
Fast Covariance Computation and
Dimensionality Reduction for Sub-Window

Features in Images

Vivek Kwatra and Mei Han

Google Research, Mountain View, CA 94043

Abstract. This paper presents algorithms for efficiently computing the
covariance matrix for features that form sub-windows in a large multi-
dimensional image. For example, several image processing applications,
e.g. texture analysis/synthesis, image retrieval, and compression, operate
upon patches within an image. These patches are usually projected onto a
low-dimensional feature space using dimensionality reduction techniques
such as Principal Component Analysis (PCA) and Linear Discriminant
Analysis (LDA), which in-turn requires computation of the covariance
matrix from a set of features. Covariance computation is usually the bot-
tleneck during PCA or LDA (O(nd2) where n is the number of pixels
in the image and d is the dimensionality of the vector). Our approach
reduces the complexity of covariance computation by exploiting the re-
dundancy between feature vectors corresponding to overlapping patches.
Specifically, we show that the covariance between two feature compo-
nents can be reduced to a function of the relative displacement between
those components in patch space. One can then employ a lookup table
to store covariance values by relative displacement. By operating in the
frequency domain, this lookup table can be computed in O(n log n) time.
We allow the patches to sub-sample the image, which is useful for hier-
archical processing and also enables working with filtered responses over
these patches, such as local gist features. We also propose a method for
fast projection of sub-window patches onto the low-dimensional space.

1 Introduction

We consider the problem of efficiently computing the covariance matrix for fea-
ture vectors that can be expressed as sub-windows in a large image. This prob-
lem occurs in construction of codebooks for image patches, where each patch
(sub-window) in the image is projected to a low-dimensional space using a di-
mensionality reduction technique such as Principal Component Analysis (PCA)
or Linear Discriminant Analysis (LDA). This low-dimensional representation is
then useful for several tasks such as matching (search for patches with matching
feature vectors in texture analysis/synthesis, example-based super-resolution,
non-local image denoising and inpainting), compression (using Vector Quanti-
zation), and detection/recognition (e.g. face recognition using wavelet features).



2 Vivek Kwatra and Mei Han

Sub-window features may not be limited to 2D images, but also useful in 1D
time-series such as audio signals and for 3D analysis in volumetric data or video.

We present an algorithm for efficiently computing the covariance matrix from
these sub-window features by exploiting the redundancy between overlapping
windows. Specifically, we show that the covariance between two feature compo-
nents can be expressed as a function of the relative displacement between those
components in patch space. This further reduces to a cross-correlation operation
which can be computed quickly in frequency domain. Using a similar analysis,
the projection of sub-window features onto the low-dimensional PCA or LDA
basis can also be expressed as a cross-correlation (or filtering) operation, and
therefore computed efficiently.

We are particularly motivated by texture analysis and synthesis tasks, where
image patches or their filtered representations are used as descriptors of local
image texture. Recent work on scene analysis employs gist descriptors for im-
ages [21]. The local version which computes gist features for sub-images and pro-
vides textural information for similar patch search is also based on sub-window
features. Computing these descriptors requires learning weights for filter bank
responses of the image. An intermediate step involves performing PCA over fea-
tures representing sub-windows in the filtered response images. Due to the high
dimensionality of these feature vectors, image windows are usually sub-sampled
before performing PCA. However, using our approach, PCA can be performed
efficiently without resorting to sub-sampling.

In example-based synthesis, super-resolution, and denoising algorithms [19,
7, 2], image patches matching a target patch are searched for repeatedly, mak-
ing low-dimensional representations valuable for faster performance. PCA is a
popular choice for this purpose, but may need to be applied to each example
image independently for superior synthesis quality. Our fast covariance com-
putation and low-dimensional projection algorithms significantly speed up the
pre-processing time for these applications. Note that the local gist features de-
scribed above can also be used in synthesis tasks for searching similar patches.

2 Related Work

Data analysis techniques such as PCA [22], LDA [6] and factor analysis [5] em-
ploy covariance matrix computation as an essential step. We specifically focus
on dimensionality reduction of image patches, and the fast computation of co-
variance matrices for that purpose. Such efficient covariance computation would
benefit several image processing applications including texture synthesis [19, 17,
27], image and video compression [28, 20], super resolution [7, 13, 26], non-local
denoising [2, 1], inpainting [4, 15], image modeling [14], and image descriptors
computation [12, 21].

