
EXAMPLE-BASED IMAGE COMPRESSION

Jing-Yu Cui,∗ Saurabh Mathur, Michele Covell, Vivek Kwatra, Mei Han

Google Research, Google Inc., Mountain View CA 94043

ABSTRACT

The current standard image-compression approaches rely on fairly
simple predictions, using either block- or wavelet-based methods.
While many more sophisticated texture-modeling approaches have
been proposed, most do not provide a significant improvement in
compression rate over the current standards at a workable encod-
ing complexity level. We re-examine this area, using example-based
texture prediction. We find that we can provide consistent and sig-
nificant improvements over JPEG, reducing the bit rate by more
than 20% for many PSNR levels. These improvements require con-
sideration of the differences between residual energy and predic-
tion/residual compressibility when selecting a texture prediction, as
well as careful control of the computational complexity in encoding.

Index Terms— Image compression, Texture analysis

1. INTRODUCTION

Current standardized compression approaches can be thought of
as being wavelet- or block-based models of image structure. The
wavelet-based models, such as JPEG2000 [1], model image corre-
lations as being localized in a simple spatial-frequency dependent
manner. While this corresponds well to the most general image
statistics, it fails to model changes seen at texture and object bound-
aries, resulting in “ringing” across quantized frequency bands, with
the spatial extent of the ringing dependent on the frequency band.

This frequency-dependent error diffusion is very different from
the type of error seen with block-based compression approaches,
such as JPEG [2] and H.264 [3]. With block-based prediction, the
quantization error associated with texture or object boundaries is
typically localized to the block in which it occurs. This difference
means that, for block-based methods, many visible artifacts are as-
sociated with the blocking structure of the compression approach
itself.

A variety of image compression approaches try to combine spa-
tial locality with better across-frequency modeling, using spatially-
based texture modeling [4, 5, 6]. In past work, these methods have
either suffered from a high overhead cost, describing the parameter-
ized texture models [6], or prohibitively high computational com-
plexity in encoding [4].

In Section 2, we consider example-based texture modeling for
compression, but minimize the overhead of the model communica-
tion using previously transmitted image structure to predict which
examples are most likely to provide good predictions. Instead of
simply using mean-square error to select the best prediction, we
move to a model that includes the encoding rate for the predictor and
the prediction residual. In Section 3, we develop an approach which

∗currently at Stanford University, Stanford CA 94305

minimizes the costs associated with communicating the selected pre-
diction. Section 4 explicitly addresses the encoding complexity and
provides a heuristic approach that allows us to encode large images
efficiently. We conclude with results (Section 5) and future work
(Section 6).

2. TEXTURE PREDICTION BY DICTIONARY

Example-based texture prediction can be done using a fixed dictio-
nary, as with vector quantizers and texture samplers [7], or using the
previously communicated patches of the image. The advantage of
using (reconstructed) patches from the same image is the spatial de-
pendencies within textured regions will often provide better matches
to the current region of interest. Our results are drawn from this sec-
ond approach to dictionary formation, but since the overall approach
is easily used with a fixed dictionary as well, we discuss our ap-
proach according to that terminology. For conceptual purposes, we
can consider all previously transmitted image patches as being our
dictionary.

Whichever way we obtain the dictionary, for each block within
our target image (that is, the to-be-compressed image), we need to
pick a prediction that will give the best rate-distortion trade off for
that part of the image. To select the dictionary entry that provides
the best compression, ideally we would run through the full analysis-
synthesis cycle for each predictor in the dictionary. This would in-
volve iterating through the dictionary textures, using each term as
the prediction for the current block, noting how many bits will be
needed to transmit the (quantized) compressed residual between this
prediction and the target block and how many bits will be needed to
communicate that choice for the predictor as well as the error that
remains in the decoded image after combining the dictionary texture
with the (quantized) compressed residual.

To complete this analysis-synthesis process, we need to decide
how the predictor selection will be encoded and how the residual
will be compressed and encoded. We discuss the predictor-selection
encoding in Section 3, which leaves the residual encoding, discussed
next.

A simple, but inefficient, method for encoding the residual
would be to simply transmit the quantized residual in the spatial
domain, with no further compression beyond what is provided by
quantization and single-coefficient entropy coding. This approach is
very inefficient, taking an average of 2.5 bits per pixel to transmit
the residual, but corresponds well with using the quantized residual
energy as the predictor selection criteria [3]. Using more efficient
compression on the residual, such as described next, requires addi-
tional processing to pick the best predictor.

