusters obtained in the previous step consist of images that are visually214 214

similar but may be geometrically and semantically inconsistent. Since our goal215 215

is to reconstruct scenes with stable 3D structure, we next enforce geometric216 216

consistency for images within a cluster. A cluster is deemed to be consistent if it217 217

has at least n images with a valid pairwise epipolar geometry. This is determined218 218

by selecting an initial subset of n images (those closest to the cluster medoid) and219 219

estimating the two-view geometry of all the pairs in this subset while requiring220 220

at least m inliers (in all our experiments we use n = 4, m = 18). Inconsistent221 221

images within the subset are replaced by others until n valid images are found,222 222

or all cluster images are exhausted and the cluster is rejected.223 223

The computation of two-view epipolar geometry is performed as follows. We224 224

extract SIFT features [27] using an efficient GPU implementation,4 processing225 225

1024 × 768 images at up to 16.8 Hz on a single GPU. In the interest of com-226 226

putational efficiency and memory bandwidth, we limit the number of features227 227

extracted to 4000 per image. Next, we calculate the putative SIFT matches for228 228

each image pair. This computationally demanding process (which could take a229 229

few seconds per pair on the CPU) is cast as a matrix multiplication problem230 230

on multiple GPUs (with a speedup of three orders of magnitude to 740 Hz),231 231

followed a subsequent distance ratio test [27] to identify likely correspondences.232 232

4 http://www.cs.unc.edu/ ccwu/siftgpu
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Fig. 5. The geometrically verified cluster showing the Coliseum in Rome.

The putative matches are verified by estimation of the fundamental matrix233 233

with the 7-point algorithm [28] and ARRSAC [13], which is a robust estimation234 234

framework designed for efficient real-time operation. For small inlier ratios, even235 235

ARRSAC significantly degrades in performance. However, we have observed that236 236

of all registered images in the three datasets a significant fraction had inlier237 237

ratios above 50% (e.g., for San Marco, this fraction is 72%). We use this to238 238

our advantage by limiting the maximum number of tested hypotheses to 400 in239 239

ARRSAC, which corresponds to inlier ratio of approximately 50%. To improve240 240

registration performance, we take the best solution deemed promising by the241 241

SPRT test of ARRSAC, and perform a post hoc refinement procedure. The latter242 242

enables us to recover a significant fraction of solutions with less than 50% inlier243 243

ratio. Comparing the number of registered images by the standard ARRSAC and244 244

the number of images registered by our modified procedure shows a loss of less245 245

than 3% for Rome and less than 5% for Berlin of registered images while having246 246

an approximately two- to five-fold gain in speed. This result makes intuitive247 247

sense: it has been observed [18, 3] that community photo collections contain a248 248

tremendous amount of viewpoint overlap and redundancy, which is particularly249 249

pronounced at the scale at which we operate.250 250

We choose a representative or “iconic” image for each verified cluster as the251 251

image with the most inliers to the other n− 1 top images. Afterwards all other252 252

cluster images are only verified with respect to the iconic image. Our system253 253

processes all the appearance-based clusters independently using 16 threads on 8254 254

CPU cores and 8 GPU cores. In particular, the process of putative matching is255 255

distributed over multiple GPUs, while the robust estimation of the fundamental256 256

matrix utilizes the CPU cores. This enables effective utilization of all available257 257

computing resources and gives a significant speedup to about 480 Hz verification258 258

rate an example is shown in Figure 5259 259

If user provided geo-tags are available (all our city datasets have between10%260 260

and 15% geo-tagged images) we use them to geo-locate the clusters. Our geo-261 261

location evaluates the pairwise distances of all geo-tagged image in the iconic262 262

cluster. Then it performs a weighted voting on the locations of all images within a263 263

spatial proximity of the most central image as defined by the pairwise distances.264 264

This typically provides a geo-location for about two thirds of the iconic clusters.265 265
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3.3 Local Iconic Scene Graph Reconstruction266 266