Covariance estimation for high dimensional vectors is a classically difficult
problem because the number of coefficients in the covariance grows as the dimen-
sion squared [25, 8, 10]. Most work on estimation of covariance matrices approxi-
mates the actual covariance matrix on the basis of a sample from a multivariate



Fast Covariance Computatation and Dimensionality Reduction 3

distribution. Higham [9] provided a method for computing the nearest covari-
ance matrix when only partially observed data are available. Cao and Bouman [3]
presented a technique based on constrained maximum likelihood estimation for
covariance matrices with n < d, where n versions of a d dimensional vector are
given. We are solving the n >> d case in which the observations are complete.
We provide an efficient approach for the unique situation where the high dimen-
sional vectors are sub-windows sliding in a large domain, such as from an image
or an acoustic signal.

Qi and Leahy [24] described an approximate technique for fast computation
of the covariance using maximum a-posteriori estimation. They extracted the
covariance from multiple images. Porikli and Tuzel [23] presented an integral
image based algorithm to efficiently extract covariance matrices from a given
image. Their feature vector is composed of values defined at a single pixel. The
typical dimensionality used in [23] is d ≈ 7. On the contrary, in our method
feature vectors are composed of values that span multiple pixels (patches) and
have much higher dimensionality (d = 3072 for 32×32 RGB patches). One could
express a patch based feature vector by unrolling the entire patch at every pixel
and subsequently apply the integral based method for covariance computation.
However, as per [23], computing the integral image takes O(nd2) time and storage
(as d+d2 integral images need to be computed). For large d-values, this is much
slower than our method, which takes O(n log n) time. Moreover, the storage
requirements for the integral image method are prohibitive in this case, requiring
more than 20GB for a 100×100 image! The advantage of the integral image based
method is that it allows covariance calculation over arbitrary windows in O(d2)
time once the integral images have been computed. Our method on the other
hand operates over the whole image (or a fixed window), but can handle an
arbitrary mask or pixel weights if they are known a-priori.

3 Fast Covariance Computation

Computation of the covariance matrix from a given set of feature vectors is
an expensive operation when the number and/or dimensionality of the feature
vectors is large. A set of n feature vectors of dimensionality d can be expressed
as the feature matrix F:

F = (f1 f2 . . . fn), where fi = (fi1 fi2 . . . fid)T

is the ith feature vector. The covariance matrix over these feature vectors (as-
suming zero-mean)1 is:

C =
1
n
FFT =

1
n

n∑
i=1

fifT
i ,

1 The true covariance matrix is obtained by subtracting the outer product of the mean
vector from C.



4 Vivek Kwatra and Mei Han

(a) (b) (c)

Fig. 1: (a) The diagonal pixel pair in the middle of the image corresponds to different
pixel pair locations (equivalently pairs of feature vector components) for patches A, B,
and C (w.r.t their patch origins). Therefore the same pixel pair contributes to all pairs
of feature vector component products that have the same relative pixel displacement.
Pixel pairs near the boundary of the image contribute to the covariance of some “imag-
inary” patches (like patch D) that do not fully lie inside the image. (b) A filtered local
gist image is shown along with a sub-sampled patch. The sub-window feature in this
case is formed by collecting only the red pixels from the patch. Each local gist pixel
stores the integrated filter response over the cell anchored at that pixel (see Section 4.1
for explanation). (c) Image obtained after repacking the local gist image

where each term fifT
i in the summation is the outer product of the feature vector

fi and takes O(d2) time, leading to a total time complexity of O(nd2).

Now consider the case where the feature vectors form sub-window patches
in a training image. If the patch size is, say 32× 32, then for a grayscale image,
the dimensionality of the feature vector is d = 32 × 32 = 1024. This is quite
large, given that the covariance computation varies by d2. However, since the
patches are sub-windows in an image, we can exploit the redundancy between
overlapping patches to speed up the computation.