To take advantage of the remaining spatial correlation in the
residual, we use the standard Discrete Cosine Transform (DCT)



Fig. 1: The predictor patch, selected from our dictionary, is encoded
indirectly, using a rank ordering based on the match quality of pre-
viously transmitted neighbor pixels. The encoder-selected predictor
patch based on the choice that leads to the minimum number of bits
for a given reconstruction error.

residual compression scheme, which is used in block-based image
and video compression. The residual from the block is transformed
into the frequency domain, using a DCT. This residual is then quan-
tized according to a quality parameter, which is in turn translated
into a quantization step size that increases with the spatial frequency
of the DCT coefficient, similar to what is proposed by [8]. The non-
zero coefficients are encoded in the standard zig-zag-scan order,
with zero-run-length encoding and omission of high-frequency, iso-
lated non-zero components. This type of run-length encoding in the
residual frequency domain, with a bias towards the non-zero entries
occurring in the lower-frequency ranges, provides the best residual
compression. This method of residual encoding is also responsible
for the failings of the L2 residual measure in ranking the predictor
patches according to final compression rate. The predictors that re-
sult in quantized residuals with a few distinct non-zero coefficients,
all at low spatial frequencies, will take far fewer bits to transmit than
those with quantized residuals with lower total energy spread over
many frequency coefficients, especially if a significant number of
those non-zero coefficients are at higher frequencies.

By running the actual analysis-synthesis process for each predic-
tion patch, we can accurately determine the number of bits needed
for each of these options as well as the image distortion introduced
by the quantization. The distortion is measured at the encoder by
comparing the original residual with the transmitted residual. The
bit rate is measured by combining the count of the residual-related
bits with the predictor-selection bits, which is discussed in the next
section.

3. EFFICIENT OVERHEAD ENCODING

The bit stream must include enough information that the decoder
can determine what predictor was used by the encoder. One simple
approach uses a fixed encoding, where the bit-stream symbol asso-
ciated with a given dictionary entry does not change but instead is
based on some measure of average frequency of use. For dictionar-
ies formed from previously transmitted sections of the image, this
fixed-symbol approach could correspond to the offset between the
predictor texture and the target texture. For the dictionary sizes and
distributions that we tested, this fixed-symbol approach took an av-
erage of 10 bits per image block to communicate.

Fig. 2: Rate-distortion curves for example-based coding, using dif-
ferent predictor selections, averaged across 160 test images. (JPEG
RD curve included for reference.)

In our experiments, a context-aware approach to symbol assign-
ment provided the best compression. Of the approaches that we
tried, using the previously transmitted neighbor pixels to the tar-
get block (the yellow “L” in Figure 1) gave the best results. With
this approach, the dictionary entries are associated with a similar
set of boundary pixels. When the dictionary entries are reconstruc-
tions from previously transmitted sections of the image, these extra
boundary pixels can be taken directly from those reconstructions.

Using the known “L” boundary pixels from the current target,
we can rank the dictionary entries, based on how well the corre-
sponding boundary pixels from each entry match the target-block
boundary. We use simple L2 distance to measure this match qual-
ity on the boundary. Since the decoder and the encoder can both
rank the dictionary entries in this way, we can use this rank to define
the symbol that is used for each dictionary entry, at each new target
block encoding. The chosen predictor typically has a small rank,
owing to the correlation between the L2 matching of “L” shapes and
the true analysis-synthesis based matching of complete blocks. This
fact, along with the use of entropy coding for the ranks, allows us to
reduce the number of bits needed to communicate the block predic-
tor from 10 bits per block down to 2 bits per block.

Additionally, since we are pulling predictor blocks from a single
image (that is, the previous sections of the to-be-encoded image),
we modified the predictor encoding process slightly to reward spa-
tial continuity in the prediction process: the predictor patch that is
spatially consistent with the predictors used by the previous neigh-
boring blocks is assigned the top rank in the decoder/encoder predic-
tor rankings for the current block. In this way, we bias our predictor
selection and minimize block boundary artifacts.

4. COMPUTATIONAL COST

The full analysis-synthesis approach provides us with the best choice
for compressing each image block. Based on our experiments (Fig-
ure 2), this allows us to improve our compression rate by 6–7 bits
per 16×16 image block over what we would achieve using a simple
L2 selection. However, the cost of this full evaluation is impractical.
Instead, we complete this evaluation for our final selection but only
after limiting our range of choices.



We limit our selection process in stages. At the first cut, we
limit the selection to the top N = 1024 dictionary entries, based
on the ranking given by the “L”-boundary match. This first cut also
allows us to assign variable length symbols for a known size alphabet
(N = 1024 symbols), which make the encoding more efficient.