After identifying the geometrically consistent clusters, we need to establish pair-267 267

wise relationships between the iconics. Li et al. [3] introduced the iconic scene268 268

graph to encode these relationships. We use the same concept but identify mul-269 269

tiple local iconic scene graphs corresponding to the multiple geographic sites270 270

within each dataset. This keeps the complexity low despite the fact that our sets271 271

of iconics are comparable in size to the entire datasets of [3].272 272

We experimented with two different schemes for efficiently obtaining can-273 273

didate iconic pairs for geometric verification. The first scheme is applicable in274 274

the absence of any geo-location. It is based on building a vocabulary tree index275 275

for the SIFT features of the iconics, and using each iconic to query for related276 276

images. The drawback of this scheme is that the mapping of the vocabulary277 277

tree has to be rebuilt specifically for each set of iconics, imposing a significant278 278

overhead on the computation. The second scheme avoids this overhead by using279 279

geo-location of iconic clusters. In this scheme, the candidate pairs are defined280 280

as all pairs within a certain distance s of each other (in all our experiments set281 281

to s = 150 m). As for the iconics lacking geo-location, they are linked to their282 282

l-nearest neighbors (l = 10 in all experiments) in the binarized gist descriptor283 283

space (the distance computation uses GPU-based nearest-neighbor searh as in284 284

the k-medoids clustering). We have found this second scheme to be more effi-285 285

cient whenever geo-location is available for a sufficient fraction of the iconics (as286 286

in our Rome and Berlin datasets). For both schemes, all the candidate iconic287 287

pairs are geometrically verified as described in Section 3.2, and the pairs with a288 288

valid epipolar geometry are connected by an edge. Each connected set of iconics289 289

obtained in this way is a local iconic scene graph, usually corresponding to a290 290

distinct geographic site in a city.291 291

Next, each local iconic scene graph is processed independently to obtain a292 292

camera registration and a sparse 3D point cloud using an incremental approach.293 293

The algorithm picks the pair of iconic images whose epipolar geometry given by294 294

the essential matrix (computed as similarly to Section 3.2) has the highest inlier295 295

number and delivers a sufficiently low reconstruction uncertainty, as computed296 296

by the criterion of [29]. Obtaining a metric two-view reconstruction requires a297 297

known camera calibration, which we either obtain from the EXIF-data of the298 298

iconics (there are 34% EXIF based calibrations for the Berlin dataset and 40%299 299

for Rome),or alternatively we approximate the calibration by assuming a popular300 300

viewing angle for the camera model. The latter estimate typically approximates301 301

the true focal length within the error bounds of successfully executing the five-302 302

point method [30]. To limit drift after inserting i new iconics, the 3D sub-model303 303

and camera parameters are optimized by a sparse bundle adjustment [31]. The304 304

particular choice of i is not critical and in all our experiments we use i = 50. If305 305

no new images can be registered into the current sub-model, the process starts306 306

afresh by picking the next best pair of iconics not yet registered to any sub-307 307

model. Note that we intentionally construct multiple sub-models that may share308 308

some images. We use these images to merge newly completed sub-models with309 309

existing ones whenever sufficient 3D matches exist. The merging step again uses310 310
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ARRSAC [32] to robustly estimate a similarity transformation based on the311 311

identified 3D matches.312 312

In the last stage of the incremental reconstruction algorithm, we complete the313 313

model by incorporating non-iconic images from iconic clusters of the registered314 314

iconics. This process takes advantage of the feature matches between the non-315 315

iconic images and their respective iconics known from the geometric verification316 316

(Section 3.2). The 2D matches between the image and its iconic determine 2D-317 317

3D correspondences between the image and the 3D model into which the iconic318 318

is registered, and ARRSAC is once again used to determine the camera pose.319 319

Detailed results of our 3D reconstruction algorithm are shown in Figure 6, and320 320

timings in Table 1.321 321

3.4 Dense geometry estimation322 322

Once the camera poses have been recovered, the next step is to recover the323 323

surface of the scene, represented as a polygonal mesh, and to reconstruct the324 324

surface color represented as a texture map. We use a two-phase approach for325 325

surface reconstruction: first, recover depthmaps for a select number of images,326 326

and second, fuse the depthmaps into a final surface model.327 327

One of the major challenges of stereo from Internet photo collections is ap-328 328

pearance variation. Previous approaches [4, 33] take great care to select compat-329 329

ible views for stereo matching. We use the clustering approach from Section 3.1330 330

to cluster all images registered in the local iconic scene graph. Since our gist331 331

descriptor encodes color, the resulting clusters are color-consistent. The avail-332 332

ability of color-consistent images within a spatially confined area enables us to333 333

use traditional stereo methods and makes dense reconstruction a simpler task334 334

than might othewise be thought. We use a GPU-accelerated plane sweep stereo335 335