For the ith image patch, its feature vector’s component fij corresponds to
a location in the image, say qij = (qx

ij , q
y
ij). If the patch’s origin is anchored at

location ti = (txi , tyi ) in the image, we can express this location as qij = ti + pj ,
where pj = (px

j , py
j ) is the location expressed w.r.t the patch’s origin and is the

same for all patches. Therefore, we can express fij as a function of the image
from which features are extracted. This could be an intensity image if we are
looking at intensity features, or a processed image containing filter responses,
but returns a scalar feature value as a function of the pixel location2. If I denotes
the image, then

fij = I(ti + pj). (1)

2 We consider vector-valued images in the next section.



Fast Covariance Computatation and Dimensionality Reduction 5

If we focus on a single entry in the covariance matrix at (fj , fk), then:

C(fj , fk) =
1
n

n∑
i=1

fijfik (2)

=
1
n

n∑
i=1

I(ti + pj)I(ti + pk) (3)

=
1
n

n∑
i=1

I(ti + pj)I(ti + pj + vjk), (4)

where vjk = pk − pj is the displacement vector between the pixel locations
corresponding to fij and fik. Now, if we treat the image as infinite, that is the
number of patches n→∞ and the patch displacements ti span all integer-valued
locations in the plane, then we can drop pj from the term ti + pj in (4). This
is possible because under this infinite span assumption, the pixels spanned by
both ti and ti +pj are the same, and therefore the sum in (4) tends to the same
value. Hence, we can rewrite (4) as:

C(fj , fk) ≈ 1
n

n∑
i=1

I(ti)I(ti + vjk) = C(vjk), (5)

i.e. the covariance value is only a function of the displacement between pixel
locations corresponding to the feature vector’s scalar components. Intuitively,
this works because the same pixel pair in the image contributes to the sums for
different pixel pairs in different patches, all with the same relative displacement,
as shown in Fig. 1a. In practice, for a finite sized image, this formulation results
in an approximation since pixel pairs near the boundary would not contribute
to all products with the same relative displacement (also shown in Fig. 1a).
However, for large enough images, this is an acceptable approximation: because
we are aggregating these products, the error due to the extra accumulation from
boundary pixels diminishes with increasing image size.

3.1 Algorithm

To compute the covariance matrix using (5), one can compute the product for
all pixel pairs in the image with the same relative displacement and sum them
up. These sums of products are stored in a lookup table indexed by the relative
displacement v. The entry C(fj , fk) in the covariance matrix is then assigned
as value in the lookup table at index vjk = pk − pj , where pj and pk are
corresponding pixel locations as defined above. To analyze the complexity of
this algorithm, observe that we need to do this computation for d displacement
vectors because the possible integer-valued relative displacements in a w × w
sized patch is w2 = d (the dimensionality of the patch feature vectors). Also,
each computation is done over all pixel pairs in the image which are O(n), where
n is the number of pixels in the image. Therefore the total complexity is O(nd).



6 Vivek Kwatra and Mei Han

This is much better compared to the original complexity of O(nd2). For a 32×32
patch for example, this is three orders of magnitude faster.

One can further speed up covariance computation by observing that (5) rep-
resents the 2D auto-correlation function of the image I, which can be computed
efficiently in frequency domain using the Fast Fourier Transform (FFT). The
complexity of this algorithm is bounded by the complexity of FFT computation,
which is O(n log n). For patches with large dimensionality d >> log n, this is
faster than computing the lookup table by explicit summation of products.

4 Extension to Vector Images and Gist Features

The covariance computation approach described above assumes scalar-valued
images. It can be extended to vector-valued images, where the feature vector is
formed by concatenation of the vector components at each pixel in the patch.
Vector-valued images may include multi-channel color images, or images ob-
tained as responses of filter banks applied to the original image. For example, it
is common to apply gradient or Gabor filters [11] to images for texture analysis
as well as for computation of global scene features in the gist algorithm [21].

Consider a vector-valued I image with c channels. A feature value in an
image patch now corresponds to a channel in addition to a pixel location. For
the ith patch, feature component fij corresponds to location qij = ti + pj and
channel cj . Hence, (1) and (4) respectively become

fij = I(ti + pj , cj), and

C(fj , fk) =
1
n

n∑
i=1

I(ti + pj , cj)I(ti + pj + vjk, ck).