Even with only 1024 predictors to evaluate, the full rate-
distortion evaluation is too computationally expensive for efficient
encoding: the encoder would be about 1024 times slower than a
simple JPEG encoding process, since the forward and reverse DCT
evaluations would need to be repeated that often for each block.

To avoid this encoding inefficiency, we want to have a compu-
tationally efficient method that will give rankings that are similar to
the full rate-distortion evaluation. As is suggested by previous ap-
proaches [3], the residual energy is a fairly accurate measure of the
expected rate-distortion given by a prediction: it is not as good as
the full analysis-synthesis selection process, but it is good enough to
further limit the set of candidate predictors for final evaluation.

Using this insight, on the encoder side, we re-rank the N =
1024 predictors that pass the “L”-boundary criteria according to their
residual energy. The M candidates that have the lowest residual
energy are then re-evaluated by the analysis-synthesis criteria, for
final selection of the encoder predictor that will be used. In our
experiments, we have found that this bit-rate improvement curve
quickly approaches the lowest rate given by the full-RD-evaluation
approach: M = 2 and M = 6 already recover 25% and 50%, re-
spectively, of the full RD-evaluation savings at a small fraction of
the computational cost. Within this M = 2 − 6 range, the selected
M is clearly a trade-off between encoder compression and encoder
speed: generally, the encoder speed will be approximately M times
slower than simple JPEG encoding.

5. EXPERIMENTAL RESULTS

To test our approach, we used 16,473 Google 768×1024 Street View
images. This set includes an interesting mix of natural objects (trees,
bushes, people) and man-made artifacts (buildings, cars, roads). It
was selected as a clean source of compression-artifact-free images
as well as a strong test in terms of differences from the small “stan-
dard” set that we used for developing our compression approach and
settings.

We compare the results of our approach, using as the dictio-
nary, the previously reconstructed blocks from the same image, with
the JPEG implementation in libjpeg version 6.2 from the Indepen-
dent JPEG Group [9]. At the compression rates we examine, JPEG
and JPEG2000 have very similar rate-distortion (R-D) curves, using
PSNR: this conclusion is based on a comparison of the JPEG and
JPEG20001 PSNR R-D curves, evaluated over a small subset of our
testing images and at compression rates between 0.05 and 0.4 bits
per pixel. Similar conclusions have been reported in other studies
of non-perceptual comparisons of JPEG and JPEG2000 [11]. By
choosing JPEG as our reference instead of JPEG2000, we see the
same reference performance levels at significantly lower computa-
tion. Using JPEG as our baseline also provides us with directly
comparable compression artifacts, since our example-based coding
is also block based and most of its artifacts are at block boundaries.

1The JPEG2000 encoder we used for this comparison was Kakadu Soft-
ware version 6.0 [10].

(a)

(b)

Fig. 3: Rate-distortion comparisons of example-based coding and
JPEG on 16,473 test images. (a) Rate-distortion rates (b) Paired
analysis at 37-dB quality settings.

We compressed the entire set of 16K images using both ap-
proaches (JPEG as well as our approach) at 100 different quality
levels, and computed average statistics (bit-rate and PSNR) over all
images for each quality level individually. We also ran a paired
comparison of the two compression methods: on each test image,
we picked the quantization levels for a 37-dB quality level and then
plotted the percent bandwidth savings versus quality change, per im-
age. As shown in Figure 3, our approach consistently does better
than JPEG, with the most pronounced savings at lower PSNR val-
ues. Based on our paired analysis (Figure 3b), the example-based
approach uses 27% less bandwidth (σ = 11%) on the paired com-
pressions, while improving the quality by 2% (σ = 1%). Due to the
large sample size (along with the paired analysis), these changes are
statistically highly significant, with both giving a paired Student’s
t > 200.

Figure 4 shows a qualitative comparison of our results with
JPEG. We compressed the image using our technique to 15KB and
34.6dB PSNR. For comparison, we show two JPEG results, one
matching our compression rate (Figure 4c) and the other matching
our PSNR (Figure 4d). At equal compression rates, we improved 2.8
dB over JPEG (34.6 dB vs. 31.8dB). At equal PSNR, we reduced
bandwidth by 32% over JPEG (15KB vs. 22KB). Figure 4(d,e) il-
lustrates the relative spatial error distribution of the two approaches
(compared at the same PSNR): in each case, we only plot those
pixels where the corresponding approach does better than the other;
the brightness of a pixel indicates the amount of gain (difference in
residual errors).