[34] with a 3×3 normalized cross-correlation matching kernel. Our stereo deploys336 336

20 matching views, and handles occlusions (and other outliers) through taking337 337

the best 50% of views per pixel as suggested in [35]. We have found that within338 338

a set of 20 views, non-identical views provide a sufficient baseline for accurate339 339

depth computation.340 340

We adapted the vertical heightmap approach of [36] for depthmap fusion to341 341

handle geometrically more complex scenes. This method is intended to compute342 342

a watertight approximate surface model. The approach assumes that the verti-343 343

cal direction of the scene is known beforehand. For community photo collections,344 344

this direction can be easily obtained using the approach of [37] based on the as-345 345

sumption that most photographers will keep the camera’s x-axis perpendicular346 346

the vertical direction. The heightmap is computed by constructing an occupancy347 347

grid over a volume of interest. All points below the heightmap surface are con-348 348

sidered full and all points above are considered empty. Each vertical column of349 349

the grid is computed independently. For each vertical column, occupancy votes350 350

are accumulated from the depthmaps. Points between the camera center and the351 351

depth value receive empty votes, and points beyond the depth value receive a352 352

full vote with a weight that falls off with distance. Then a height value is deter-353 353

mined that minimizes the number of empty votes above and the number of full354 354
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Gist & SIFT & Local iconic
Dataset Clustering Geom. verification scene graph Dense total time

Rome & geo 1:35 hrs 11:36 hrs 8:35 hrs 1:58 hrs 23:53 hrs
Berlin & geo 1:30 hrs 11:46 hrs 7:03 hrs 0:58 hrs 21:58 hrs
San Marco 0:03 hrs 0:24 hrs 0:32 hrs 0:07 hrs 1:06 hrs

Table 1. Computation times (hh:mm hrs) for the photo collection reconstruction for
the Rome dataset using geo-tags, the Berlin dataset with geo-tags, and the San Marco
dataset without geo-tags.

LSBC #images
Dataset total clusters iconics verified 3D models largest model

Rome & geo 2,884,653 100, 000 21,651 306788 63905 5671
Rome 2,884,653 100, 000 17874 249689 - -
Berlin & geo 2,771,966 100, 000 14664 124317 31190 3158
San Marco 44, 229 4,429 890 13604 1488 721

Table 2. Image sizes for the the Rome dataset, the Berlin dataset, and the San Marco
dataset.

votes below. Our extension is to allow the approach to have multiple connected355 355

“segments” within the column, which provides higher quality mesh models while356 356

maintaining the regularization properties of the original approach. A polygonal357 357

mesh is then extracted from the heightmap and texture maps are generated from358 358

the color images. The heightmap model is highly robust to noise and it can be359 359

computed very efficiently on the GPU.360 360

The resolution of the height map is determined by the median camera-to-361 361

point distance which is representative of the scale of the scene and the accuracy362 362

of the depth measurements. The texture of the mesh models is then computed as363 363

the mean of all images observing the geometry. Runtimes are provided in Table364 364

1.365 365

4 Conclusions366 366

This paper demonstrated the first system able to deliver dense geometry for367 367

Internet scale photo collections with millions of images of an entire city within368 368

the span of a day on a single PC. Our novel methods extend to the scale of369 369

millions of images state-of-the-art methods for appearance-based clustering [3],370 370

robust estimation [32], and stereo fusion [36]. To successfully handle reconstruc-371 371

tion problems of this magnitude, we have incorporated novel system components372 372

for clustering of small codes, geo-location of iconic images through their clus-373 373

ters, efficient incremental model merging, and enhanced stereo view selection374 374

through appearance-based clustering. Beyond making algorithmic changes, we375 375

significantly improve performance by leveraging the constraints from appearance376 376

clustering and location independence to parallelize the processing on modern377 377

multi-core CPUs and commodity graphics cards.378 378
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Fig. 6. Original images, local iconic scene graph and 3D model.