By applying the same argument as used for deriving (5), we obtain

C(fj , fk) ≈ 1
n

n∑
i=1

I(ti, cj)I(ti + vjk, ck),

i.e. , the covariance value corresponding to a pair of features is a function of
the channels they belong to in addition to the relative displacement in patch
space. Instead of representing the auto-correlation function of the image, the
covariance now represents the cross-correlation between the respective channels
of the image. Therefore, frequency domain computation can still be employed.
However, the cross-correlation needs to be computed across all (unordered) pairs
of image channels, making the total complexity O(c2n log n). However, this is
still better than the complexity of the exact brute-force algorithm, which is
O(nd2) = O(nc2w4), where w is the window size.

4.1 Sub-sampled Windows and Gist Features

We now consider sub-window features that sub-sample the original image. Fig-
ure 1b shows an example sub-sampled patch. Such sub-sampling of patches is



Fast Covariance Computatation and Dimensionality Reduction 7

useful for computation of local gist features, which are gist features computed
over patches. Compared with global gist features, which compute a gist image
for entire image, we compute a gist patch for every image patch, where each cell
in the gist patch is computed by integrating over a subset of pixels within the
patch.

More specifically, local gist features are computed as weighted filter responses
over local image patches. Firstly, a multi-channel image is obtained by applying
several filters to the image such as Gabor wavelets and/or oriented gradient
filters. Every patch over which the feature vector needs to be extracted is further
divided into a grid of cells, where each cell contains s×s pixels (typically s = 4).
The filtered images are integrated within these cells for each patch to form a
feature vector of size w

s ×
w
s × c, where w

s is the number of cells along each
dimension within a patch’s grid and c is the number of filtered channels. One
can then organize these integrated cell responses into a local gist image, where
each pixel stores the integrated response for the cell anchored at that pixel
(see Fig. 1b for a visualization of the gist image, shown with 2 × 2 cells). The
feature vector corresponding to a patch can then be obtained by sub-sampling
the local gist image every s pixels.

These features are used to form patch-level scene descriptors in retrieval and
recognition tasks. Local gist features are also useful for searching patches within
an image for graphics applications such as example-based texture synthesis and
super resolution.

Another application of sub-sampled patches is hierarchical processing. For
example, in [18], a Gaussian stack (instead of a pyramid) is used as the multi-
scale representation of an image. Patches at lower resolutions in the stack are
obtained by sub-sampling from corresponding filtered images with a successively
larger step size.

Covariance computation for features corresponding to such sub-sampled patches
follows the observation that feature values only interact with other feature val-
ues that are a multiple of s pixels away in either dimension, where s is the
sub-sampling step size. Therefore one can re-pack the image pixels so that it
results in a grid of s× s sub-images (as shown in Fig. 1c), where each sub-image
now consists of densely sampled w

s ×
w
s patches. Covariance matrices may then

be computed independently for each of these sub-images and averaged together
to obtain the combined covariance. Alternately, because the sub-images need to
be processed independently, there is no performance benefit to processing all of
them together (as was the case with processing all patches together). Hence, it
may be sufficient to compute the covariance based on just one of the sub-sampled
images. Since each sub-image contains n

s2 pixels, the complexity is O(c2 n
s2 log n

s2 )
per sub-image (or O(c2n log n

s2 ) if all sub-images are used).

The re-packing described above may also be used for processing multiple
images simultaneously by concatenating them together into a larger collage if
the number of images is small. Alternatively, covariances for each image can be
computed independently followed by weighted averaging.



8 Vivek Kwatra and Mei Han

5 Weighted Features

The above approach for covariance computation can be extended to the case in
which pixels have arbitrary weights. This may be useful in case certain patches
are more preferrable than others, e.g. those near interest points or high gradients.
The caveat is that the weights need to be expressed per-pixel, as opposed to
per-patch. However, a simple way to achieve that is to assign to every pixel the
average weight of patches overlapping it. The per-pixel weights may also be used
to specify an image mask that selects the pixels to be considered. In presence of
weights, (5) becomes

C(fj , fk) ≈
∑n

i=1 W(ti)I(ti)W(ti + vjk)I(ti + vjk)∑n
i=1 W(ti)W(ti + vjk)

=
∑n

i=1 WI(ti)WI(ti + vjk)∑n
i=1 W(ti)W(ti + vjk)

where W denotes the per-pixel weights and WI denotes the weighted image,
obtained by multiplying the weights with the image at every pixel. The numer-
ator and denominator denote cross-correlation and auto-correlation operations
respectively and therefore can be computed efficiently as described earlier.