Overall, our approach has lower error at almost twice more pix-



(a) (b) (c) (d) (e) (f)

Fig. 4: Comparison with JPEG (zoomed inset view). (a) Original image, (b) Our result (15KB, 34.6dB), (c) JPEG result (15KB, 31.8dB), (d)
JPEG result (22KB, 34.6dB), (e,f) Bright pixels have lower error for (e) our method and (f) JPEG at same PSNR.

els than JPEG. For our approach, the gains are strongly aligned
with repetitive structures, such as window edges in buildings, and
lightly textured regions such as the sky and the road. Intuitively, our
example-based prediction does a better job at predicting such repet-
itive structures. We also observe that in lightly-textured regions, our
approach has fewer blocking and color artifacts compared to JPEG.
On the other hand JPEG’s gains are more spatially diffuse: for exam-
ple, it performs well on the wide, white stripes on the road, where the
stripe width covers several full JPEG blocks and has a flat internal
texture.

6. CONCLUSION AND FUTURE WORK

We have developed a general approach to image compression based
on a dictionary of predictor patches. The quality of the compres-
sion is improved by selecting the predictor using repeated analysis-
synthesis evaluation of the available choices. The transmission over-
head of the predictor is minimized using dynamic symbol assign-
ment, where the assignment is based on the match quality of pre-
viously transmitted neighbor pixels for the current location and the
predictor. Finally, the encoding complexity is controlled by limit-
ing the number of analysis-synthesis evaluations that are done for
each compression block to only those predictor patches that are most
likely to provide good results. In this way, we benefit from the more
complex texture models that can be included in an example-based
dictionary, without losing its compression benefits in predictor over-
head and without creating an unusably complex encoder.

Our overall improvement in compression quality was fairly con-
stant at 0.05–0.06 bits per pixel, up to around 40 dB PSNR, at which
point it drops to merely even with JPEG, just above 45 dB PSNR.
At 37 dB PSNR, this is a 27% bandwidth savings. This compres-
sion savings was achieved by reducing the bits used to encode the
residual by about 30%, through texture prediction with a predictor
communication overhead of 2-3 bits per 16× 16 block.

This approach is general to many other contexts, including audio
and video encoding. It can also be used with dictionaries taken from
other images, such as previous video frames or from standardized
dictionaries. It can be extended to use separate predictions on dif-
ferent frequency bands, similar to the approaches used with wavelet-
based methods.

7. REFERENCES

[1] M. Boliek, J. S. Houchin, and G. Wu, “JPEG 2000 next gen-
eration image compression system features and syntax,” in
Proc. International Conference on Image Processing, 10–13
Sept. 2000, vol. 2, pp. 45–48.

[2] Gregory K. Wallace, “The JPEG still picture compression stan-
dard,” Commun. ACM, vol. 34, no. 4, pp. 30–44, 1991.

[3] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra,
“Overview of the H.264/AVC video coding standard,” vol. 13,
no. 7, pp. 560–576, July 2003.

[4] Michael F. Barnsley and Lyman P. Hurd, Fractal image com-
pression, A. K. Peters, Ltd., Natick, MA, USA, 1993.

[5] Vivek Kwatra, Irfan Essa, Aaron Bobick, and Nipun Kwatra,
“Texture optimization for example-based synthesis,” in SIG-
GRAPH ’05: ACM SIGGRAPH 2005 Papers, New York, NY,
USA, 2005, pp. 795–802, ACM.

[6] Huamin Wang, Yonatan Wexler, Eyal Ofek, and Hugues
Hoppe, “Factoring repeated content within and among im-
ages,” in SIGGRAPH ’08: ACM SIGGRAPH 2008 papers,
New York, NY, USA, 2008, pp. 1–10, ACM.

[7] Li-Yi Wei, Jianwei Han, Kun Zhou, Hujun Bao, Baining Guo,
and Heung-Yeung Shum, “Inverse texture synthesis,” in SIG-
GRAPH ’08: ACM SIGGRAPH 2008 papers, New York, NY,
USA, 2008, ACM.

[8] H. A. Peterson, H. Peng, J. H. Morgan, and W. B. Pennebaker,
“Quantization of color image components in the DCT domain,”
in Proc. SPIE Human Vision, Visual Processing, and Digital
Display, 1991, pp. 210–222.

[9] Thomas G. Lane, “Independent JPEG group’s libjpeg version
6.2,” in http://www.ijg.org, 2008.

[10] Kakadu Software, “Kakadu JPEG2000 version 6.0,” in
http://www.kakdusoftware.com, 2009.

[11] D. Santa-Cruz and T. Ebrahimi, “A study of JPEG2000 still im-
age coding versus other standards,” in Proc. European Signal
Processing Conference, 5–8 Sep. 2000, pp. 673–676.