6 Fast Dimensionality Reduction

The covariance matrix computation described above can be used as a pre-process
for performing PCA or LDA on the original feature vectors. However, to use the
computed principal components for dimensionality reduction, it is necessary to
project the original high-dimensional feature vectors onto the low-dimensional
space represented by the principal basis. We can again exploit the redundancy
across overlapping sub-windows to perform this operation efficiently as well.

Projecting a sub-window patch onto a single principal basis vector entails
computing a dot product between the two vectors which is an O(d) operation,
where d = c × w × w is the dimensionality of the patch. Therefore projecting
all sub-windows within the image onto a single basis vector requires O(nd) =
O(ncw2) computation for an image with n pixels. However, if we interpret each
principal component vector as a patch, then the basis coefficient bk for an image
patch anchored at location ti w.r.t the kth principal basis patch Bk can be
expressed as:

bk(ti) =
c∑

l=1

w2∑
j=1

I(ti + pj , cl)Bk(pj , cl)

where pj spans the w × w patch window. Since we want to compute bk for
all values of ti, this is equivalent to filtering the image I with the basis patch
Bk. This can be again efficiently computed in O(cn log n) time in the frequency
domain, which is significantly faster when the patch size is non-trivial, i.e. w2 >>
log n.



Fast Covariance Computatation and Dimensionality Reduction 9

(a) Crowd (b) Traffic (c) Leopard skin (d) Green scales

Fig. 2: Reference images used in quantitative experiments (also refer Lena in Fig. 1a)

7 Experimental Results

In our experiments, we compute covariances for patches extracted from RGB im-
ages and gist images (which are 6 channel Gabor-filtered images with responses
integrated over cells of 4×4 pixels). We have used a dataset consisting of texture
images, natural scenes, and urban imagery (see Fig. 1a and Fig. 2 for a few ex-
amples that we will refer to subsequently). We compute covariances using three
methods: (1) the exact method that computes the average covariance over all
feature vectors explicitly, (2) our frequency domain FFT -based method, and (3)
a sampling method that sub-samples the image for feature vectors, only using
n

w2 vectors, either randomly or over a regular grid.

(a) (b)

Fig. 3: Comparison of covariance matrices and PCA basis vectors computed over 16×16
patches extracted from the Crowd image. Visualization of resulting covariance matri-
ces (a) and top 25 basis vectors (b): shown from left-to-right are the results for the
exact method, our FFT-based method, and the sampling method, respectively. The
covariance matrix obtained by our method has the same structure as the exact covari-
ance, while the sampling method exhibits aliasing which is also evident in the principal
components. The principal components obtained by our method closely resemble the
smooth exact bases, with the top few components being nearly identical

Table 1 demonstrates the performance gain we achieve in covariance com-
putation as well as PCA projection over the respective exact methods. Our
covariance computation is 2-3 orders of magnitude faster, while projection is
about an order of magnitude faster. The sampling method is slower than ours
for the chosen sampling rate, without being as accurate. Random sampling or
sampling over a grid generate similar results. Figure 3 shows a visualization of
the covariance matrices and the principal components obtained using the three



10 Vivek Kwatra and Mei Han

methods for the Crowd image. The covariance matrix obtained by our method
has the same structure as the exact covariance, while the sampling method ex-
hibits aliasing as it is biased towards the sampled patches (also evident in the
principal components). Note that the aliasing is not due to sampling on a regular
grid since contributions from all samples are averaged together. The principal
components obtained by our method, on the other hand, closely resemble the
smooth exact bases, with the top few components being nearly identical.

Table 1: Performance comparison between various methods. CPU time shown in sec-
onds. Our method (FFT) is 2-3 orders of magnitude faster for covariance computation,
and about an order of magnitude faster for projection, compared with exact method.
The sampling method is slower than ours for the chosen sampling rate

Image (size)
Covariance Time Projection Time

16× 16 RGB 32× 32 gist 16× 16 RGB
Exact FFT Sampling Exact FFT Sampling Exact FFT

Scales (64x64) 6 0.04 0.04 0.62 0.02 0.02 0.7 0.1
Grass (120x120) 24 0.07 0.12 5 0.06 0.08 3 0.5

Leopard (128x128) 29 0.07 0.15 5 0.06 0.1 3.5 0.6
Crowd (150x180) 50 0.11 0.23 10 0.09 0.17 6 1.2
Gecko (256x256) 130 0.23 0.57 29 0.23 0.5 16 3
Lena (256x256) 130 0.23 0.59 29 0.22 0.49 16 3
Text (256x256) 131 0.23 0.57 29 0.25 0.49 16 3.2

Windows (306x208) 125 0.23 0.57 27 0.22 0.45 16 3.6
Ropes (360x240) 177 0.3 0.74 39 0.32 0.64 21 5
Traffic (390x300) 239 0.41 0.97 54 0.42 0.85 29 7.5

Building (865x190) 341 0.6 1.34 74 0.74 1.22 41 8

Figure 4 is a quantitative comparison of the covariance matrices computed
using our method and the sampling method against the exact covariance. Since
we are ultimately interested in the principal components obtained from the co-
variance, we compare the subspaces induced by these components. We group
successive principal components obtained from the exact method into subspaces
if the ratio between their respective eigenvalues is less than a threshold (1.2 in
our experiments). This is necessary because the principal eigenvectors become
unstable when their corresponding eigenvalues are close to each other. Therefore
it makes more sense to compare the grouped subspaces as opposed to individ-
ual eigenvectors. Note that we do consistently better than the sampling method
(i.e. have smaller subspace angles). Also, the subspace angle increases only close
to where the eigenvalue curve becomes flat, i.e. after most of the variance has
been captured. The rightmost plot shows that the subspace angle for our method
generally decreases as the number of pixels in the image increase, confirming our
hypothesis that the approximation should improve with image size.

Figure 5 compares the reconstruction error and Fig. 6 compares the nearest
neighbor (NN) search performance between our method (FFT) and sampling



Fast Covariance Computatation and Dimensionality Reduction 11

method, Our method results in lower reconstruction error, and the NNs from our
method consistently have lower true distances to query patches than sampling
method. The details are in the captions of Fig. 5 and Fig. 6.

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

Principal Component

S
u
b
s
p
a
c
e
 
A
n
g
l
e
 
(
d
e
g
r
e
e
s
)

 

 
FFT
Sampling
Eigenvalues

(a)

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

Principal Component

S
u
b
s
p
a
c
e
 
A
n
g
l
e
 
(
d
e
g
r
e
e
s
)

 

 

FFT
Sampling
Eigenvalues

(b)

20 40 60 80 100 120 140 160

10

20

30

40

50

60

70

80

Number of pixels / 1000

S
u
b
s
p
a
c
e
 
a
n
g
l
e
 
(
d
e
g
r
e
e
s
)

 

 

FFT

Sampling

(c)

Fig. 4: Subspace angles between principal components obtained by each method (FFT
and sampling) w.r.t the exact method. (a) is a plot for 16× 16 patches extracted from
an RGB image (Traffic), and (b) is a plot for 32 × 32 patches in a 6-channel gist
image (corresponds to an 8 × 8 grid of cells 4 × 4 pixels each). In these two plots,
the eigenvalues of principal components are plotted (scaled and shifted to fit graph).
Our method consistently generates smaller subspace angles compared with sampling
method. There is a jump in the curve when a new subspace is created, and the curve
stays flat when the new eigenvector is added to the same subspace but does not change
the angle considerably. (c) shows the angle between the subspaces induced by the top
10 eigenvectors of the two methods for different images listed in Table 1, plotted as a
function of number of pixels in the images. The subspace angle for our method generally
decreases as the number of pixels in the image increase, confirming our hypothesis that
the approximation should improve with image size

We have applied our technique for accelerating example-based super reso-
lution and texture synthesis. A practical setting where these methods may be
employed is for resolution enhancement and hole filling of building facades in
large scale 3D urban environments. For super resolution, given a low resolution
target image and a high resolution (partial) source image with similar texture, we
synthesize a high resolution version of the target (our algorithm combines ideas
from [7] and [16]). The core of the synthesis algorithm is patch-based search
performed in PCA space. The most time consuming component is covariance
computation and feature projection to PCA space. Figure 7a shows a sample
super resolution result. We extract 32× 32 patches in this 202× 402 image. The
computation time is 3.1s using the fast covariance computation vs. 2415s using
the exact covariance computation. A similar approach may be used for hole fill-
ing (see Fig. 7b). Again, we take advantage of the fast covariance computation
to improve the processing time by more than 2 orders of magnitude.



12 Vivek Kwatra and Mei Han

(a) Traffic (b) Lena (c) Leopard skin (d) Green scales

Fig. 5: Comparison of reconstruction error (y-axis) based on top 25 PCA coefficients for
basis vectors computed using our FFT method (blue curve) and the sampling method
(red dots). Each plot shows reconstruction error for all 16 × 16 patches in the image,
sorted (along the x-axis) by increasing FFT method error. The error from our method’s
PCA basis is consistently smaller than that from the sampling method

Fig. 6: Nearest neighbor performance on 16 × 16 patches from (left to right) Traffic,
Lena, Leopard skin and Green scales. Top row plots the median distance (y-axis; blue
curve for our FFT method and red dots for sampling method) from every patch to its top
10 nearest neighbors. Distances are computed over PCA coefficients. We use a hierar-
chical search tree constructed from PCA projected patches for nearest neighbor search.
Patches are sorted (along the x-axis) by FFT method distance. These plots demonstrate
that our FFT method consistently results in nearest neighbors with smaller median
distance compared to the sampling method, except for Green scales where performance
is more even. This is attributable to the fact that the Green scales texture is small in
size (64× 64) and therefore the approximation error in covariance matrix computation
is not negligible. The bottom row plots cumulative histograms over the joint rank of
nearest neighbors collected from the two methods (FFT and sampling). We find the
top 10 nearest neighbors for each patch from both methods and jointly ranked the
resulting 20 neighbors. Then for top K neighbors where K varies from 1 to 20 (plotted
along the x-axis), we count how many neighbors come from the FFT method (blue
left-side bars) vs. the sampling method (red right-side bars) and average this value over
all patches. The resulting value (plotted on the y-axis) denotes the average number
of nearest neighbors in the top-K, that come from the FFT method. Note that for
the first three columns, this value for K = 10 lies between 7 and 9, indicating that
the FFT method consistently results in better ranked neighbors. For the last column
(Green scales), the performance is again evenly split (5.35) between the two methods



Fast Covariance Computatation and Dimensionality Reduction 13

(a) (b)

Fig. 7: Sample Applications: (a) Example-based super resolution of building facades.
Left to right: (partial) high resolution source image, low resolution target image, high
resolution result. (b) Hole filling. The texture on the left contains a hole (shown in
black) which is filled on the right using texture synthesis

8 Conclusion

We have proposed a novel algorithm to efficiently compute covariance matrices
for features that can be described as sub-windows in an image. The overlap-
ping nature of these sub-windows results in a special property for the covariance
matrix, namely that the covariance between two pixel features is a function of
their relative displacement. Using this property, covariance computation can be
expressed as a cross-correlation operation, which can be computed quickly in
the frequency domain. We have also presented extensions for vector-valued im-
ages and sub-sampled windows, as well as a method for fast low-dimensional
projection of the sub-windows onto PCA space. Our formulation results in an
approximation to the exact covariance, where the approximation error dimin-
ishes with increasing image size. We support this claim with both qualitative
and quantitative experimental results. We also compare with a simple sampling
approach to covariance estimation, and show that our technique results in a
much closer approximation, while still being faster.

References

1. Adams, A., Gelfand, N., Dolson, J., Levoy, M.: Gaussian kd-trees for fast high-
dimensional filtering. ACM Trans. Graph., SIGGRAPH 28(3), 1–12 (2009)

2. Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising. In:
IEEE Computer Society Conference on Computer Vision and Pattern Recognition.
pp. 60–65. IEEE Computer Society, Washington, DC, USA (2005)

3. Cao, G., Bouman, C.A.: Covariance estimation for high dimensional data vectors
using the sparse matrix transform. In: Koller, D., Schuurmans, D., Bengio, Y.,
Bottou, L. (eds.) NIPS. pp. 225–232. MIT Press (2008)

4. Criminisi, A., Prez, P., Toyama, K.: Region filling and object removal by exemplar-
based image inpainting. IEEE Transactions on Image Processing 13 (2004)

5. Darlington, R.B., Weinberg, S., herbert, W.: Canonical variate analysis and related
techniques. Review of Educational Research pp. 453–454 (1973)

6. Fisher, R.A.: The use of multiple measurements in taxonomic problems. Annals of
Eugenics 7, 179–188 (1936)



14 Vivek Kwatra and Mei Han

7. Freeman, W.T., Jones, T.R., Pasztor, E.C.: Example-based super resolution. IEEE
Comput. Graph. Appl. (2002)

8. Fukunaga, K.: Introduction to Statistical Pattern Recognition, Second Edition
(Computer Science and Scientific Computing Series). Academic Press (1990)

9. Higham, N.J.: Computing the nearest correlation matrix a problem from finance.
IMA Journal of Numerical Analysis 22(3), 329–343 (2002)

10. Jain, A.K., Duin, R.P.W., Mao, J.: Statistical pattern recognition: A review. IEEE
Transactions on Pattern Analysis and Machine Intelligence 22(1), 4–37 (2000)

11. Jones, J.P., Palmer, L.A.: An evaluation of the two-dimensional gabor filter model
of simple receptive fields in cat striate cortex. J Neurophysiol 58(6), 1233–1258
(December 1987)

12. Ke, Y., Sukthankar, R.: Pca-sift: a more distinctive representation for local im-
age descriptors. In: IEEE Computer Society Conference on Computer Vision and
Pattern Recognition. vol. 2, pp. 506–513 (2004)

13. Kim, K.I., Franz, M., Schlkopf, B.: Kernel hebbian algorithm for single-frame
super-resolution. In: Leonardis, A., H.B. (ed.) Statistical Learning in Computer
Vision. pp. 135–149. Springer, Berlin, Germany (2004)

14. Kim, K.I., Franz, M.O., Schlkopf, B.: Iterative kernel principal component analysis
for image modeling. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 27(9), 1351–1366 (2005)

15. Korah, T., Rasmussen, C.: Pca-based recognition for efficient inpainting. In: IEEE
Asian Conference on Computer Vision (2006)

16. Kwatra, V., Essa, I., Bobick, A., Kwatra, N.: Texture optimization for example-
based synthesis. ACM Trans. Graph., SIGGRAPH 24(3), 795–802 (2005)

17. Lefebvre, S., Hoppe, H.: Appearance-space texture synthesis. In: Proc. of SIG-
GRAPH ’06. pp. 541–548 (2006)

18. Lefebvre, S., Hoppe, H.: Parallel controllable texture synthesis. In: ACM Transac-
tions on Graphics, SIGGRAPH. pp. 777–786 (2005)

19. Liang, L., Liu, C., Xu, Y., Guo, B., Shum, H.Y.: Real-time texture synthesis by
patch-based sampling. ACM Trans. Graph. 20(3), 127–150 (2001)

20. Liu, J., Wu, F., Yao, L., Zhuang, Y.: A prediction error compression method with
tensor-pca in video coding. In: MCAM. pp. 493–500 (2007)

21. Oliva, A., Torralba, A.: Building the gist of a scene: the role of global image features
in recognition. Progress in brain research 155, 23–36 (2006)

22. Pearson, K.: On lines and planes of closest fit to systems of points in space. Philo-
sophical Magazine 2(6), 559–572 (1901)

23. Porikli, W.F., Tuzel, O.: Fast construction of covariance matrices for arbitrary size
image. In: Proc. Intl. Conf. on Image Processing. pp. 1581–1584 (2006)

24. Qi, J., Leahy, R.M.: Fast computation of the covariance of map reconstructions of
pet images. Proceedings of SPIE 3661(1), 344–355 (1999)

25. Stein, C., Efron, B., Morris, C.: Improving the usual estimator of a normal covari-
ance matrix. Dept. of Statistics, Stanford University, Report 37 (1972)

26. Wang, Q., Tang, X., Shum, H.Y.: Patch based blind image super resolution. In:
ICCV (2005)

27. Wei, L.Y., Lefebvre, S., Kwatra, V., Turk, G.: State of the art in example-based
texture synthesis. In: Eurographics 2009, State of the Art Report, EG-STAR. Eu-
rographics Association (2009)

28. Yu, Y.D., Kang, D.S., Kim, D.: Color image compression based on vector quan-
tization using pca and lebld. In: Proc. of the IEEE Region 10 Conference. vol. 2,
pp. 1259–1262 (1999)


